
STATISTICS API: DBMS-INDEPENDENT ACCESS
AND MANAGEMENT OF DBMS STATISTICS

IN HETEROGENEOUS ENVIRONMENTS

Tobias Kraft and Bernhard Mitschang
Institute of Parallel and Distributed Systems, University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany

Keywords: Query optimization, optimizer statistics, database meta data, federation.

Abstract: Many of todays applications access not a single but a multitude of databases running on different DBMSs.
Federation technology is being used to integrate these databases and to offer a single query-interface to the
user where he can run queries accessing tables stored on different remote databases. So, the optimizer of the
federated DBMS has to decide what portion of the query should be processed by the federated DBMS itself
and what portion should be executed at the remote systems. Thereto, it has to retrieve cost estimates for query
fragments from the remote databases. The response of these databases typically contains cost and cardinality
estimates but no statistics about the data stored in these databases. However, statistics are optimization-critical
information which is the crucial factor for any kind of decision making in the optimizer of the federated
DBMS. When this information is not available optimization has to rely on imprecise heuristics mostly based
on default selectivities.
To fill this gap, we propose Statistics API, a JAVA interface that provides DBMS-independent access to statis-
tics data stored in databases running on different DBMSs. Statistics API also defines data structures used for
the statistics data returned by or passed to the interface. We have implemented this interface for the three
prevailing commercial DBMSs IBM DB2, Oracle and Microsoft SQL Server. These implementations are
available under the terms of the GNU Lesser General Public License (LGPL). This paper introduces the inter-
face, i.e. the methods and data structures of the Statistics API, and discusses some details of the three interface
implementations.

1 INTRODUCTION

Relational DBMS technology has been used for
decades in all kinds of application areas and there are
multiple relational DBMSs from different vendors on
the market. Furthermore, many of todays applications
access not a single but a multitude of databases run-
ning on different DBMSs. Left side of Figure 1 shows
how such an application scenario looked like in the
early days. Given a query combining data of different
remote databases, the application programmer was
responsible to split this query and decide what por-
tion of the query should be executed on which remote
database. Furthermore, the application had to map
the data structures returned by the remote systems to
its own data structures and to integrate and postpro-
cess the data of the different sources. So, the deci-

sion which parts of the overall query are processed by
which remote system and which parts are processed
by the application itself was coded statically into the
application code.

With the development of federated DBMS tech-
nology, this decision was handed over to the feder-
ated DBMS, in particular to its optimizer. I.e., the
application sends the overall query to a single feder-
ated DBMS server which dynamically splits and dis-
tributes the query among the remote databases (see
the center of Figure 1). The federated DBMS also
covers schema and data mapping issues, thus decreas-
ing the impedance mismatch. The same holds for
Data Grid middleware that provides distributed query
processing in general. Additionally, Data Grid mid-
dleware may also include management of replicas,
data caches, and other resources.

5
Kraft T. and Mitschang B. (2007).
STATISTICS API: DBMS-INDEPENDENT ACCESS AND MANAGEMENT OF DBMS STATISTICS IN HETEROGENEOUS ENVIRONMENTS.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 5-12
DOI: 10.5220/0002365200050012
Copyright c© SciTePress

�����������
	
�
���
�
�����
��� ���� �������������
����

���� !"#$%&'(���� �)�!�$%"& *&+ +*$* ��$�%�,*-#$*$%#$%!# *!!�## *&+ .*&*'�.�&$

�����������

���/
����
���/

�����������

����
���/
	
�
���
�
�����
��� ����

Figure 1: Different stages of data federation.

The distribution decision is typically based on cost
estimates. Thereto, the optimizer of the federated
DBMS sends query fragments to the remote database
for costing. The typical response contains a cardinal-
ity estimate and some cost estimates. However, this
information is not sufficient for the task the optimizer
of the federated DBMS has to do, i.e., query optimiza-
tion for the fragment that ought to be processed at the
federation tier. Since optimization-critical informa-
tion like the number of distinct values or the mini-
mum and maximum value of a column is unavailable,
the optimizer has to rely again on imprecise heuristics
using default selectivities as introduced by Selinger et
al. in 1979 (Selinger et al., 1979). To support the op-
timizer of the federation tier, the access to statistics of
the remote databases would be necessary but this is
not supported by todays federation technology. This
is due to the fact, that the way of storing and accessing
the optimizer statistics of a certain DBMS is very pro-
prietary and standardized formats and interfaces for
the management of statistics data do not exist. Some
DBMSs permit direct access to the respective catalog
tables or views whereas others even provide a pro-
gramming interface for this purpose; in some DBMSs
the user is limited to read access whereas others allow
to modify the statistics data. Furthermore, DBMSs of
different vendors also differ in the amount and type of
statistics they offer.

