
AN EXTENSIBLE RULE TRANSFORMATION MODEL FOR
XQUERY OPTIMIZATION

Rules Pattern for XQuery Tree Graph View

Nicolas Travers
PRiSM Laboratory, University of Versailles, 45 av des Etats-Unis, Versailles, France

Tuyêt Tr̂am Dang Ngoc
ETIS Laboratory, University of Cergy-Pontoise, Cergy, France

Keywords: XQuery evaluation, Extensible Optimization.

Abstract: Efficient evaluation of XML Query Languages has become a crucial issue for XML exchanges and integration.
Tree Pattern (Sihem et al., 2002; Jagadish et al., 2001; Chen et al., 2003) are now well admitted for representing
XML Queries and a model -called TGV (Travers, 2006; Travers et al., 2006; Travers et al., 2007c)- has
extended the Tree Pattern representation in order to make it more intuitive, respect full XQuery specification
and got support to be manipulated, optimized and then evaluated.
For optimization, a search strategy is needed. It consists in generating equivalent execution plan using exten-
sible rules and estimate cost of plan to find the better one. We propose the specification of extensible rules that
can be used in heterogeneous environment, supporting XML and manipulating Tree Patterns.

1 INTRODUCTION

Efficient evaluation of XML Query Languages has
become a crucial issue for XML exchanges and in-
tegration (Abiteboul, 1997). XQuery (W3C, 2005)
has proved to be an expressive and powerful language
to query XML data both on structure and content,
and to make transformation on data. In addition, its
query functionalities come from both database com-
munity (filtering, join, selection, aggregation), and
text community (supporting and defining function as
text search). However, such functionalities provided
by the XQuery language imply complexity that makes
its evaluation very difficult.

Tree Pattern Queries (Sihem et al., 2002; Jagadish
et al., 2001) are now well admitted for modeling parts
of XML Queries. Works as GTP (Chen et al., 2003)
use the Tree Pattern Query as a basis to model a part
of the XQuery specification.

In previous work (Dang-Ngoc et al., 2004; Travers
et al., 2007c; Travers et al., 2007c), we have de-
fined the TGV model that extends the Tree Pattern
representation in order to make it intuitive, have full
XQuery support and got support to be manipulated,
optimized and then evaluated. XQuery queries are
modeled with TGV to generate execution plan that

will be used to evaluate the XQuery query.
We are interested in providing an extensible

framework to optimize XQuery queries’ evaluation.
Optimizing query evaluation can have different mean-
ing depending on what the user or the application
expects. The most popular and important aspect is
efficiency or cost. Mainly, cost models referred to
time cost (time for evaluating the whole request and
provide the result), but also resource cost, energy
cost, money cost, etc. But depending on the context,
other aspects can be considered instead for an opti-
mized query evaluation, as accuracy on the evalua-
tion as introduced in weighted patterns (Damiani and
Tanca, 2000), fuzzy (Damiani et al., 2000) or flexible
(Calmès et al., 2003) queries or right access.

Extensible optimizer were studied in Exodus
(Carey et al., 1990), Starburst (Widom, 1996), Vol-
cano (Graefe and McKenna, 1993) and OPT++
(Kabra and DeWitt, 1999). An extensible optimizer
aims at generating a query optimizer by integrating
new transformation rules. These rules transform al-
gebraic plans into alternative ones. Extensible opti-
mizers need search strategies to order transformation
rules for queries execution. It often relies on cost in-
formation as with introducedexpected cost factorin
(Carey et al., 1990) and (Graefe and McKenna, 1993).

351
Travers N. and Trâm Dang Ngoc T. (2007).
AN EXTENSIBLE RULE TRANSFORMATION MODEL FOR XQUERY OPTIMIZATION - Rules Pattern for XQuery Tree Graph View.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 351-358
DOI: 10.5220/0002370703510358
Copyright c© SciTePress

However, these works are designed to relational
or object contexts. And as far as we know, those so-
lutions could not be applied on semi-structured data
with tree pattern matching queries. So, we define a
model for designing transformation rules that would
be applied on TGV, to optimize XQuery evaluation.

In this article, we briefly recall the TGV model
and annotations on which transformation rules rely
on (section 2). In section 3, we present the goal of
this article which defines a new model, therule pat-
terns, which would be integrated in our extensible op-
timizer. And, finally we conclude.

