
EVIE - AN EVENT BROKERING LANGUAGE FOR THE
COMPOSITION OF COLLABORATIVE BUSINESS PROCESSES

Tony O’Hagan1, Shazia Sadiq1and Wasim Sadiq2
1School of Information Technology and Electrical Engineering

The University of Queensland, St Lucia, QLD 4072
Brisbane, Australia

2SAP Research Centre
133 Mary Street, QLD 4000

Brisbane, Australia

Keywords: Business Process Management, Enterprise Application Integration, Service Oriented Computing.

Abstract: Technologies that facilitate the management of collaborative processes are high on the agenda for enterprise
software developers. One of the greatest difficulties in this respect is achieving a streamlined pipeline from
business modelling to execution infrastructures. In this paper we present Evie - an approach for rapid design
and deployment of event driven collaborative processes based on significant language extensions to Java
that are characterized by abstract and succinct constructs. The new language is positioned within an overall
framework that provides a bridge between a high level modelling tool and the underlying deployment
environment.

1 INTRODUCTION

Process enablement is firmly grounded as a key
objective in enterprise systems. However, with
current business trends towards outsourcing and
virtual alliances, the importance of business process
integration has strongly emerged. Business process
integration (BPI), understood as the controlled
sharing of data and applications within and across an
enterprise boundary, is considered to be one of the
main strategies of many organizations. BPI offers
new business opportunities, benefits of maximizing
operational productivity, improved business resource
utilization, and supports businesses in gaining
competitive advantages through customer and
supplier satisfaction.

Process enactment systems traditionally rely on
the control flow defined within the process model to
drive the process. This approach has been highly
successful in coordinative processes. However, this
approach becomes arguable for Collaborative
Business Processes (CBPs) that are characterized by
asynchronous and highly dynamic business activity.
In collaborative processes, it is expected that
independent specialized application components

both within and across organizational boundaries
will be capable of detecting and responding to the
events that dictate subsequent process flow. These
events can be many, can arise at any time during the
overall process and their (time of) occurrence cannot
be anticipated by dependent components.

Modelling a collaborative process through the
exchange of event data rather than through a rigid
control flow between its activities is a significantly
different albeit more natural way of capturing the
logic behind collaborative processes. Thus, business
activity takes place within application components,
however the context for the business activity is
provided by the event data. How the business
activity deals with the data is not the question,
instead capturing which business activity may need
to be informed about a particular event, and when, is
the question at hand.

The critical factor is that the process
enforcement system be empowered with sufficient
intelligence so that the appropriate action can be
taken when a particular event notification arrives.
This action basically consists of communicating the
relevant data to the right process participant such as,
an application component, a business activity

372
O’Hagan T., Sadiqand S. and Sadiq W. (2007).
EVIE - AN EVENT BROKERING LANGUAGE FOR THE COMPOSITION OF COLLABORATIVE BUSINESS PROCESSES.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 372-377
DOI: 10.5220/0002363403720377
Copyright c© SciTePress

performer, or a workflow management system, at the
right time.

In this paper, we present an approach that
attempts to capture the dynamics of CBPs and the
underlying event dependencies through a scripting
language. Difficulties in providing visual models
and toolkits for business analysts to capture CBPs
are well known. The premise of our programming
approach is that CBP setups are mostly undertaken
by technical teams often software engineers, where
high level models of limited or tedious functionality
may prove unproductive. Without compromising on
the importance of a model-driven approach, the Java
language extensions are intended to provide the
power of a programming style language, but at a
sufficiently high level of abstraction. The developed
program is intended to serve two objectives: to serve
as a source for setting up an execution environment;
and to serve as a target for a high level model (if
available).
We first discuss the motivation and background
architecture for Evie. We then present features of the
Evie language with the help of an example. Section
4 elaborates on the position of this work in current
technology developments. Conclusions and main
contributions are summarized in section 5.