To fill this gap and to enable proper optimiza-
tion tasks at the federation tier, we propose Statistics
API, a JAVA application programming interface (API)
that enables DBMS-independent access to statistics
data stored in databases running on various DBMSs.
Statistics API provides methods to retrieve, modify
and delete statistics data. It also defines DBMS-
independent data structures used for the statistics data
returned by or passed to the methods of the API.
We have chosen a very flexible format for histogram

data to cover all the different types and classes of
histograms (Ioannidis, 2003). Additionally, Statis-
tics API provides methods to retrieve cardinality and
cost estimates for arbitrary SQL statements as well as
further meta data that may be helpful in conjunction
with the offered statistics data. Federated DBMSs
and Data Grid middleware can use the interface to re-
trieve and exploit fine-grained statistics required for
query optimization and query planing purposes (see
right side of Figure 1). The uniform data structures
also allow to compare and exchange statistics data be-
tween different DBMSs. However, the application of
the Statistics API is not restricted to distributed query
processing only. Diverse performance optimization
tools that sit on top of a single database system may
also benefit from this feature. Modifying statistics
and afterwards retrieving the cost estimates based on
these new statistics values allows for what-if analysis,
i.e. this allows to analyze the behavior of cost esti-
mates for different data distributions without modi-
fying the queried tables. Furthermore, the modifica-
tion of statistics also enables to set a data distribution
on tables temporarily used for intermediate results of
query sequences (Kraft et al., 2003) to improve the
quality of the execution plans of the queries that ac-
cess these tables.

We have implemented the Statistics API for the
three commercial DBMSs IBM DB2, Oracle and Mi-
crosoft SQL Server. The Statistics API and its imple-
mentations are freely available under the terms of the
GNU Lesser General Public License (LGPL)1

The main contributions of this paper can be sum-
marized as follows:

• An API that complements the JDBC-API by
providing DBMS-independent access to DBMS
statistics, meta data and optimizer estimates.

• DBMS-independent data structures to hold the
meta data and a flexible histogram format that ab-
stracts from the proprietary data structures used in
the different DBMSs.

• Freely available implementations of the API for
the three prevailing commercial DBMSs IBM
DB2, Oracle and Microsoft SQL Server.

The paper is organized as follows. Related work is
discussed in Section 2. Section 3 describes the Statis-
tics API in more detail, i.e. the methods and data
structures provided by this API. Section 4 addresses
the implementations for the three mentioned commer-
cial DBMSs. Section 5 concludes this paper and gives
an outlook on future work.

1StatisticsAPI can be downloaded from the following
web page: http://www.ipvs.uni-stuttgart.de/abteilungen/as/
forschung/projekte/CEOPS/ceops/StatisticsAPI

ICEIS 2007 - International Conference on Enterprise Information Systems

6

2 RELATED WORK

JDBC (Ellis et al., 2001) is a widely-used API for
the JAVA programming language that homogenizes
the client access to different relational DBMSs. It
provides uniform methods for querying and updat-
ing data in a local or remote database. Further-
more, JDBC provides the DatabaseMetaData inter-
face which is an interface to let applications know
the capabilities of a DBMS in combination with the
used JDBC driver. It provides methods to retrieve
database meta data and a small set of statistics. The
Statistics API also uses JDBC connections to com-
municate with the databases and it extends the capa-
bilities offered by JDBC’s DatabaseMetaData inter-
face. It adds read and write access to fine grained
statistics like histograms that cannot be retrieved by
the DatabaseMetaData interface, write access to all
statistics that can be retrieved by the DatabaseMeta-
Data interface, and read access to optimizer estimates.
In practice, DatabaseMetaData interface implementa-
tions provide less information than possible due to the
fact that it’s left to the vendor how much of the meta
data can be retrieved via this interface. Furthermore,
there is no common behavior for different database
systems concerning input parameters of the methods,
e.g. search patterns are treated differently and some
drivers require that the names of database objects are
being passed in upper case letters. The Statistics
API implementation also addresses these problems,
i.e., it provides as much information as possible and
it absolutely shows a common behavior for different
DBMSs.