2 TREE GRAPH VIEW (TGV)

XQuery is a rich language on XML documents.
It defines complex operations such as aggrega-
tion, ordering, nesting/unnesting, document con-
struction, conditional cases, sets, sequences, quan-
tifiers, and XPath filter. To handle such function-
alities, a canonical form using simple sequences
of FOR...LET...WHERE...RETURN (FLWR) expres-
sions equivalent to any XQuery expression can be re-
trieved (the demonstration begin in (Chen et al., 2003)
and achieved in (Travers et al., 2007b)).

The canonized XQuery evaluation process re-
lies on our TGV model. Since we focus
on TGV transformation rules, we briefly re-
call the TGV model. Details and Abstract
Data Type formalization of the TGV model can
be found in (Travers, 2006; Travers et al.,
2007c). A TGV implementation is downloadable on
http://www.prism.uvsq.fr/˜ntravers/xlive/

2.1 The TGV Model

To manipulate XQuery expressions, a tree logical
structure is needed. (Amer-Yahia et al., 2001) has in-
troduced the TPQ model that expresses a singleFOR-
WHERE-RETURN (FWR)query by a Pattern Tree
and a formula. Then, (Chen et al., 2003) proposes
the GTP model that are a generalization of the TPQ
model. In this model, eachLET clauses generates a
Tree Pattern, and one predicate that contains all con-
straints. The representation acts as a pattern applica-
ble on data sources. However, GTPs do not capture
well all XQuery expressiveness and cannot be used in
a mediation context. Moreover, it does not support
extensible optimization.

We have proposed the TGV model (Dang-Ngoc
et al., 2004; Travers, 2006; Travers et al., 2006) that
provides the following features:

(a) It integrates all functionalities of non-typed
XQuery queries (collection, XPath, predicate, ag-
gregate, conditional and sequential parts, etc.)

(b) It uses an intuitive representation that provides a
global visualization of the query for mediation.

(c) It provides an annotation support for optimization
and evaluation purposes (e.g., cost, sources local-
ization).

TGV areTree Patternssets corresponding to pat-
terns applicable on XML documents. Each Tree Pat-
tern is composed ofNodeslinked together by axis and
mandatory/optional information. Constraints could
be attached to a node in order to restrict selected trees.
There are four types of Tree Patterns:

• Source Tree Pattern (STP): a simple Tree Pattern
that filters XML documents. FOR...

• Return Tree Pattern (RTP): this Tree Pattern
builds new XML documents with different speci-
fied tags. RETURN...

• Aggregate Tree Pattern (ATP): this Tree Pattern
aggregates selected trees to provide new sets of
trees. LET...

• Intermediate Tree Pattern (ITP): this Tree Pattern
filters selected trees to produce new sets of sub-
trees. FOR $y in $x...

Tree Patterns are connected together byHyperlinksal-
lowing trees transformations. Among hyperlinks, we
can recall:

• Join Hyperlinks (JH): a join between two tree pat-
terns.

• Projection Hyperlinks (PH): a value projection.

• Exploration Hyperlinks (EH): a filter on a Tree
Pattern to generate a new one.

• Set Hyperlinks (SH): a set operation between two
tree patterns.

All these elements are connected together to form a
TGV that represents an XQuery query. They are for-
malized in (Travers, 2006).

Table 1 illustrates an XQuery query which con-
tains aFORclauses ($x) with a constraint predicate de-
fined in a filter (between ”[]”). This constraint selects
all documents containing the word ”XML”. Then, the
book attribute ”isbn” must not exceed ”1526”. Fi-
nally, the result includes the title of the book and au-
thors if only there is more then two authors (aggrega-
tion and a join on ”isbn” with another collection).

This query is represented by a TGV in figure 1.
We can see Tree Patterns represented by ovals (STP)
and rectangles (ATP, RTP). The first STP defines the
collection filter for ”reviews”. It is associated to a

ICEIS 2007 - International Conference on Enterprise Information Systems

352

contains("XML") $y book

@isbn author

books

"books"

$l1

@isbn

$x

=

book

title

count()>2

>1526

"reviews"

Figure 1: TGV example.

Table 1: XQuery Example.