2 EVIE FRAMEWORK

The Evie language is motivated by the need for rapid
but reliable development of services that act as
message brokers or gateways providing routing,
transport and encoding mappings between disparate
legacy and business partner servers.

There is significant evidence that such
infrastructures are featuring prominently in current
enterprise systems (see SAP Exchange
Infrastructure, IBM WebSphere, BEA AquaLogic,
Oracle Integration and Microsoft Biztalk).
Consequently, the need to provide tools for rapid
development, testing and deployment for broker and
gateway services has increased manifold. The Evie
language targets this aspect by delivering an abstract
and succinct means of expressing broker business
logic. Compiled Evie programs are deployed within
an execution framework API and user interface tools
that support rapid systems integration development
and simulation testing.

The overall process for design and deployment
of Evie applications can be summarized as: (1) A
high level collaboration process is prepared by a
business analyst using a model design tool that
creates a set of graphical design artefacts. (2) A
model compiler translates these into a skeleton Evie
rule script that is augmented by a software engineer

into a complete set of executable rules. (3) Finally,
an Evie compiler translates Evie rules into Java
components to be deployed and executed inside the
Evie Execution Framework.

2.1 Execution Framework

The Evie execution framework is a Java API class
library from which a standalone broker or gateway
service is constructed. Its architecture is composed
of four tiers that control external communications,
event routing, rule execution, and data persistence..

CBP partner organizations each agree that they
will expose services that can be characterized by
specific event behaviour. The behavioural contract
between these services will include agreement on
event message types, and rules governing message
exchange. The behavioural contract of a service is
referred to as its service type and typically
corresponds to a business role. A service instance is
any partner service that exhibits the corresponding
service type (role) behaviour. An Evie framework
server can implement multiple service instances for
multiple partners.

The first tier implements communications to
external services. Evie developers can defer until
deployment decisions such as service end point
addresses, channel multiplexing of service instances,
transport protocols and event message encoding.

In the second tier, input and output events are
routed between external channels and internal
service instances. This isolation ensures that
developers describe interactions with abstract event
and service types and thus focus on conceptual
business logic rather than communications wiring.

The core third tier manages the Evie scripts
consisting of ECA rules containing event conditions
and corresponding actions (discussed in the next
section). Compiled event conditions subscribe to
specific input events. As each input event arrives it
is matched to a set of persistent event subscriptions
corresponding to active rule instances. Each
matching subscription activates a compiler generated
event procedure corresponding to either the rule
action or a partial evaluation of a complex event
condition. Evie supports persistent threads
containing Java context variables. When an event
procedure is fired, it is passed a reference to the
persistent thread that created the original event
subscription thus restoring the execution context of a
rule instance. Context variables are used to compose
and send output messages and compose and activate
new rules.

The fourth tier employs a transactional object-
relational mapping engine to efficiently persist and

EVIE - AN EVENT BROKERING LANGUAGE FOR THE COMPOSITION OF COLLABORATIVE BUSINESS
PROCESSES

373

query the state of service instances, events, event
subscriptions and persistent threads.

3 EVIE LANGUAGE

The Evie language defines a notation for event
processing based on event-condition-action (ECA)
rules (Dayal et al., 1988).

Events: Evie defines an event as a CBP state
change message observable at a given point in time.
Event are communicated between partner services
through messaging infrastructures. For collaborative
business processes, they provide the impetus for
process progression. Event types identify primitive
CBP events.

Event Conditions: An Evie event condition is a
rule precondition that defines when a rule action
executes. Simple event conditions observe a single
event type. Complex conditions use logical and
temporal operators to express conditions requiring
multiple events occurring over a period of time.

Conditions may reference attributes of the event
type (Payment) or sender’s service type (Customer):

receive Payment p from Customer c
where c.status = ’approved’
AND p.amount < = c.maxPayment
AND NOT delay(+days(3))
Actions: Evie Actions can compose and send

output messages, read or update context variables
and, interestingly, dynamically compose and activate
new rule instances. They may also execute any other
arbitrary Java statements.