Federation is based on wrapper technology and
wrappers typically focus on uniform distribution
statistics like cardinality, number of distinct values,
lowest and highest value of a column (Lu et al., 1993).
Some approaches like Garlic (Roth et al., 1999) (Roth
et al., 1996) are able to optionally support more de-
tailed distribution statistics but in practice prototypes
are restricted to uniform distribution statistics. In
standards such as SQL/MED (Melton et al., 2001)
(Melton et al., 2002) and in commercial products like
DB2 (IBM, 2004a) wrappers just provide cost and
cardinality estimates for query fragments but they do
not support the retrieval of statistics. Furthermore,
such approaches only support a very limited subset
of SQL for costing.

Learning approaches like Leo (Ewen et al., 2005)
try to retrieve statistics from remote systems on-the-
fly by piggy-backing on query execution or asyn-
chronously by querying the tables of the remote
databases. These statistics can only be used reactively
for future query planning but not for the first time a

query is being executed or only with an appropriate
overhead. So, for the first execution such reactive ap-
proaches may benefit from an interface like Statistics
API.

For the implementations, we made use of the man-
uals and optimization-related literature offered by the
DBMS vendors. However, the management of statis-
tics is often sparsely documented and examples that
show how to use these features are hard to find. A
short description of the catalog tables of IBM DB2
can be found in theIBM DB2 Universal Database
SQL Reference(IBM, 2004c). Further information,
about the usage of statistics in the optimizer and how
to update the statistics tables can be found in the
IBM DB2 Universal Database Administration Guide:
Performance(IBM, 2004b). Similarly, information
about the usage of statistics in Oracle and their stor-
age in the catalog tables can be found in theOra-
cle Database Reference(Oracle, 2003b) and in the
Oracle Database Performance Tuning Guide(Ora-
cle, 2003a). The package DBMSSTAT which en-
ables to modify and delete statistics is documented
in the PL/SQL Packages and Types Reference(Ora-
cle, 2003c). Additional information can be found in
Oracle’s web forumAskTom(Oracle, 2006). For Mi-
crosoft’s SQL Server, we made use of theTransact-
SQL Reference(Microsoft, 2006) which is available
online at the Microsoft Developer Network (MSDN).

3 THE STATISTICS API

Statistics API is a JAVA interface that defines meth-
ods to uniformly access statistics, meta data and op-
timizer estimates of different DBMSs. It is a ’low-
level’ interface that offers a set of basic methods that
can be used to compose more powerful methods con-
sisting of multiple basic method calls. Therefore, the
Statistics API has an explicit connection management
that allows to run multiple methods of the Statistics
API using the same connection, i.e., the application
has to open a connection to the target database before
it can use the access methods and afterwards it has
to close the connection again. This may be helpful,
e.g., for an application that has to retrieve the names
and the statistics data of all columns of a given ta-
ble. This application can open a connection, retrieve
the column names of the table stored as meta data,
retrieve the statistics data by calling the appropriate
method for each column and close the connection. As
Statistics API uses ordinary JDBC connections, they
can also be reused by the application for regular data
management purposes. However, the Statistics API
includes its ownconnectanddisconnectmethod. In

STATISTICS API: DBMS-INDEPENDENT ACCESS AND MANAGEMENT OF DBMS STATISTICS IN
HETEROGENEOUS ENVIRONMENTS

7

comparison to JDBC, the connect method doesn’t re-
quire the user to provide the DBMS-specific connect-
url, it only requires the components necessary to build
this url like the ip address and the port number of the
database server.