<!– For each book containing the word XML and
which ISBN greater than 1526, return the title and
each author information (only if there are at least
3 authors) –>
for $x in collection(”reviews”)/book[contains (.,
”XML”)]
where $x/@isbn> 1526
return

<books>
{$x/title}

{
for $y in collection(”books”)/book
where $x/@isbn = $y/@isbn

and count($y/author)> 2
return $y/author

}
</books>

”contains” function, the tree representation is com-
posed of two branches with atitle and anisbn(linked
to a constraint). The second STP filters the collec-
tion ”books”. The isbn is linked to the previousisbn
node with aJoin Hyperlink. Theauthornode is linked
to two ATPs byProjection Hyperlinks. The ATP on
the right corresponds to the aggregate constraint that
requires more than two authors by book. The ATP
on the left nests results for each book (defined by its
isbn), this result is put in the RTP by aGeneralized
Hyperlink. The RTP represents the XML document
creation, with tags (nodes relation) and values (hy-
perlinks).

The TGV logical structure recognizes the full
untyped-XQuery specification and covers 8 of 9 use
cases of the W3C. The use-cases category not cov-
ered by our TGV model is the STRONG category that
includes query type information.

2.2 Annotations

Our TGV logical model can be extended by annotat-
ing its elements with physical information, producing
an annotated TGV (which is then a physical model).
Annotations add new information to a TGV model in
order to indicate for example, execution costs, local-
ization information, or some others constraints as ac-
curacy, access right, etc.

We introduce a generic annotation model, which
allows us annotating subsets of TGV elements with
information. The motivation for annotating a TGV
is to give, for each arbitrary granularity (i.e. subset
size), some additional information such as cost infor-
mation, system performance information, source lo-
calization, etc. Our annotation model is generic and
allows any type of information. The set of annotation
based on the same annotation type is called an anno-
tated view. There can be several annotation view for
the same TGV, eg. time-cost annotated view, algo-
rithm annotated view, source-localization annotated
view, etc.

For example, we can annotate the execution cost
on a hyperlink; it’s also possible to annotate all ele-
ments of a source all together by adding an execution
cost and some localization information.

Figure 2 illustrates an annotated TGV with algo-
rithms annotations. This physical TGV represents a
view of the possible algebraic evaluation of the TGV
with given operators. We can seeXSources that se-
lects and filters data on sourcess1 and s2 (we can
notice that aggregate functions are embedded in the
source s2). AnXJoin will join data provided bys1
ands2with a left outer join. Then, anXConstructwill
build an XML document with specific projections on
data.

Figure 3 shows a cost annotated TGV. Several
TGV elements are linked to cost annotations. This

AN EXTENSIBLE RULE TRANSFORMATION MODEL FOR XQUERY OPTIMIZATION - Rules Pattern for XQuery
Tree Graph View

353

contains("XML") $y book

@isbn author

books

"books"

$l1

@isbn

$x

=

book

title

count()>2

>1526

(3)

(3)

XJoin :

"reviews"

left Outer-join

(1)
(2)

(2)

(2)
(4)

(2) XSource : query on source s2

(1) XSource : query on source s1

(4) XConstruct : ($x, $y)

Figure 2: Algorithm-annotated TGV view.

contains("XML") $y book

@isbn author

books

"books"

$l1

@isbn

$x

=

book

title

count()>2

>1526

"reviews"(1)

(2)

(3)

(4)

(5)

(7)

(6)

Cost_s1 = Cost_IO * card_s1 * (2)(1)
Cost_rest_isbn = card_s1 * sel(2)
Cost_s2 = Cost_IO * card_s2 * (4)(3)
Cost_rest_count = card_s2 * agg * sel(4)
Cost_nest_l1 = (3) * proj(5)
Cost_join_isbn = Cost_CPU * (card_s1 * card_s2)(6)

(8)

Cost_proj = Max ((1) * proj, (5) * proj)(7)
Cost_construct = (6) + (7)(8)

card:cardinality

sel:selectivity

proj:projection

agg:aggregation

Figure 3: Cost-annotated TGV view.

view gives an estimate cost of each step of the eval-
uation. We can see the use of cardinality, selectiv-
ity, projection, and aggregation in formulas. The final
cost formula (8) provides the evaluation global cost.

3 EXTENSIBLE OPTIMIZATION

Now we have recall TGV characteristics, we present
the optimization framework. TGV are modified by
the optimizer to generate more efficient evaluations.