3.1 A Request for Quote Example

Consider the following Request for Quote (RFQ)
CPB example, with three participant roles: RFQ
Manager, Requester and Supplier. The Requester
issues a RFQ document requesting quotes for supply
of a given product from a set of Suppliers. The RFQ
Manager supervises the tender process..Fig. 1 below
summarizes the event flow between participant
roles.

Figure 1: The Request for Quote Event Flows.

We commence the design process by identifying
the service and message types in the collaboration
(Example 1a)

The rules that represent the behaviour of a
participant role are then coded against the
corresponding service type definition. Rules for the
RFQ Manager broker are illustrated in Example 1b.

Rules for Requester and Supplier can also be
implemented in Evie in order to simulate the
behaviour of these external services. Simulation
rules allow a developer to prototype interaction with
external service types, and can also be used to assist
in acceptance testing of an Evie broker or its
application services.

We observe that an RFQ process can be
decomposed into a sequence of phases that exhibit
different response behaviour. Rule instances bound
to the initial RFQ event are dynamically activated
and deactivated as these behavioural phases
progress.

A.1 package evie.rfq;
A.2 message RFQ {
A.3 string (50) description;
A.4 string (50) product;
A.5 }
A.6 message RFQ_Expired { }
A.7 message RFQ_Complete { }
A.8 message Quote { money bidPrice; }
A.9 message QuoteSuccess { Quote quote; }
A.10 message QuoteFailure {
A.11 string (80) reason;
A.12 }
A.13 abstract service Organization {
A.14 string (50) companyName;
A.15 accepts QuoteSuccess from RFQ_Manager;
A.16 }
A.17 service Requester extends Organization{}
A.18 service Supplier extends Organization {
A.19 money maxPrice;
A.20 int maxDelay;
A.21 accepts RFQ from RFQ_Manager;
A.22 accepts QuoteFailure from RFQ_Manager;
A.23 }
A.24 service RFQ_Manager {
A.25 accepts RFQ from Requester;
A.26 accepts Quote from Supplier;
A.27 accepts RFQ_Expired, RFQ_Completed
A.28 from self;
A.29 }

Example 1a: Service types and Event message types.

Phase I: The Requester initiates a new thread by
sending a RFQ event to the RFQ_Manager (B.2 in
Example 1b). The RFQ specifies the single product
required and a Quote submission deadline. Future
events must be correlated (B.6) with the RFQ event
to indicate that they are part of this process. The
RFQ Manager then forwards the RFQ to all
Suppliers (B.9) and waits for response Quotes
(B.13). The lowest bid Quote is recorded (B.15-18).

Requester

RFQ
Manager

Supplier

1.
RFQ 2.

RFQ

3.
{Quote}

4. RFQ_Expired
5a. QuoteSuccess

6. QuoteFailure

5b. QuoteSuccess

7. RFQ_Completed

ICEIS 2007 - International Conference on Enterprise Information Systems

374

All state changes resulting from arrival of an RFQ
message will be atomically persisted.

Phase II: The RFQ Manager schedules an
abstracted RFQ_Expired event to be sent to itself
when the RFQ deadline expires (B.10-12). Once this
event occurs (B.20), the RFQ process enters a new
phase and consequently the RFQ Manager behavior
and rules change. The then when construct
(B.20) causes threads and active rule instances in the
previous phase (B.8 – B.19) to be terminated before
executing actions in the new phase (B.21 – B.38).

Phase III: The RFQ Manager then notifies the
successful Supplier and Requester (B.24-25) and
with a QuoteSuccess event that contains an
embedded Quote event. Late Quotes are now
rejected with a QuoteFailure reply (B.33-38).