3.1 Data Structures

To select the statistics which the Statistics API should
support, we analyzed the three commercial DBMSs
IBM DB2, Oracle and Microsoft SQL Server. Each
of these three DBMSs provides a huge set of statis-
tics and meta data. For the Statistics API, we have
selected those statistics and meta data elements that
are supported by at least two of the three analyzed
DBMSs. Furthermore, we focused on meta data and
statistics about relational structures. The biggest over-
lap we identified in the area of logical statistics, i.e.
statistics that describe the data distribution and there-
fore directly influence selectivity and cardinality esti-
mation. Great differences exist in the semantics of
statistics provided for indexes, e.g. DB2 and Ora-
cle both have statistics that reflect the degree of in-
dex clustering but their definition and dimension units
are totally different. This is due to the fact, that dif-
ferent DBMSs support different index types and that
each index type or index implementation has specific
statistics. Similarly, there exist DBMS-specific statis-
tics regarding character string data that improve selec-
tivity estimation for prefix patterns or postfix patterns
used in LIKE predicates. Statistics that describe phys-
ical characteristics of either the data or the hardware
of the underlying system are also DBMS-specific and
usually not stored in the database catalog.

Table 1 lists all statistics, meta data and optimizer
estimates actually supported by the Statistics API. For
each item the list contains its name, the associated
JAVA data type and a short description. We grouped
the items into seven groups according to the type of
information they provide and according to the type
and granularity of the database object to which they
refer: table statistics, column statistics, index statis-
tics, table meta data, column meta data, index meta
data and estimates. Statistics API provides a JAVA
class for each of these groups that contains the asso-
ciated items as attributes. Statistics, meta data and op-
timizer estimates represented by long, int and boolean
values are stored in attributes of the associated wrap-
per classes. This allows to distinguish whether a value
has been assigned to it or not, i.e., if no value has been
assigned to it the associated attribute is set tonull. For
each attribute there exists aget and anisAvailable
method. Theget method (e.g. getCardinality) re-
turns the attribute value. TheisAvailablemethod (e.g.

00 1234200 1567

89:;<=>?@ABCDBECFGEHI JCDBECFGEHAKLFLMNBEI GOF
PQRST;ABCDBECFGEHI JCDBECFGEHAKLFLMNBEI GOFAULCKGOLVGFNI KDWXVEAKGHFGOUFYLVWEHI KDWXVE
Z[\]^AKLFLMNBEI GOF

_`?>a?bQTcdLVWEI eFCGOf g?;Ta?bQTcdLVWEI hLFE gTR9@?ba?bQTcdLVWEI KDWXVE ij;T=T>a?bQTcdLVWEI VDOf

0k 1lmnopqr stu vuwtxyz x{ |}~��������y ������ u�z��u wt�w �������uw �x��yz ��wt�� �t�zwx���v t��u wtu z�vuy�w� w��u �z wtu t�zwx���v�wzu�{�

Figure 2: Class diagram of the classes related to histograms
(methods are omitted).

isCardinalityAvailable) returns whether a value for
the attribute is available or the associated attribute
is set tonull. In addition, statistic attributes have a
clear and aset method assigned. Theclear method
(e.g. clearCardinality) resets the statistic attribute to
null. The set method (e.g.setCardinality) sets the
statistic attribute to the new value passed as parame-
ter. clear andset methods are not available for meta
data and optimizer estimates because the classes asso-
ciated with meta data and estimates are only used as
return values in the methods of the Statistics API but
not as input parameters. Therefore, the values stored
in these classes needn’t be changed by the application.

For histogram data, we provide a flexible data
structure that can store different types of histograms.
Figure 2 shows a UML class diagram of the
histogram-related classes. Independent of their data
type all histograms are represented by instances of
the classHistogram. The Histogramclass contains
a vector that stores the buckets of the histogram.
These buckets are instance of the classBucket. Each
bucket represents an interval in the domain of the
data type associated with the histogram. Therefore,
it has a lower bound and an upper bound. Addition-
ally, each bucket stores the number of distinct val-
ues and the number of rows that fall into this inter-
val. The lower and upper bounds are stored in data-
type specific classes, i.e., for each data type that is
supported by the Statistics API an appropriate class
exists (CharValue, DateValue, DecimalValue, Inte-
gerValue). These classes cover the data-type spe-
cific behavior of the value. They inherit from the ab-
stract superclassValue. The NULL value that may
appear in histograms of any data type is represented

ICEIS 2007 - International Conference on Enterprise Information Systems

8

Table 1: Statistics, meta data and optimizer estimates supported by the Statistics API.

