
MODELLING DATA TRANSFORMATION PROCESSES USING
HIGH-LEVEL PETRI NETS

Li Peng
Software School, Hunan University, Changsha, Hunan, China

Keywords: Data heterogeneity, data transformation, process model, coloured Petri net, higher-order Petri net.

Abstract: Data heterogeneity is one of the key problems in integrating multiple data sources, data warehousing, legacy
data migration, etc. For integrating databases or information systems, the data need to be transformed from a
source representation into a target representation. The foundation for developing efficient data
transformation tools and automating data transformation processes is a data transformation process model.
In this paper, I propose a CPN based data transformation process model. This model provides rich
constructs to represent various data structures, transformation functions and rules; allows parallelization,
composition and decomposition of data transformations. Furthermore, as the extension of the model, the
CPNs are combined with higher-order Petri nets. The components of the CPNs can be reused. This
improves the efficiency of data transformations.

1 INTRODUCTION

Data heterogeneity is one of the key problems in
integrating multiple data sources, data warehousing,
legacy data migration, etc. This kind of
heterogeneities refers to different representations of
the same data. For instance, different units of
measurement, different abstraction levels, distinct
representations of the same data domain, or different
data formats would cause data heterogeneities. In
order to integrate databases or information systems,
we often need to transform data from a source
representation into a target representation.

A data transformation process potentially
involves a considerable number of transformation
functions or operations，which apply to input data
and generate output data. This kind of operations
appears implicitly in most languages. For instance,
we can perform data transformations by executing a
sequence of SQL queries against source data.
However, query languages were not developed to
represent complex transformations for solving data
heterogeneities. Many data transformations cannot
be expressed by SQL queries.

In many languages and data transformation tools
(for example, Data Fusion tool (Carreira and
Galhardas, 2004 (a)), data mapper operators are
developed for implementing data transformations. In

(Carreira and Galhardas, 2004 (b)), the data mapper
operators as an extension to the relational algebra
are proposed for increasing its expressive power.
The mapper operators are based on a tuple semantics,
can not specify many useful data transformations.

The foundation for developing efficient data
transformation tools and automating data
transformation processes is a data transformation
process model, which integrates input data, output
data, required transformation functions and
transformation rules. This model should be a visual
notation, describe progressive transformations, and
can be optimized.

This paper is organized as follows. Section 2
gives an overview of data structures and
transformation functions in data transformation
processes. Section 3 presents the data transformation
model. Section 4 concludes the paper with a
summary of the contributions of this research.

2 DATA AND FUNCTIONS IN
DATA TRANSFORMATION
PROCESSES

Data transformations deal with large amounts of data
and potentially involve a considerable number of
transformation functions or operations. The

533
Peng L. (2007).
MODELLING DATA TRANSFORMATION PROCESSES USING HIGH-LEVEL PETRI NETS.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - ISAS, pages 533-536
DOI: 10.5220/0002372405330536
Copyright c© SciTePress

execution of some functions is controlled by rules.
Therefore, data, transformation functions and rules
are basic elements in data transformation processes.

2.1 Data Structures

The inputs of data transformations are attributes in
relational databases, data warehouses, etc. The
attributes can have complex data structures and be
represented by using constructors. A composite
attribute corresponds to utilization of the tuple
constructor, whereas a multivalued attribute may be
of a list, set, or bag data type, and corresponds to the
list, set, or bag constructs. Complex data structures
can be created by the nesting of type constructors
(tuple, set, list, bag, array, etc.).

2.2 Transformation Functions

Data transformations may involve a number of
transformation functions or operations.
Transformations can be composed or decomposed.
Composition of transformations allows functions to
be composed together and executed as a single
function, whereas the decomposition of a
transformation allows a function to be partitioned
into composeable functions. According to this
criterion, data transformations can be classified into
simple transformations and complex
transformations.

A simple transformation involves only a single
function, which is not decomposable, whereas a
complex transformation can be decomposed into a
number of functions. The functions applied in
simple transformations can be relational operations,
such as join(), selection(), and projection();
aggregate functions, such as sum(), avg(), count(),
max() and min(); etc. A complex transformation is
composed of a number of functions and allows
sequential and parallel execution of functions.

On the other hand, transformation functions can
be classified according to the following criteria:

 One-to-one map: a function receives an input
and generates an output.

 One-to-many map: a function receives a single
input and generates multiple outputs.

 Many-to-one map: a function receives
multiple inputs and generates a single output.

 Many-to-many map: a function receives
multiple inputs and generates multiple
outputs.

 Algorithmic map: a function is performed
according to an algorithm, e.g. iteration.