In order to clean up the remaining event Quote
subscription, after a 30 day period the final phase
terminates with an RFQ_Completed event (B.31,
B.39) (final phase) after which time all RFQ
correlated rule instances are terminated. Any input
events that are not matched to an active rule instance
will then be bounced back to their sender by the
framework as an exception.

3.2 Additional Language Features

The example above highlights some of the features
of Evie which provide an effective means to satisfy
particular requirements of event driven CBPs.
However, the Evie language supports several other
features and characteristics which are briefly
summarized below:

Type Inheritance and Aggregation. Service and
event types support type inheritance. Event types
may be imported from other collaborations so that
inter-collaboration scenarios are supported and
industry standard types (e.g. UBL at www.oasis-
open.org) can be reused.

Event types can contain references to other
events (A.9) or service instances. Events may also
contain event and service instance collections (lists,
sets and maps).

A service type can contain attributes used to
query a set of service instances or configure service
rule behaviour.

Event correlation. Evie receive event conditions
and send statements can apply an arbitrary message
correlation constraint on input events conditions or
set a correlation property on output events (B.37). It
can be an arbitrary computed string value or (more
commonly) an event instance.

The correlate statement (B.4) sets a default
correlation value for all receive and delay
conditions and send statements within its scope.

A correlation scope effectively partitions all
input and output events into groups of execution
threads related to an initiating event instance (e.g.
RFQ event B.6). This partitioning is similar to a
workflow process instance. However, unlike
workflow processes, nested event conditions
(receive) and event compositions (send) can
elect to regroup events under a different correlation
value or event. This allows us to perform event
grouping and batch operations on related events.

Aggregate Conditions. An Evie receive event
condition can group events into a collection and
specify aggregate conditions on that collection. The
into clause in a receive condition collects a set
of messages of the same type. For example the
following condition collects the next three events of
type A with field A.x = 1 into the list aList.

when (receive A a into List<A> aList
 where a.x = 1 AND count(aList) >= 3) { …
}

This feature is used in conjunction with either an
AND or SEQ operators. When used with the AND
operator, the receive condition is evaluated as
immediately true, however, it continues to collect
messages until the value of the event condition
cond1 is known.

receive A into List<A> aList AND (cond
1
)

Similarly, when used with the SEQ operator, the
receive condition is again immediately evaluated
as true but in this case only collects messages until
the first message arrives that is used by cond1.

receive A into List<A> aList SEQ (cond
1
)

Nested Rule Overriding. Event subscriptions
resulting from nested child rules may override the
consumption of events by parent rule instances. This
supports a common business case where we need to
initiate a new execution thread (using a repeat
rule) whenever an input message of a known type
arrives containing a previously unobserved key
value. The outer rule creates new threads, while an
inner nested rule can consume messages of the same
type and key as a prior initiating message.
Consumption overriding can also occur within the
evaluation of complex conditions involving multiple
events.

repeat when (receive A firstA) {
 repeat when (receive A a correlate firstA) {
 // Process A events correlated with firstA.
 // that arrives within 30 minutes.
 } then when (delay(mins(30)) {
 // terminate
 }
}

Mutually Exclusive Rules. A list of Evie rules that
are activated together can be identified as mutually
exclusive. When one of these rules fires, others in
the same persistent thread are automatically

EVIE - AN EVENT BROKERING LANGUAGE FOR THE COMPOSITION OF COLLABORATIVE BUSINESS
PROCESSES

375

deactivated. If more than one fires concurrently then
the first rule has precedence.

A repeat exclusive rule can be used when a
CBP cyclically toggles between mutually exclusive
phases.