TableStatistics
cardinality long number of rows in the table
pagesAllocated long number of pages allocated for the table (used + unused)
pagesUsed long number of pages containing rows of the table

ColumnStatistics
avgLength long average length of the column (in byte)
histogram Histogram a histogram that approximates the data distribution of the column

IndexStatistics
distinctKeys long number of distinct values in the index key columns
distinctKeysFirstNColumns long[] number of distinct values in subsets of the index key columns
leafPages long number of index leaf pages
levels long number of index levels

TableMetaData
columns String[] array containing the column names of the table
indexes String[][] array containing name and schema of each index on the table
pageSize long size of a page in the associated tablespace (in byte)

ColumnMetaData
dataTypeName String name of the data type of the column in the target DBMS
sqlDataTypeNumber int SQL data type of the column from java.sql.Types
histogramDataTypeNumberint data type of the histogram (indicates which Value class is used)
size int maximum number of characters / precision
digits int number of fractional digits
nullable boolean true if the column allows NULL values, false otherwise

IndexMetaData
indexColumns String[] array containing the column names of the index key
indexColumnsAscending boolean[] array containing the order of the values in the columns of the

index key; true for ascending order, false for descending order
includedColumns String[] array containing the names of the columns that are included in

the index but that are not part of the index key
unique boolean true if the index key is unique, false otherwise
clustered boolean true if the index is a clustered index, false otherwise
pageSize long size of a page in the associated tablespace (in byte)

Estimates
cardinality double estimated cardinality of the result of the given statement
cost double estimated total cost of the given statement (DBMS dependent)

by a bucket where the lower and upper bound is set
to null. This way of handling NULL values like
’normal values’ eases computations on histograms.
The Histogramclass also contains methods to trans-
form the stored histogram into a serial histogram, an
equi-width histogram or an equi-height histogram and
methods to reduce the number of buckets by merg-
ing them. The according algorithms assume uniform
distribution within the buckets. These transforma-
tion methods are necessary because some DBMSs can
only store histograms of a certain type or size. At the
moment, we only support unidimensional histograms
due to the fact that this kind of histogram is supported
by nearly all DBMSs on the market whereas multidi-

mensional histograms are not supported or only rudi-
mentary supported by some research DBMSs.

We treat simple column statistics regarding data
distribution also as histograms, i.e., when the lower
bound, the upper bound, the cardinality, the num-
ber of distinct values and the number of NULL val-
ues are available for a given column, we can build a
histogram containing a single bucket made up of the
given bounds and an additional NULL-bucket when
NULL values are present.

Note, that the measuring unit of the cost value de-
pends on the DBMS due to the fact that some DBMS
provide cost estimates in milliseconds whereas others
have their own abstract cost measure.

STATISTICS API: DBMS-INDEPENDENT ACCESS AND MANAGEMENT OF DBMS STATISTICS IN
HETEROGENEOUS ENVIRONMENTS

9

3.2 API Methods

For each statistics class (see Table 1) there exists a
deletemethod, aget method, and aset method in
the Statistics API. Thedeletemethod (e.g.deleteTa-
bleStatistics) deletes existing statistics data in the tar-
get database. Theget method (e.g.getTableStatis-
tics) retrieves statistics from the target database and
returns an appropriate statistics object. Since not ev-
ery DBMS supports all statistics covered by the statis-
tics object or some statistics may not have been gath-
ered yet, some of the statistic values in the returned
statistics object may be unavailable, i.e., the associ-
ated attribute may be set tonull. The set method
(e.g. setTableStatistics) replaces the statistics values
in the database with the new values passed in the ap-
propriate statistics object. For all statistics where the
value of the associated attribute in the statistics ob-
ject is null, the value of the associated statistic will
not be deleted in the database but the old value will
be kept. For meta data, onlyget methods are avail-
able because these data contains information about
the database structure and physical layout that can-
not be changed directly from outside. The same holds
for optimizer estimates.

The methods of the Statistics API are not case sen-
sitive regarding identifiers of database objects such
as table names or schema names, i.e., identifiers of
database objects can be passed in lower case letters,
upper case letters or a mixture of both. Since in-
dexes and DDL statements regarding indexes are still
not part of the SQL standards, different alternatives
to identify an index exist. In some DBMSs an in-
dex is a separate object that can be stored in another
schema than the associated table. In this case, an in-
dex is identified by its name and schema. In other
DBMSs an index belongs to the associated table and
therefore is identified by its name and the associated
table’s name and schema. To support both alternatives
of index identification the index related methods of
the Statistics API require the name and schema of the
index as well as the name and schema of the associ-
ated table as input. Even when an index can be iden-
tified by its name and schema in the target DBMS,
an interface implementation should check whether the
given name and schema of the associated table is cor-
rect. When the index is identified by its name and the
associated table an implementation should ignore the
value passed as index schema.

