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Abstract: Feedforward neural networks have attracted considerable attention in many fields mainly due to their approx-
imation capability. Recently, an effective noniterative technique has been proposed by Kaminski and Stru-
millo(Kaminski and Strumillo, 1997), where kernel hidden neurons are transformed into an orthonormal set of
neurons by using Gram-Schmidt orthonormalization. After this transformation, neural networks do not need
recomputation of network weights already calculated, therefore the orthonormal neural networks can reduce
computing time. In this paper, we will show that it is equivalent between neural networks without orthonormal
transformation and the orthonormal neural networks, thus we can naturally conclude that such orthonormaliza-
tion transformation is not necessary for neural networks. Moreover, we will extend such orthonormal neural
networks into additive neurons. The experimental results based on some benchmark regression applications
further verify our conclusion.

1 INTRODUCTION

Feedforward neural networks(FNNs) have been suc-
cessfully applied in many nonlinear approximation
and estimation fields due to their approximation ca-
pability, which ensures that single-hidden-layer feed-
forward neural networks(SLFNs) can accurately pre-
scribe target functions with a finite number of neu-
rons. The output of an SLFN withL hidden neurons
can be represented byfL = ∑L

i=1 βig(ai ,bi ,x), where
ai andbi are the learning parameters of hidden neu-
rons andβi is the weight connecting thei-th hidden
neuron to the output neuron. Based on different pa-
rameter combinations, there are two main SLFN net-
work architectures: additive neurons and kernel neu-
rons. For the additive neurons, the activation function
g(x) : R→R takes the formg(ai ,bi ,x) = g(ai ·x+bi),
whereai ∈ Rn is the weight vector connecting the in-
put layer to thei-th hidden neuron andbi ∈ R is the
bias of thei-th hidden neuron.ai · x denotes the in-
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ner product of vectorsai andx in Rn. For the kernel
neurons, the activation functiong(x) : R→R takes the
form g(ai ,bi ,x) = g(bi‖x−ai‖), whereai ∈ Rn is the
center of thei-th RBF neuron andbi ∈ R+ is the im-
pact of thei-th RBF neuron.R+ indicates the set of
all positive real value.

Recently, an effective noniterative technique has
been proposed by Kaminski and Strumillo(Kaminski
and Strumillo, 1997), where kernel hidden neurons
are transformed into an orthonormal set of neurons by
using Gram-Schmidt orthonormalization. After this
transformation, FNNs do not require recomputation
of network weights already calculated, which can re-
markably reduce computing time.

Through in-depth analysis, we have found that
neural networks without orthonormal transformation
(also named as ELM(Huang et al., 2006)) is equiv-
alent to the orthonormal neural networks, therefore
such orthonormal transformation is not necessary for
feedforward neural networks. Moreover, the orig-
inal orthonormal neural networks are only suitable
for kernel neurons. In this paper, we will extend
such orthonormal neural networks into additive func-
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tion neural networks. Experimental results based on
some benchmark regression applications also verify
our conclusion: neural networks without orthonor-
malization transformation may achieve faster training
speed for the same generalization performance.

2 SINGLE-HIDDEN-LAYER
FEEDFORWARD NETWORKS

Before we show our main results, we need to intro-
duce some symbols for a standard SLFN. ForN ar-
bitrary distinct samples(xi , t i), i = 1, · · · ,N, where
xi = [xi1,xi2, · · · ,xin]

T ∈ Rn is an input vector and
t i = [ti1, ti2, · · · , tim]T ∈ Rm is a target vector. A stan-
dard SLFN withL hidden neurons with activation
functiong(x) can be expressed as

L

∑
i=1

βig(ai ,bi ,x j) = o j , j = 1, · · · ,N,

whereo j is the actual output of SLFN. As mentioned
in introduction section,g(ai ,bi ,x j) may be additive
model or RBF model.

Definition 2.1 A standard SLFN with L hidden neu-
rons can learn N arbitrary distinct samples(xi , t i),
i = 1, · · · ,N, with zero error means that there exist
parametersai and bi , for i = 1, · · · ,L, such that

N

∑
i=1

‖oi − t i‖ = 0.

According to Definition 2.1, our ideal objective is to
find proper parametersai andbi such that

L

∑
i=1

βig(ai ,bi ,x j) = t j , j = 1, · · · ,N,

The aboveN equations can be expressed as

Hβ = T (1)

whereβ = [β1, · · · ,βL]
T , T = [t1, · · · , tN]T and the ma-

trix H is called as the hidden layer matrix of the
SLFN.

In (Kaminski and Strumillo, 1997), they showed
that by randomly choosing centers of kernel neurons,
the column vectors of matrixH are linearly indepen-
dent. In order to extend the corresponding result into
additive neurons, we need to introduce one lemma:

Lemma 2.1 P.491 of (Huang et al., 2006)Given a
standard SLFN with N hidden nodes and activation
function g: R→ R which is infinitely differentiable in
any interval, for N arbitrary distinct samples(xi , t i),
wherexi ∈ Rn and t i ∈ Rm, for anyai and bi chosen

from any intervals ofRn andR, respectively, accord-
ing to any continuous probability distribution, then
with probability one, the hidden layer output matrix
H of the SLFN is invertible and‖Hβ−T‖ = 0.