Multidimensional and Dynamic Conversations.
Complex CBPs may be multidimensional involving
any number of service types and instances. New
service instances may be dynamically registered and
deregistered within an active CBP.
B.1 package evie.rfq;
B.2
B.3 service input rules RFQ_Manager {
B.4 repeat when (receive RFQ rfq // Phase I
B.5 from Requester requester) {
B.6 correlate (rfq) {
B.7 Quote bestQuote = null;
B.8 when (true) {
B.9 send rfq to role Supplier;
B.10 when (delay(rfq.deadline)) {
B.11 send new RFQ_Expired() to self;
B.12 } // when
B.13 repeat when (receive Quote quote
B.14 from Supplier) {
B.15 if (bestQuote == null ||
B.16 bestQuote.bidPrice >

quote.bidPrice) {
B.17 bestQuote = quote;
B.18 } // if
B.19 } // when
B.20 } then when (receive RFQ_Expired from

self) { // Phase II
B.21 log.info("Expired RFQ: "
B.22 + rfq.description);
B.23 if (bestQuote != null) {
B.24 send new QuoteSuccess(

 quote := bestQuote)
B.25 to requester, bestQuote.sender;
B.26 } else {
B.27 send new QuoteFailure(reason :=
B.28 "No Quotes received before

deadline") to requester;
B.29 }
B.30 send new RFQ_Completed()
B.31 to self delay +days(30);
B.32 repeat when (receive Quote quote
B.33 from Supplier) {
B.34 send new QuoteFailure(reason :=
B.35 "Quote not received before

deadline")
 to quote.sender
 correlate quote;

B.36 } // repeat when
B.37 }then when (receive RFQ_Completed

from self){ // Phase III
B.38 log.info("Completed RFQ: "
B.39 + rfq.description);
B.40 }
B.41 }
B.42 }
B.43 }
B.44 }

Example 1b: RFQ Manager Rules.

Fine-grained Dynamic Access Control. Evie rules
not only describe what the event must contain but
also and when the event may be sent or received and
who may send or receive it. Rules that govern these
constraint dimensions can be dynamically composed
and correlated based on past observed events.

Persistent Context Variables. An Evie rule binds a
condition to an action. When an event condition
matches an input event sequence, these events (and
related sender services) are bound to persistent
context variables declared as part of the condition.
The rule action or nested rules may then reference
these newly bound context variables.

Threads and Transactional Memory. In Example
1b, a repeating rule captures an RFQ event (B.4) and
creates a new persistent thread containing the
context variable bestQuote (B.7).

Child threads spawned by a nested repeat rule
(B.13), read and update data from shared parent
threads (B.17). The framework employs optimistic
locking to detect and retry transactions when
concurrent update conflicts occur with persistent
threads. The Evie compiler detects reads (B.15-16)
and updates (B.17) to shared variables and emits
code to ensure that the optimistic locking occurs.

The implied transactional memory model (Shavit
et al, 1995) significantly alters the semantics of
context variables. It delivers a simple, transparent
and scalable solution. It also significantly reduces
the code complexity normally associated with
concurrent state management.

4 RELATED TECHNOLOGIES

During the past several years, as enterprise software
has evolved, there has been extensive research on
enterprise architectures in pursuit of the evasive
business-IT alignment.

From the technology perspective, the most
significant development in the recent past impacting
on enterprise architectures has been through service
oriented architectures or SOA (Alonso et al., 2004).
Even though an essential stepping stone for service
enablement of enterprise applications, web services
standards do not provide the complete solution for
CBPs.

Achieving communication between disparate
enterprise applications through messaging is well
established in message oriented middleware
(middleware.org), with recent trends towards
solutions that can scale beyond the traditional hub-
and-spoke message broker. The extended
functionality of the Enterprise Service Bus (ESB)

ICEIS 2007 - International Conference on Enterprise Information Systems

376

(Chappell, 2004) is currently a dominant approach in
this respect, providing the ability to store messages
and establishing streamlined service communication.

Recent developments from business software
vendors have identified the need for solutions that
go beyond service enablement and communication
capability. These provide a development
environment that allows multiple services both
within and across enterprise systems to be collated
into value added composite applications (see ESA &
CAF from sap.com).