The Statistics API provides its own exception
classesStatisticsAPIException, NoSuchObjectExcep-
tion andUnsupportedMethodException. The two lat-
ter ones are specializations of the first one. ANoSu-
chObjectExceptionis being thrown when the object

addressed by the input parameters of a method does
not exist. AnUnsupportedMethodExceptionis being
thrown when a method of the Statistics API is being
called that is not supported by the chosen implemen-
tation. Additionally, the histogram-related classes
provide their own exception classHistogramExcep-
tion. When such an exception occurs during the exe-
cution of an API method, it is being encapsulated into
aStatisticsAPIExceptionobject by this method.

4 IMPLEMENTATIONS

For each DBMS the Statistics API should be used
with, there has to exist an appropriate implementa-
tion. These implementations behave like wrappers
that map the methods of the Statistics API to one or
more DBMS-specific SQL statements. These SQL
statements directly access catalog tables or execute
stored procedures provided by the target database.
Only for the retrieval of column meta data the JDBC
DatabaseMetaData interface is being used. This is
due to the fact, that we exploit the mapping of DBMS-
specific data types to the data types ofjava.sql.Types
which is offered by the JDBC DatabaseMetaData in-
terface.

In the following sections, we discuss our three
Statistics API implementations in more detail.

4.1 IBM DB2 V8.2 Implementation

DB2 offers no special API to access statistics data and
meta data but allows for direct access to the appropri-
ate catalog views. So, retrieving this data can simply
be realized by querying these catalog views. As most
of the columns in these views are updatable, it’s also
possible to delete or modify existing statistic values.
DB2 does some consistency checks when updating
these views to avoid serious inconsistencies within the
database catalog. So, the order in which the tuples are
updated is crucial. Except for histograms, the associ-
ated entries for the statistics already exist in the cata-
log tables and as long as no statistics have been gath-
ered these entries contain a default value that marks
them as not available. However, entries in the his-
togram viewsyscat.coldistonly exist when statistics
have been gathered. So, updates to this view are not
possible as long as RUNSTATS using the WITH DIS-
TRIBUTION option hasn’t been called. Finally, we
use the EXPLAIN tool to get cost and cardinality es-
timates. Thereto, we call EXPLAIN with the given
SQL statement and query the cost and cardinality in-
formation from the appropriate EXPLAIN tables.

ICEIS 2007 - International Conference on Enterprise Information Systems

10

The identifiers of database objects such as table
names or schema names are stored in upper case let-
ters in the catalog tables of DB2. So, the DB2 im-
plementation of the Statistics API converts the iden-
tifiers passed as input attributes to upper case before
they are used for comparison within a query. Indexes
can be identified by their name and schema. Anyhow,
the implementation also asks for the correct name and
schema of the associated table.

As DB2 only stores the second-lowest and second-
highest value of a column in its catalog tables, we
treat the second-lowest as the lowest and the second-
highest as the highest value. Thereto, we assume that
there is no great difference between the second-lowest
and the lowest value and between the second-highest
and the highest value. Furthermore, at the moment the
setColumnStatisticsmethod is restricted to the modi-
fication of the quantile data insyscat.coldist, frequent
values are not being set.

The API implementation for IBM DB2 V8.2 also
works with IBM DB2 V9. However, the methods
deleteTableStatisticsanddeleteIndexStatisticsdo not
reset the values of the statistics columns added in IBM
DB9 V9 to the respective catalog tables.