Lemma 2.1 illustrates that when the number of neu-
ronsL is equal to the number of samplesN, the cor-
responding hidden layer matrixH is nonsingular such
that SLFN can express those samples with zero er-
ror. The value ofβ could be calculated byH−1T.
In another word, it means that the column vectors
of H are linearly independent each other for any in-
finitely differentiable function with almost all the ran-
dom parameters, which is consistent with the conclu-
sion of Kaminski and Strumillo(Kaminski and Stru-
millo, 1997)(p. 1179). However, we should note that
Kaminski and Strumillo’s conclusion is only suitable
for kernel functions.

According to Lemma 2.1, for SLFNs with any in-
finitely differentiable additive neurong(x), the hid-
den neuron parametersai andbi may be assigned with
random values such that SLFN learn training samples
with zero error. In fact, full rankH, i.e.,L = N, is not
necessary. The number of neuronsL will be far less
thanN in most cases. In this case(L < N), the lin-
early independent property is still ensured, then SLFN
can approach a nonzero training errorε by using the
Moore-Penrose generalized inverse of matrixH, i.e.,
β = H†T, whereH† is the Moore-Penrose generalized
inverse of matrix.

3 NO NEED FOR
ORTHONORMALIZATION

In this section, we will demonstrate the equiva-
lence between neural networks without orthonormal
transformation and the orthonormal neural networks.
First, we introduce Gram-Schmidt orthonormaliza-
tion in brief. For the simplicity, we denoteg j(x) =
g(a j ,b j ,x). Our aim is to find proper parameters such
that

β1g1(xi)+ · · ·+βLgL(xi) = ti , i = 1, · · · ,N (2)

whereti = f (xi).
Multiplying equation(2) by g j(xi) and adding the

correspondingL equations fori = 1, · · · ,N, we have

β1

N

∑
i=1

g1(xi)g j(xi)+ · · ·+βL

N

∑
i=1

gL(xi)g j(xi)

=
N

∑
i=1

yig j(xi), j = 1, · · · ,L (3)

Similar to (Kaminski and Strumillo, 1997) (p.
1179), the inner product of two functions is defined
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as

〈u(x),v(x)〉 =
N

∑
i=1

u(xi)v(xi) (4)

whereN is the number of training samples, then equa-
tions(3) can be written as

β1
〈
g1(x),g j(x)

〉
+ · · ·+βL

〈
gL(x),g j(x)

〉

=
〈

f (x),g j(x)
〉
, j = 1, · · · ,L (5)

The aboveL equations can be rewritten as

H̃β = T̃

where

T̃ =



〈 f (x),g1(x)〉

...
〈 f (x),gL(x)〉




and

H̃ =



〈g1(x),g1(x)〉 · · · 〈gL(x),g1(x)〉

...
.. .

...
〈g1(x),gL(x)〉 · · · 〈gL(x),gL(x)〉




L×L

We call H̃ as inner product hidden layer matrix. If
{gk(x)}L

k=1 are linearly independent each other, then
the solution of the linear system (2) is unique. In an-
other word, the hidden-to-output weights calculated
by the inverse of hidden matrix̃H are the same as the
hidden-to-output weights calculated by the inverse of
hidden matrixH, i.e.,

H†T = H̃−1T̃ (6)

If {gk(x)}L
k=1 are orthonormal each other, the di-

agonal parts of̃H are one and others parts are zero,
then the hidden-to-output weightsβ can be expressed
as

βk = 〈 f (x),gk(x)〉 =
N

∑
i=1

yigk(xi) (7)

However, as Kaminski and Strumillo said, the
set of functions{gk(x)}L

k=1 is not orthonormal each
other, so our purpose is to use orthonormal transfor-
mations to construct orthonormal basis. In Kamin-
ski and Strumillo’s paper(Kaminski and Strumillo,
1997), they introduce Gram-Schmidt Orthonormal-
ization process in detail.

By applying the standard Gram-Schmidt
orthonormalization algorithm, the sequence
{g1(x),g2(x), · · · ,gL(x)} are transformed
as an orthonormal set of basis functions
{u1(x),u2(x), · · · ,uL(x)}, i.e.,

[u1(x),u2(x), · · · ,uL(x)]= [g1(x),g2(x), · · · ,gL(x)]·V
(8)

where V is an upper triangular matrix. Its detail
expression can be refereed to equations({P.1182 of

(Kaminski and Strumillo, 1997)}). After Gram-
Schmidt transformation, the new hidde-to-output
weights{αi}

L
i=1 are expressed as

αi = 〈 f (x),ui(x)〉 , i = 1, · · · ,L (9)

We setα = [α1, · · · ,αL]
T , and letβ denote the

hidden-to-output weights by the generalized inverse
of the hidden matrixH, i.e., β = H†T. According to
equation (6), we have

α = U†T

= U†Hβ (10)

Equation (10) shows the corresponding equivalent
relation between neural networks with Gram-Schmidt
transformation and without Gram-Schmidt transfor-
mation. It also illustrates that such orthonormal trans-
formation is no need for neural networks.

