
DYNAFLOW: AGENT-BASED DYNAMIC WORKFLOW
MANAGEMENT FOR P2P ENVIRONMENTS

Adriana S. Vivacqua1, Wallace A. Pinheiro1, Ricardo Barros1, Amanda S. de Mattos1
Nathalia M. Cianni1, Pedro C. L. Monteiro Jr.1, Rafael N. De Martino1, Vinícius Marques1

Geraldo Xexéo1,2, Jano M. de Souza1,2 and Daniel Schneider1

1COPPE/UFRJ, Graduate School of Engineering
2DCC-IM Dept. of Computer Science, Institute of Mathematics

Federal University of Rio de Janeiro, Brazil

Keywords: Dynamic Workflows, CSCW, Agents.

Abstract: Many projects are characterized by their flexibility and high number of changes before a definitive solution
is implemented. In these scenarios, the people involved may change, as may deadlines, assignments and
roles. Traditional workflow systems don’t handle dynamic scenarios well, as they are centralized and pre-
defined at the start of the project. To address these problems, we propose an agent-based approach to
dynamic workflow management, where participants may join or leave and roles may change depending on
the situation.

1 INTRODUCTION

With the evolution of computing and networking
technology and the growth of services and
information available in the Internet, it has become
possible to create mechanisms that enable users to
collaborate and share information through their
computers, regardless of their location.

Workflow Systems are popular tools for
corporate collaboration, as they allow diverse task
structure representation, organization, scheduling
and distribution throughout the organization. Users
can execute processes as a group, and keep business
process knowledge inside the organization (Ellis,
1999).

The majority of existing Workflow Management
Systems is limited, because they are based on
client/server architectures and are fairly inflexible,
not offering appropriate support to the dynamism
found in real world situations, such as role or task
changes when unexpected events happen (Weske,
1999).

With the technological advances and the
adoption of distributed environments, more
flexibility has also become necessary. In these
environments, problems such as unexpected
participant changes have to be managed on the fly.

Furthermore, lengthy processes may be executed in
this kind of environment, which also demands
flexibility, as any changes during workflow
execution need to be handled so as not to lose work
already done.

Given this context, the goal of our research is to
analyze the main problems inherent to the definition
and execution of dynamic workflows, in
environments characterized by flexibility and
distribution, and formulate solutions to the problems
found in these environments. The focus of our
analysis is on decentralized, heterogeneous, dynamic
agents that enable spontaneous group formation by
physically dispersed participants. The goal is to add
flexibility to workflows, making its structure more
dynamic regarding the definition and execution as
well as data and control distribution.

This paper is organized as follows: section 2
presents the DynaFlow architecture and section 3 a
scenario. We finish with a discussion in section 4.

275S. Vivacqua A., A. Pinheiro W., Barros R., S. de Mattos A., M. Cianni N., C. L. Monteiro Jr. P., N. De Martino R., Marques V., Xexéo G., M. de Souza J.
and Schneider D. (2007).
DYNAFLOW: AGENT-BASED DYNAMIC WORKFLOW MANAGEMENT FOR P2P ENVIRONMENTS.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - SAIC, pages 275-278
DOI: 10.5220/0002361102750278
Copyright c© SciTePress

2 DYNAFLOW

The proposed approach is a WFM that allows
flexible definition, execution and management of
workflows in distributed environment. Throughout
this paper, a process should be understood as a set of
sequential activities, where each activity has an
associated competence (or skill).

DynaFlow includes both phases of the workflow
management: definition, where the process activities
and their execution order are described; and
execution, where all activities are executed in the
proper order. In this fashion, each member of a
group can assume the role of workflow publisher or
executor. The publisher will be responsible for the
definition and publication of activities to the
neighboring peers. Executors are those members that
choose at least one of the available activities to
execute.

As the publisher can receive more than one
proposal (from different executor) to execute the
same activity, it’s necessary that each executor send
a contract to the publisher, describing its proposal to
execute each activity. Thus, the publisher will be
able to analyze all contracts and choose the more
appropriate one, selecting the best ones. The
contract will be negotiated among publisher and
executors, and must contain the activity to be
performed, its price, execution time, current state,
etc. The next sessions describe the system’s regular
flow of operation and the agents used to execute
these operations.

2.1 System Architecture and Agent
Description

DynaFlow defines two applications, one Publisher
and one Executor. The publisher user defines
manually the activities, their structure and flow and
publishes them. From there on, all remaining actions
will be executed autonomously by agents: contract
receipt and analysis, activity republication, task
result receipt, activity execution order definition,
and so on. At the executor side, agents receive
available activities, approved contracts and
execution orders. There are also agents to send
notifications to the publisher. These notifications
can propose, confirm or finalize a contract (that is
initialized manually).

Figure 1 shows the system architecture and inter-
agent message flow. Dotted lines represents the
activity flow, while the full line represents the
contract flow (each contract with a status: proposed,
approved, disapproved, confirmed, finished, or an
execution order). It is important to mention that
contract flow is not a broadcast, but direct
communication, as both sender and receiver are
known (unlike the activity flow, represented by the
first and second steps).