The optimization framework takes several trans-
formations to manipulate TGVs and generates new
ones. We now introduced the optimization process,
and then focus on transformations we callRule Pat-
terns. We present a model to create new transforma-
tion rules in order to extend our optimizer. We pro-
pose a model to represent and create rules; wedo not
focus on which rule we add to our optimizer (or prov-
ing them). Some classical transformation rules can
be found in (Cherniack and Zdonik, 1998; Lohman,
1988; Ali and Moerkotte, 2004).

3.1 Optimization Framework

Since TGV is an intuitive representation model for
XQuery, we aim at defining a representation model
for transformation rules on TGV. Then, rules defini-
tion could be easier to create, according to existing
equivalence rules on object-oriented queries (Cherni-
ack and Zdonik, 1998; Lohman, 1988; Ali and Mo-
erkotte, 2004).We present rules specification applica-
ble on the TGV model.

Two TGV are said to be equivalent if they do
have the same evaluation (i.e. same resulting docu-
ment) independently of the XML documents sources:
eval(TGV1,τ) = eval(TGV2,τ). eval is the evalua-
tion function for aTGV and τ an XML document
set. Then, a transformation ruleφ keeps equiva-
lence if theTGV modified byφ is equivalent toTGV:
eval(φ(TGV),τ) = eval(TGV,τ).

Equivalence Rules(or shortly Rules) define that
under specifiedconditions, theresultof the TGV after
thetransformationis equivalent (i.e. same results).

3.2 Rule Patterns

We propose a rule presentation model for this rule
language: aRule Pattern Model(RP Model). Like
TGV mappings on XML documents with Tree Pat-
terns, we represent rules in intuitive manners in order
to build a pattern to map visually on TGV representa-
tions. Since TGV representation is a translation from
ADT formalization, we can naturally use this trans-
formation process and extract parts of the TGV.

The given rule pattern for the transformation rule
is a part of a TGV in which is represented only con-
cerned elements. Two rule patterns are necessary
to represent a transformation rule. In fact, the first
rule pattern is calledCondition Rule Patternand rep-
resents therule condition. The second rule pattern
is calledConclusion Rule Patternand represents the
rule conclusion(i.e. the final pattern after applying
transformations using condition pattern’s variables).

Then, the framework given in Figure 4 defines
transformation rules.Rx is the transformation name
identifier. The condition rule patternrepresents
which TGV elements a TGV must have to be ap-
plied. Theconclusion rule patternrepresents the pat-
tern transformation when applied. Differences be-
tween the two rule patterns correspond to the trans-
formation.

Transformation rules defined by the Rule Lan-
guage allow us to improve optimizer’s knowledge
with new transformations which would modify TGV
representations and reach an optimal representation.

ICEIS 2007 - International Conference on Enterprise Information Systems

354

Condition Rule Pattern Conclusion Rule Pattern<Rx>: =>

Figure 4: Transformation rules’s framework

$n

$c =>
=

$H1
1

=

$H1

$n
2

$n

$c
1

$n

$c
2R1:

Figure 5: Logical Rule Pattern Example

$n

=>

=

$H1
1

$n
2

R2:

(1) (2)(3)

(3) Algorithm : : left Outer-join

(1)

(2)

Cardinality ()

Cardinality ()

(1) (2)<<

$n =

$H1
1

$n
2

(1) (2)(3)

(3) Algorithme : :
Bind left

Outer-join

(1)

(2)

Cardinality ()

Cardinality ()

Figure 6: Physical Rule Pattern Example

These transformations need to be classified in or-
der to direct research strategy; we can define two
main classes:Logical Equivalent Transformations
andPhysical Equivalent Transformations. Those cat-
egorizations correspond to knowledge level on TGV
and sources.

The two first categories include well-known
equivalence rules: logical rules and physical rules.
Those categories are detailed in following sub-
sections with illustrating examples (figure 5 and 6).

3.2.1 Logical Pattern Rules

Thus, Logical Equivalent Transformations corre-
spond to logical knowledge on TGV. Those rules deal
with topology improvements on TGV without anno-
tations requirements.

Figure 5 illustrates a transformation ruleR1. This
rule takes care of nodes which are linked to both a
constraint and a join hyperlink. Since the equal op-
erator is distributive, we can infer that the constraint
will be cloned to the linked node. This figure shows

a Condition Rule Pattern on the left, in which a
join hyperlink $H1 links $n1 and $n2. $n1 is also
linked to a constraint $c. We notice that the join hy-
perlink is equality joint. Then, theConclusion Rule
Pattern represents the same pattern with a single
modification. The constraint $c is cloned on $n2.