In order to ensure the validity of equation (10),
we need the following precondition:{gk(x)}L

k=1
are linearly independent each other. According to
Lemma 2.1 and the statements of the paper({P.1179
of (Kaminski and Strumillo, 1997)}), we have the fol-
lowing conclusion: given a standard SLFN with any
infinitely differentiable additive neuron or any kernel
neuron, for anyai andbi chosen from any intervals of
Rn andR, respectively, according to any continuous
probability distribution, we can obtain the equivalent
relation(10), i.e., orthonormal neural networks is no
longer needed.

4 PERFORMANCE EVALUATION

In order to verify our conclusion, we will com-
pare the simulation results between ELM(without
orthonormal transformation) and such orthonormal-
ization neural networks based on some benchmark
regression applications. Neural networks without
orthonormalization transformation, i.e., ELM, may
achieve faster training speed under the same gener-
alization performance. Although the scope of addi-
tive neurons can be extended, we only choose Gaus-
sian kernel activation function for all the simulations
in this section.

For simplicity, all the inputs data are normalized
into the range[−1,1] in our experiments. Neural net-
works with ELM and with Gram-Schmidt Orthonor-
malization both are assigned the same of number of
hidden neurons, i.e. 30 neurons. All the simula-
tions are running in MATLAB 6.5 environment and
the same PC with Pentium 4 3.0 GHZ CPU and 1G
RAM. The kernel function used in the simulations
is the Gaussian functionφ(x) = exp(−γ‖x − µ‖2),
where the centersµi are randomly chosen from the
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range[−1,1] whereas the impact factorγ is chosen
from the range(0,0.5).

Based on 5 real world benchmark regression
datasets, the performance of neural networks with
ELM and transformed by Gram-Schmidt Orthonor-
malization will be given out. Table 1 gives the char-
acteristics of these regression datasets.

Table 1: Specification of 5 Benchmark Regression Datasets.

Name No. of Observations Attributes
Training Testing

Abalone 2000 2177 8
Airplane 450 500 9
Boston 250 256 13
Census 10000 12784 8

Elevators 4000 5517 6

Table 2: Comparison of Average Testing Root Mean Square
Error.

Name ELM Gram-Schmidt
Abalone 0.0784 0.0772
Airplane 0.0481 0.0491
Boston 0.1095 0.1117
Census 0.0758 0.0760

Elevators 0.0604 0.0606

For each problem, 50 trials have been done. Table
2 gives out the testing root mean square error(RMSE)
results of ELM and Gram-Schmidt orthonormaliza-
tion neural networks with the 30th neuron. Seen from
Table 2, the two neural networks both achieve good
generalization performance with almost the same er-
ror level, which also verify our conclusion: The
hidden-to-output weights directly determined by hid-
den layer matrix is the same solution as the hidden-to-
out weights calculated by orthonormal inner product
hidden layer matrix.
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Figure 1: Comparison of training time curves with Gaussian
kernel neurons between ELM and Gram-Schmidt Orthonor-
malization for Airplane case.

Table 3: Comparison of Average Mean Training Time (sec-
onds).

Name ELM Gram-Schmidt
Training Time Training Time

Abalone 0.0717 0.0942
Airplane 0.0159 0.0234
Boston 0.0087 0.0187
Census 0.2853 0.4280

Elevators 0.0927 0.1449

The mean training time of ELM and Gram-
Schmidt orthonormalization neural networks with the
30th neuron are illustrated in Table 3. From Ta-
ble 3, we can know that neural networks without
orthonormalization transformation take less training
time than neural networks with orthonormalization
transformation. In the absence of orthonormaliza-
tion transformation, neural networks can have faster
training speed. Fig 1 records training time of Air-
plane case from 5th neuron to 80th neuron every 5
steps. Seen from Fig 1, with the growth of neu-
ron number, the difference in training time between
ELM and Gram-Schmidt orthonormalization neural
networks becomes greater, which further verifies the
correctness of our conclusion.

5 CONCLUSION

An orthonormal kernel neural networks have been
proved to be a fast learning mechanism in (Kamin-
ski and Strumillo, 1997). However, in this paper, we
have rigorously proved and demonstrated that such
orthonormalization transformation is not necessary
for neural networks. Therefore neural networks with-
out orthonormalization transformation can run faster
than neural networks with orthonormalization trans-
formation while achieving the same generalization
performance. We have also extended in this paper
the applied scope of activation functions into addi-
tive neurons. Some benchmark regression problems
further verify our conclusion.
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