4.2 Oracle 10g Implementation

In an Oracle database system statistics can reside in
two different locations: in the database catalog tables
or in tables created in the user’s schema for this pur-
pose. Due to the fact, that only statistics stored in the
catalog have an impact on the cost-based optimizer
our API implementation only operates on this loca-
tion. As the catalog views are not updatable, Oracle
provides the DBMSSTATS package that allows to re-
trieve statistics data as well as to set and delete statis-
tics data. At the moment, we store histograms in Ora-
cle as equi-height histograms. Except for the retrieval
of histogram data, our Statistics API implementa-
tion solely uses the procedures of the DBMSSTATS
package. We do not use DBMSSTATS for histogram
retrieval because the associated procedure returns the
histogram data in VARRAYs which can only be re-
trieved when using Oracle’s extensions to JDBC. So,
we decided to query the appropriate statistics table in-
stead of using Oracle’s extended JDBC classes. For
the retrieval of meta data we also make use of the
appropriate catalog views. Finally, we use the EX-
PLAIN PLAN command to retrieve the cost and car-
dinality estimates for a given SQL statement.

The identifiers of database objects are stored in
upper case letters in the catalog tables of Oracle. The
procedures of the DBMSSTATS package also ask for
identifiers in upper case letters. So, the Statistics API

implementation converts identifiers passed as input
attributes to upper case before they are used for com-
parison in a query or as parameter in a procedure call.
Indexes can be identified by their name and schema.
Anyhow, the implementation also asks for the correct
name and schema of the associated table.

As the index statisticdistinctKeysFirstNColumns
is not available in Oracle, it is also not available in
IndexStatisticsobjects returned bygetIndexStatistics
and it is not considered when setting index statistics.
Furthermore, our implementation does not support
object tables and nested tables and we do not provide
an extended support for statistics of partitioned tables
and partitioned indexes. However,getTableMetaData
also retrieves a cluster index when the target table is
part of a cluster which for example is not supported by
the JDBC DatabaseMetaData implementation. Fur-
thermore,getTableMetaDataretrieves page size for
’normal’ tables as well as for index organized tables
(IOT) and for partitioned tables as well as for non-
partitioned tables. This is not trivial because depend-
ing on the kind of table and depending on partitioning
the information of the page size is stored in differ-
ent catalog views. Retrieving the columns of an in-
dex meets another problem. For each index column
that is denoted to be sorted in descending order, Ora-
cle internally adds a hidden column to the associated
table which includes the original column as an ex-
pression and uses the hidden column in the index key.
Unlike the JDBC DatabaseMetaData implementation,
we consider this and return the column name included
in the expression and not the name of the generated
hidden column. Similarly, for indexes defined on ex-
pressions we also return the expression instead of the
column name in theIndexMetaDataobject.

Please note, to get access to the full functionality
of the Statistics API the account used by the applica-
tion to connect to the database must own the neces-
sary rights to access catalog views and to execute the
procedures of the DBMSSTATS package.

4.3 Microsoft SQL Server 2005
Implementation

In SQL Server, the access to catalog views is limited
to retrieval. Documentation about how to manipulate
statistics data has not been disclosed yet and therefore
this functionality is not available in our implementa-
tion for SQL Server. So, when adeleteor setmethod
is being called, anUnsupportedMethodExceptionwill
be thrown.

To retrieve statistics and meta data, we make use
of the catalog views introduced in SQL Server 2005.
Due to the fact, that most of the column and in-

STATISTICS API: DBMS-INDEPENDENT ACCESS AND MANAGEMENT OF DBMS STATISTICS IN
HETEROGENEOUS ENVIRONMENTS

11

dex statistics are not available in these catalog views,
we additionally have to call the DBCC-command
SHOW STATISTICS. SHOWSTATISTICS requires
an index name or the name of a statistics group as
target. Regarding statistics a statistics group in SQL
Server is similar to an index. A column can be part
of multiple statistics groups and a statistics group
can contain multiple columns but detailed information
and a histogram is only available for the first column
in a statistics group or index. So, we have to query
the catalog views to get the names of all statistics
groups and indexes where the given column is in the
first place. When this query returns multiple occur-
rences, we choose the latest, i.e., the one that has been
updated last. Then we can call SHOWSTATISTICS
with the name of this statistics group or index.

To avoid the execution of a query but to get the
associated cost and cardinality estimate, we must set
SHOWPLAN ALL ON. Afterwards, when we send
a SQL statement to the database, it returns the query
plan including some additional information in a tabu-
lar format as result set. We read the cardinality esti-
mate and the cost estimate contained in the first return
row and set SHOWPLANALL back to OFF.