In order to simulate data transformation

processes, the data transformation model should be a
visual notation, provide constructs to represent
various data structures, transformation functions and
rules. Moreover, the composition, decomposition
and parallelization of data transformations can be
expressed in this model.

3 MODELLING DATA
TRANSFORMATION
PROCESSES

In graphical notations, UML is one of the most
popular graphical specification tools. However, it is
not suitable to express progressive data
transformation processes. Coloured Petri Net (CPN)
is an alternative to UML for modelling data
transformations.

3.1 Modelling Data Transformation
Processes Using CPN

CPNs are one of the enhancements of Petri nets,
which are especially suitable for modelling
transformation processes of complex data types and
expressing progressive transformation processes.

3.1.1 The CPN Model

CPNs are formally defined as follows (Jensen, 1992):
CPN=(S, P, T, A, N, C, G, E, M0, I), where

S: a finite set of non-empty types, called color sets;
P: a finite set of places;
T: a finite set of transitions;
A: a finite set of arcs P ∩ T = P ∩ A = T ∩ A = ∅ ;
N: a node function A → P × T � T × P;
C: a color function P → S;
G: transition inscriptions T →expression;
E: arc inscriptions A → expression;
M0: initial tokens;
I: an initialization function P → M0.

CPNs provide the following graphical notations:

circles for places, boxes for transitions, arcs for data
flow between them, and dots for tokens.

In a CPN based data transformation process
model, a color set represents a data type, which may
be the input or the output of a transformation
function. Various data types occurring in data
transformation processes can be represented using
different color sets. For example, a composite

ICEIS 2007 - International Conference on Enterprise Information Systems

534

attribute “Date” can be represented by a color set
defined as follow:

color Date = record (year, month, day).
A textual inscription can be assigned to each

graphical symbol. Arc inscriptions restrict the arc’s
data flow, which is described with variables.
Transition inscriptions define guard conditions and
actions. Guard conditions restrict the firing of the
transitions. Actions correspond to transformation
functions or operations and are executed when the
transitions fire.

Simulation is based on the following firing rules:
When data tokens (represented by color sets) are
available in each input place of a transition, the arc
conditions and the guard conditions are evaluated
and the output places are checked for space for
tokens. When all these conditions are fulfilled (the
preconditions of a data transformation are fulfilled),
the transition may fire. When the transition fires, all
input data tokens are consumed and output tokens
are delivered to all output places according to the
action. With the moving of tokens in CPN, data
transformations are performed step by step.

3.1.2 Execution of Data Transformations in
CPNs

CPNs allow sequential and parallel execution of data
transformations. Composition and decomposition of
data transformations can be also expressed in CPNs.

The data of an input place can be delivered to
different transformation functions; the functions can
execute in parallel and yield different output results.
If the data type of an input place is a composite type,
the input data can be partitioned and delivered to
different transformation functions. For example, if
the data type of an input place is a tuple, the tuple
can be partitioned into single attributes, and the
attributes would be delivered to different
transformation functions; finally, the results of
different functions would be merged into a tuple in
the output place.

The concept of hierarchy and composition for
CPN allows transitions to be replaced by subnets. A
hierarchical CPN (HCPN) model can be developed
either top-down or bottom-up. Subnets (sub-pages)
can be used to describe decomposition of complex
transformations. Each subnet provides a detailed
description of a complex transformation.

Data transformation rules can be expressed as
guard conditions in transition inscriptions. The
transformation rules control the execution of
transformation functions, e.g. iteration.

3.2 An Extension for Data
Transformation Process Model

CPNs are a powerful modelling notation for data
transformation processes. They provide rich
constructs for representing various data types,
transformation functions and rules. The
parallelization, composition and decomposition of
data transformations can be expressed in CPNs.
However, a data transformation process potentially
involves some special procedures or algorithms.
Sometimes, the procedures or algorithms involved in
CPNs need to be reused. For example, in a data
transformation process, more than one hierarchical
structures need to be restructured. Obviously, we
would not like to rewrite procedures for each
hierarchical structure. This problem can be solved
by applying higher-order Petri nets (Janneck and
Esser, 2002). We can use the higher-order facilities
to construct a model for the procedure that, when
parameterized with a specific hierarchical structure,
automatically instantiates the corresponding
procedure. The higher-order Petri nets can be
combined with CPNs.