When we applyR1 on our example (figure 1),
a join hyperlink is present with a linked constraint.
Then the transformation is applied and we obtain a
new TGV (figure 7) and the constraint is cloned to the
other nodeisbn.

3.2.2 Physical Pattern Rules

Physical Equivalent Transformations use physical in-
formation that sources can provide like algorithms,
cost information, function capabilities, systems statis-
tics. These transformations are based on sources in-
formation annotated on TGV (see section 2.2).

Figure 6 illustrates a physical transformation rule.
This physical rule uses two types of annotation. In
fact, some annotations from the algorithm-annotated
view showed in figure 2 and the cost-annotated view
in figure 3 are used in Rule Patterns. We can see a

AN EXTENSIBLE RULE TRANSFORMATION MODEL FOR XQUERY OPTIMIZATION - Rules Pattern for XQuery
Tree Graph View

355

contains("XML") $y book

@isbn author

books

"books"

$l1

@isbn

$x

=

book

title

count()>2

>1526

"reviews"

>1526

Figure 7: Logical transformation on TGV.

contains("XML") $y book

@isbn author

books

"books"

$l1

@isbn

$x

=

book

title

count()>2

>1526

(3)

(3)

XJoin :

"reviews"

Bind left Outer-join

(1)
(2)

(2)

(2)
(4)

(2) XSource : query on source s2

(1) XSource : query on source s1

(4) XConstruct : ($x, $y)

>1526

Figure 8: Physical transformation on TGV.

join hyperlink on which annotations must be present
(XJoin for the join hyperlink with aleft outer join) and
cardinality annotations for Tree Patterns (cardinality
are given by formulas). TheCondition Rule Pattern
verifies if the cardinality of sources1 is quite lower
than sources2’s one. Then the transformation modi-
fies the algorithm annotation by aBind left outer join.
The cardinality comparison is carried out by the op-
timizer (theoretical cardinalities are given by the cost
model).

When the rule pattern is applied on the TGV, the
join algorithm is modified has expected. The result is
showed in figure 8.

3.3 Extensibility

User-define Transformations are rules provided by
a user or an administrator that have knowledge on
sources or data behavior. It could be used to create
a specific rule.

Since we have categorized transformations, a
search-strategy push the information into the opti-
mizer proposed in (Travers, 2006). This strategy re-
lies on rule valuation with a coefficient of improve-

ment (Carey et al., 1990). This coefficient is directed
by information provided by our cost model. Trans-
formation rules, like cost model, need an annotation
support on parts of the TGV model in order to manage
external information on Tree Graph Views.

The extensibility of the optimizer is then given by
new added rules. Each of these rules are added to the
optimizer and can potentially improve performances.

4 EXPERIMENTAL EVALUATION

The purpose of this section is to validate the better
performance of a query evaluation after having inte-
grated previous defined optimization rules. Thus, we
evaluate a query on the benchmark defined by (Dra-
gan and Gardarin, 2005) within the mediatorXLive
(Travers et al., 2007a). We load the extensible op-
timizer with rule patterns that are applied if the rule
condition matches. We use XML documents with var-
ious sizes and information distribution, and calculate
their execution time after having applied optimization
rules. Tests have been realized on an AMD Athlon
1.8GHz, with 1024Mo RAM under Windows XP
SP2, sources were handled by a Pentium 2.65GHz,
with 512Mo de RAM under Windows XP SP2 with a
10Mbps connection.

The transformation rules integrated into the opti-
mizer are physical rules transformation as they use
annotation information (functional capacities of the
sources for the functions, cardinality for the algorithm
of joint).

Thus, these three optimization rules are used suc-
cessively:

• delegate functioncontainsto sources ;

• delegate the aggregate operation to sources ;

• change the join algorithm (nested loop to hash).

On Figure 9, we report the time used by the XLive
mediator to evaluate the XQuery shown in our pre-
vious example, applied on documents with different
size. Of course, as the document data size increase,
the execution time linearly increase too.

The objective is to validate the extensible opti-
mizer and show that the more matching pattern rules
there are, the faster is the evaluation.