Indexes can be identified by their name and the
name and schema of the associated table. This is due
to the fact, that in SQL Server an index is tightly cou-
pled with the associated table. Hence, the same name
can be used for multiple indexes as long as they are
not associated with the same table.

To get access to the full functionality of the Statis-
tics API, the account used by the application to con-
nect to the database must own the server-rolesysad-
minor the database-roledb owner.

5 CONCLUSION AND FUTURE
WORK

In this paper we proposed a DBMS-independent
JAVA interface that provides read access as well as
write access to statistics stored in databases on dif-
ferent relational DBMSs. This interface provides not
just a set of methods but also a set of data structures to
store the retrieved data in a DBMS-independent for-
mat. It can be viewed as an extension and unifica-
tion of existing interfaces used for statistics retrieval
or costing of statements.

In the future, the Statistics API can be enriched by
additional statistics or meta data elements as needed.
Extension to handle multidimensional histograms are
also possible. Further points for improvements are
already given in the text. Although relational DBMSs
dominate, an extension of our approach to other than

relational backend DBMSs and data stores is another
valuable next step.

REFERENCES

Ellis, J., Ho, L., and Fisher, M. (2001).JDBC(TM) 3.0
Specification, Final Release.Sun Microsystems, Inc.

Ewen, S., Ortega-Binderberger, M., and Markl, V. (2005).
A learning optimizer for a federated database manage-
ment system. InProc. BTW, Karlsruhe, Germany.

IBM (2004a). IBM DB2 Information Integrator, Wrapper
Developer’s Guide, Version 8.2. IBM Corp.

IBM (2004b). IBM DB2 Universal Database, Administra-
tion Guide: Performance, Version 8.2. IBM Corp.

IBM (2004c). IBM DB2 Universal Database, SQL Refer-
ence Volume 1, Version 8.2. IBM Corp.

Ioannidis, Y. (2003). The History of Histograms (abridged).
In Proc. VLDB, Berlin, Germany.

Kraft, T., Schwarz, H., Rantzau, R., and Mitschang, B.
(2003). Coarse-Grained Optimization: Techniques for
Rewriting SQL Statement Sequences. InProc. VLDB,
Berlin, Germany.

Lu, H., Ooi, B. C., and Goh, C. H. (1993). Multidatabase
Query Optimization: Issues and Solutions. InProc.
RIDE-IMS, Vienna, Austria.

Melton, J., Michels, J.-E., Josifovski, V., Kulkarni, K. G.,
and Schwarz, P. M. (2002). SQL/MED - A Status Re-
port. SIGMOD Record, 31(3):81–89.

Melton, J., Michels, J.-E., Josifovski, V., Kulkarni, K. G.,
Schwarz, P. M., and Zeidenstein, K. (2001). SQL
and Management of External Data.SIGMOD Record,
30(1):70–77.

Microsoft (2006). SQL Server 2005 Books Online -
Transact-SQL Reference. http://msdn2.microsoft.com/
en-us/library/ms189826.aspx. Microsoft Corp.

Oracle (2003a). Oracle Database Performance Tuning
Guide, 10g Release 1 (10.1). Oracle Corp.

Oracle (2003b).Oracle Database Reference, 10g Release 1
(10.1). Oracle Corp.

Oracle (2003c). PL/SQL Packages and Types Reference,
10g Release 1 (10.1). Oracle Corp.

Oracle (2006).Ask Tom. http://asktom.oracle.com/. Oracle
Corp.

Roth, M. T., Arya, M., Haas, L. M., Carey, M. J., Cody,
W. F., Fagin, R., Schwarz, P. M., Thomas II, J., and
Wimmers, E. L. (1996). The Garlic Project. InProc.
SIGMOD, Montreal, Quebec, Canada.

Roth, M. T., Ozcan, F., and Haas, L. M. (1999). Cost Mod-
els DO Matter: Providing Cost Information for Di-
verse Data Sources in a Federated System. InProc.
VLDB, Edinburgh, Scotland, UK.

Selinger, P., Astrahan, M., Chamberlin, D., Lorie, R., and
Price, T. (1979). Access Path Selection in a Relational
Database Management System. InProc. SIGMOD,
Boston, Massachusetts, USA.

ICEIS 2007 - International Conference on Enterprise Information Systems

12