Figure 1: A higher-order Petri net

Figure 1(a) shows a parameterized Petri net
which represents the procedure for restructuring
hierarchical structures. The parameters are the
attributes existing in a hierarchical structure. The net
contains an input port and an output port. This
model is called a component model. Figure 1(b) is a
CPN which describes a data transformation process.
The CPN contains two double-rimmed places, called
container places. Each container place contains input

In Out

(a)

(b)

MODELLING DATA TRANSFORMATION PROCESSES USING HIGH-LEVEL PETRI NETS

535

ports and output ports. The procedure (component)
resides as a token on the container places. When a
transition that is connected to an input container port
produces a token, the token is sent to the input port
of the component. Similarly, when the component
produces a token at its output port, the token appears
at the corresponding output container ports of the
container place. By using component models and
container places, procedures or algorithms can be
reused. This reduces the model size and complexity,
and improves the efficiency of data transformations.

4 CONCLUSIONS

In this paper, I proposed a data transformation model
for developing efficient data transformation tools
and automating data transformation processes in
integrating multiple data sources, data warehousing,
legacy data migration, etc. The model is based on
CPNs (Coloured Petri nets) and provides rich
constructs to represent various data structures,
transformation functions and rules. The
parallelization, composition and decomposition of
data transformations can be expressed in this model.
As an extension of the model, higher-order Petri nets
are combined with CPNs. In this extended model,
the components of CPNs can be reused. This
improves the efficiency of data transformations.

REFERENCES

Carreira, P., Galhardas, H., 2004(a). Execution of Data
Mappers. In IQIS. pp.2-9. ACM.

Carreira, P., Galhardas, H., 2004(b). Efficient
development of data migration transformations. Demo
Paper. In ACM SIGMOD International Conference on
the Managment of Data. Paris, France.

Esser, R., Janneck, J.W., 2000. Exploratory Performance
Evaluation using Dynamic and Parametric Petri Nets.
In Proceedings of the HPC 2000. pp.357-364, Society
for Computer Simulation.

Galhardas, H., Florescu, D., Shasha, D., Simon, E., Saita,
C.A., 2001. Declarative data cleaning: Language,
model, and algorithms. In Proceedings of the
International Conference o Very Large Data Bases
(VLDB’01). Rome, Italy.

Hoffmann, K., Mossakowski, T., 2003. Algebraic Higher
Order Nets: Graphs and Petri Nets as Tokens. In
Recent Trends in Algebraic Development Techniques,
16th International Workshop, WADT 2002.
Frauenchiemsee, Germany, Revised Selected Papers,
LNCS Vol. 2755, pp. 253-267, Springer-Verlag.

Huber, P., Jensen, K., Shapiro, R.M., 1989. Hierarchies in
Colored Petri Nets. In 10th International Conference
on Application and Theory of Petri Nets. Bonn.

Janneck, J.W., Esser, R., 2002. High-order Petri net
Modeling – techniques and applications. In
Conferences in Research and Practice in Information
Technology. Vol. 12. C., pp.17-25.

Jensen, K., 1992. Coloured Petri Nets - Basic Concepts,
Analysis Methods and Practical Use, Vol.1, Springer-
Verlag.

Lakos, C.A., 1997. On the Abstraction of Coloured Petri
Nets. In Proceedings of the 18th International
Conference on the Application and Theory of Petri
Nets. Vol. 1248, pp. 42-61, Lecture Notes in Computer
Science, Springer-Verlag.

Lakshmanan, L.V.S., Sadri, F., Subramanian, I. N., 1996.
SchemaSQL - a Language for Querying and
Restructuring Database Systems. In Proc.
International Conference on Very Large Databases
(VLDB’96). pp. 239–250, Bombay, India.

Miller, R.J., Haas, L.M., Hernand′ez, M., 2000. Schema
Mapping as Query Discovery. In Proceedings of the
International Conference on Very Large Data Bases
(VLDB’00). pp. 77–78, Cairo, Egypt.

Oswald, H., Esser, R., Mattmann, R., 1990. An
Environment for Specifying and Executing
Hierarchical Petri Nets. In Proceedings of the 12th
International Conference on Software Engineering.
pp. 164-172.

Raman, V., Hellerstein, J., 2001. Potter’s Wheel: An
Interactive Data Cleaning System. In Proceedings of
the International Conference on Very Large Data
Bases (VLDB’01). Roma, Italy.

Schallehn, E., Sattler, K., Saake, G., 2001. Advanced
grouping and aggregation for data integration. In
Proceedings 10th International Conference on
Information and Knowledge Management, CIKM’01.
Atlanta, GA, USA.

Xu, J., Kuusela, J., 1998. Modeling Execution
Architecture of Software System Using Colored Petri
Nets. In WOSP98. pp. 70-75.

ICEIS 2007 - International Conference on Enterprise Information Systems

536