Measurement are made with sets of rules that are
loaded successively in the optimizer. In each addi-
tional set that is provided, one rule pattern match the
request.

ICEIS 2007 - International Conference on Enterprise Information Systems

356

Figure 9: Time execution depending on the data size.

5 RELATED WORK

Using transformation rules, a given execution plan
will be transformed into an equivalent execution plan
(i.e. that give the same result when evaluated). Trans-
formation rules can be logical (i.e. based on the alge-
braic properties of the operators), physical (i.e. based
on the hardware, system and data statistics) or user-
defined (i.e. defined arbitrarily by the user).

EXODUS (Carey et al., 1990) was the first system
to include a query optimizer generator based on a rule
language that specifies transformation of query trees.
The EXODUS optimizer uses a best-first search strat-
egy for rule-application based on the excepted benefit
of applying a rule to a query. The Volcano (Graefe
and McKenna, 1993) optimizer generator improves
EXODUS generator through its use of heuristics and
semantics to guide the search for transformations, its
ability to learn optimization heuristics, its extensible
support for physical properties of data, and its support
for flexible costs models that can be used to generate
plans for partially specified queries. Starburst (Pira-
hesh et al., 1992) optimizer is divided in two phases,
each one having its own rules language. The query
rewrite rules is written in C. Esprit EDS (Finance
and Gardarin, 1994) defines an unified rules language
for expressing query transformations in an extensible
query optimizer.

However, all these works are designed to rela-
tional or object contexts. And as far as we know, those
solutions could not be applied on a semi-structured
context with tree pattern matching queries. So, our
model defines transformation rules that would be ap-
plied on TGV, to optimize XQuery evaluation and
bring adaptability to the mediator with specific rules.

6 CONCLUSION

In this paper, we propose a rule-based optimizer for
XQuery. Rule-based optimizers are extensible as they
consist in modifiable sets of rules. Sets of rules can
be defined in two categories:

• Logical rules that rely on logical operators used
by the query

• Physical rules that rely on physical information
got from sources and from the system.

Rules are applied on the XQuery model called
TGV designed for heterogeneous distributed sources,
which supports full non-typed XQuery specification.
A logical rules suite is provided using theorems de-
duced from the definition of the Abstract Data Type
TGV. In order to define the physical rules suite, phys-
ical information on sources and system must be pro-
vided. User-defined rules provided by the user or the
administrator based on her/his knowledge of data and
systems. Moreover, the search strategy is all the more
efficient since transformation rules are based on an-
notated information. This leads to a better execution
plan. A generic annotation is defined to annotate the
TGV and that can be used when defining rules. This
generic annotation can support any type of informa-
tion, mainly cost information, but also information as
accuracy, access, preferences, etc.

Many systems relying on rules-based optimizer
have been defined for relational sources (Pirahesh
et al., 1992; Graefe and McKenna, 1993; Carey et al.,
1990; Mitchell, 1993) and object-oriented sources
(Kabra and DeWitt, 1999; Finance and Gardarin,
1994). But as far as we know, nothing has been
done yet for semi-structured systems anda fortiori
on heterogeneous distributed XQuery queries. For
those reasons, our work on rules-based optimizer for
XQuery is a new axis.

Our system based on the mediator/wrappers ar-
chitecture is called XLive and already supports
full XQuery evaluation on heterogeneous distributed
sources, using TGV with annotation support (a poster
presentation has also been submitted to the confer-
ence).

ACKNOWLEDGEMENTS

The XLive is supported by the ACI Semweb project.
Part of this work is also supported by the ANR
PADAWAN project.

AN EXTENSIBLE RULE TRANSFORMATION MODEL FOR XQUERY OPTIMIZATION - Rules Pattern for XQuery
Tree Graph View

357

REFERENCES

Abiteboul, S. (1997). Querying Semistructured Data. In
Proceeding of the 6th International Conference on
Database Theory, Delphi, Greece.

Ali, R. and Moerkotte, G. (2004). Query Rewriting
with Coko-Kola. Technical report, University of
Mannheim.

Amer-Yahia, S., Cho, S., Lakshmanan, L. V. S., and Srivas-
tava, D. (2001). Minimization of Tree Pattern Queries.
In SIGMOD Conference.

Calmès, D., Prade, H., and Sedes, F. (2003). Requêtes flex-
ibles et donńees semi-structurées - quelqueśeléments
de discussion et d’implémentation. InLFA, pages 23–
30.