We observe that a critical aspect of current
enterprise architectures based on the above
approaches is the management of the rules for
service interaction (serviceinterationpatterns.com).
This functionality would naturally reside in
middleware components and is the main driver for
the approach presented in this paper. While there
have been significant developments within the first
two phases of service enablement and
communication, the last phase of managing service
interaction still holds many challenges.

Difficulties in modelling service interactions
through typical control flow constructs as found in
workflow modelling languages (workflowpatterns.
com) are known to be ineffective in the CBP
scenario due to the scale of options. Instead,
approaches that utilize event processing have
emerged as a more promising alternative (Luckham,
2002). Some operators and related event algebras
can be found in: HiPAC (Dayal et al., 1988),
Compose (Gehani et al., 1992), Snoop (Charavarthy
et al., 1994), RAPIDE (Luckham, 2002), TriGS
(Retschitzegger, 1998), (Cao et al. 2006).

5 CONCLUSIONS

The primary purpose of the Evie approach is to
inter-connect the high level business models with
underlying execution infrastructures within the
context of event based CBPs.

In this paper we have presented an approach that
provides the capability to setup an executable
environment for event based CBPs through a rather
slim specification. The Evie framework is well
aligned with current trends towards event based
architectures for large scale integration systems.
However, the proposed approach is distinguished in
three respects:
− providing simple and uniform language

constructs that allow the specification of diverse
service interaction patterns

− ability to provide a level of abstraction from the
execution details due to the compilation phase

that generates the requisite objects and code for
execution

− utilization of an execution model based on event
subscription, that provides the ability to cater for
high volume and long duration processes with
minimal impact on system performance and
response latency
An important aspect of this approach is the

ability to generate an Evie program from a high level
modelling tool. This aspect has not been considered
in this paper, but is part of our future work.

REFERENCES

Alonso, G., Casati, F., Kuno, H., Machiraju, V (2004)
Web Services Concepts, Architectures and
Applications. Springer Verlag

Chakravarthy, S., Krishnaprasad, V., Anwar, E., & Kim,
S.-K. (1994). Composite Events for Active Databases:
Semantics, Contexts and Detection. Paper presented at
the Proceedings of 20th International Conference on
Very Large Data Bases (VLDB' 94), Santiago, Chile.

Chappell, D. A. (2004). Enterprise Service Bus (1st ed.).
Sebastopol, California: O'Reilly Media, Inc.

DatMa Cao, Maria E. Orlowska, Shazia W. Sadiq. (2006)
Formal Considerations of Rule-Based Messaging for
Business Process Integration, Special Issue of
Cybernetics and Systems: An International Journal,
Vol 37/2 (Feb/March 2006).

Dayal, U., Blaustein, B. T., Buchmann, A. P.,
Chakravarthy, U. S., Hsu, M., Ladin, R., et al. (1988).
The HiPAC Project: Combining Active Databases and
Timing Constraints. ACM's Special Interest Group on
Management Of Data (SIGMOD), 17(1), 51-70.

Gehani, N. H., Jagadish, H. V., & Shmueli, O. (1992).
Event specification in an active object-oriented
database. Proceedings of the 1992 ACM Special
Interest Group on Management Of Data international
conference on Management of Data (SIGMOD'92),
San Diego, California, United States.

Luckham, D. C. (2002). The power of events: an
introduction to complex event processing in
distributed enterprise systems. Boston, USA: Addison-
Wesley.

Retschitzegger, W. (1998). Composite Event Management
in TriGS - Concepts and Implementation. Paper
presented at the Proceedings of the 9th International
Conference on Database and Expert Systems
Applications (DEXA '98), Vienna, Austria.

Nir Shavit and Dan Touitou. Software Transactional
Memory. Proceedings of the 14th ACM Symposium
on Principles of Distributed Computing, pp.204–213.
August 1995.

EVIE - AN EVENT BROKERING LANGUAGE FOR THE COMPOSITION OF COLLABORATIVE BUSINESS
PROCESSES

377