Carey, M. J., DeWitt, D. J., Graefe, G., Haight, D. M.,
Richardson, J. E., Schuh, D. T., Shekita, E. J.,
and Vandenberg, S. (1990). The EXODUS Exten-
sible DBMS Project: An Overview. In D. Maier
and S. Zdonik, editor,Readings on Object-Oriented
Database Sys.Morgan Kaufmann, San Mateo, CA.

Chen, Z., Jagadish, H., Laksmanan, L. V., and Paparizos,
S. (2003). From Tree Patterns to Generalized Tree
Patterns: On efficient Evaluation of XQuery. InVery
Large Data Bases, pages 237–248, Germany.

Cherniack, M. and Zdonik, S. B. (1998). Changing the
Rules: Transformations for Rule-Based Optimizers.
In SIGMOD Conference, pages 61–72.

Damiani, E. and Tanca, L. (2000). Blind queries to xml
data. InDatabase and Expert System Applications,
pages 266–279.

Damiani, E., Tanca, L., and F.Arcelli (2000). Fuzzy xml
queries via context-based choice of aggregation.Ky-
bernetika, 36.

Dang-Ngoc, T., Gardarin, G., and Travers, N. (2004). Tree
graph view: On efficient evaluation of xquery in an
xml mediator. InActes de publication de la 20ème
conf́erence Bases de Données Avanćees (BDA 2004),
pages 429–448, Montpellier, France.

Dragan, F. and Gardarin, G. (2005). Benchmarking an xml
mediator. InICEIS (1), pages 191–196.

Finance, B. and Gardarin, G. (1994). A rule-based
query optimizer with multiple search strategies.Data
Knowl. Eng., 13(1):1–29.

Graefe, G. and McKenna, W. J. (1993). The Volcano Op-
timizer Generator: Extensibility and Efficient Search.
In ICDE, pages 209–218.

Jagadish, H., Lakshmanan, L. V., Srivastava, D., and
Thompson, K. (2001). TAX: A Tree Algebra for
XML. In DBPL, pages 149–164.

Kabra, N. and DeWitt, D. J. (1999). OPT++ : an object-
oriented implementation for extensible database query
optimization.VLDB Journal: Very Large Data Bases,
8(1):55–78.

Lohman, G. M. (1988). Grammar-like Functional Rules for
representing Query Optimization Alternatives. Tech-
nical report, IBM Almaden Research Center.

Mitchell, G. (1993). Extensible query processing in an
object-oriented database.Ph.D. Thesis, Brown UNIV,
CS TR 93-16.

Pirahesh, H., Hellerstein, J. M., and Hasan, W. (1992). Ex-
tensible/rule based query rewrite optimization in Star-
burst. InSIGMOD, pages 39–48.

Sihem, A.-Y., SungRan, C., Laks, L. V. S., and Divesh,
S. (2002). Tree Pattern Query Minimization.VLDB
Journal, 11(4)::315–331.

Travers, N. (12 December 2006).Extensible Optimization
in an XML Mediatior. PhD thesis, University of Ver-
sailles.

Travers, N., Dang Ngoc, T.-T., and Liu, T. (2006). TGV:
an Efficient Model for XQuery Evaluation within an
Interoperable System.Interoperability in Business In-
formation Systems (IBIS).

Travers, N., Dang-Ngoc, T.-T., and Liu, T. (2007a). An Effi-
cient Evaluation of XQuery with TGV. InThe 3rd In-
ternational Conference of WEB Information Systems
and Technologies (Web-IST), Barcelona, Spain.

Travers, N., Dang-Ngoc, T.-T., and Liu, T. (2007b). Full
Untyped XQuery Canonization. Inthe International
workshop on Emerging Trends of Web Technologies
and Applications (WebETrends), Huangshan, China.

Travers, N., Dang-Ngoc, T. T., and Liu, T. (2007c). TGV
: a Tree Graph View for Modelling untyped XQuery.
In DASFAA, Bangkok, Thäıland.

W3C (2005). An XML Query Language (XQuery 1.0).

Widom, J. (1996). The Starburst Active Database Rule Sys-
tem. Knowledge and Data Engineering, 8(4):583–
595.

ICEIS 2007 - International Conference on Enterprise Information Systems

358