The system was built on top of the COPPEER
framework (Miranda and Xexeo, 2006). All
communication relies on the COPPEER framework,
using the Negotiator agent, which is responsible for
taking the contract between publisher and executor.

Figure 1: DynaFlow Architecture.

ICEIS 2007 - International Conference on Enterprise Information Systems

276

In Figure 1, the flow starts when a user uses the
Publisher application to build a workflow (1). The
Publisher agent broadcasts activities to other peers
(2). When an activity is filtered by a peer’s
ActivityListener agent, the Executor application
alerts its user about the incoming activity offer (3).
If the user desires to execute some of the activities,
he must create and send a contract proposal for each
desired activity to the Publisher (4). A
ContractReceiver agent waits for incoming
proposals sent by executor peers (5). The
ContractAnalyzer agent processes all contracts and
sends each one back to its related executor, with the
status (approved or disapproved) (6). An
AprovedContractListener agent receives the
approved contracts and delivers them to the user (7).
The user confirms his interest at some of those
contracts, sending them back to the Publisher, as
confirmed (8). A ConfirmedContractReceiver agent
waits for contract confirmations and sends these to
the Foreman agent, which coordinates activity
execution (9). The Foreman agent sends each
contract to the associated executor (10). The
ExecutorOrderListener agent waits for execution
orders sent by the publisher. Each order is passed on
to the user (11). On the executor side, when a user
finishes an activity, he must signal its contract
completion (12). On the publisher side, the Foreman
agent receives that signal and sends the next contract
to the related executor peer, if this activity depends
on the previous one(12). Independent activities can
be executed simultaneously. Steps 10, 11 and 12 are
repeated for all activities.

3 TECHNICAL DETAILS

In this section we present the agent architecture and
exception handling behavior used in DynaFlow. The
initial version of DynaFlow has been implemented
using COPPEER (Miranda and Xexeo, 2006), an
agent based platform for the construction of
distributed applications.

All agents introduced in the section 3.1 have
been implemented, as well as the basic
communication protocol. Agents are specialized,
simple reflex agents, with basic rules that govern
their behavior. Each agent has a specific task, as
described in the previous section.

Publishers can inform others of a workflow
description and activities needed, and executors can
bid for contracts. At the moment, simple price-based
selection is used, but implementation of more

complex contract selection methods will be done.
Exception handling is being implemented
incrementally, to test each situation and not
compromise already implemented steps. Thus far,
we have implemented activity republishing, for
those cases where no contracts were received, or
when no confirmation was sent.

3.1 System Walkthrough

System operation begins when a user defines the
activities of a workflow with the necessary
competencies for their accomplishment. These are
broadcast to other users.

To be notified about activities, users must define
their competencies. Thus, when the competence of a
published activity matches a user’s competencies,
that activity will show up as an executable activity.
Once it has been notified about an available activity,
the user can manifest its desire of executing that
activity by sending a contract to its publisher. This
contract defines the time and cost associated with
activity execution. While these steps involve user
action, the following are completely automated,
being executed solely by the agents.

After the publisher analyzes the different
contracts received and identifies the best ones, users
are notified about the acceptance or rejection of their
contracts. When a notification of approval is
received, this reception is acknowledged and the
agents stand by for the publisher’s activity request,
so that execution can be initiated. After receiving
confirmations from the activity executors, the
publisher sends out an execution order, so that the
executor user for the first activity in the workflow
may initiate execution. Upon receipt of an execution
order, the executor initiates the activity and notifies
the publisher when it is done. When the publisher
receives a finalization notification, it sends out an
execution order for the next activity in the sequence
of the workflow. Non-dependent activities can be
executed simultaneously. When all activities have
been completed, the workflow is considered
concluded.

4 DISCUSSION

One of the main problems with the first generation
of the WFMs is that they had a predefined,
immutable structure, which made it hard to adapt
dynamic changes. It is not so easy for workflow
administrators and users to foresee all situations

DYNAFLOW: AGENT-BASED DYNAMIC WORKFLOW MANAGEMENT FOR P2P ENVIRONMENTS

277

which should compose the workflow specification.
In these cases, a feature to allow rapid changes in
workflow structure when a change happens is
needed (Weske, 1999). Environmental changes and
technological advances are the main factors that lead
to a need for dynamic workflow management (Han
et al., 1998).

Dynamic workflow tools should enable
operations on running workflow instances (Weske,
1999). Suspend and resume are needed to allow
adaptation to changes. When a workflow is
suspended, the system has to save the current state
of that workflow so that it can be retrieved later
through a resume operation. Another important
feature is to provide resources to undo actions when
a workflow instance doesn’t work properly, in order
to allow workflow users to return to a successful
point of workflow execution.

WFMs are usually developed based in well
defined processes, and that leads to inflexibility in
current tools (Joeris, 1999). In order to support
dynamic workflows, tools should deal with two
types of flexibility: a priori and a posteriori. The
former focuses on flexible behavior specification in
order to achieve a behavior more precise and less
restrictive in terms of flow advance. The latter
focuses in flexibility for dynamic changes which
should allow changes in the specification due to
changes in the real world. In this case, it must be
defined when and in what states these changes
should be permitted to guarantee process
consistency.

There are two types of changes in process flow:
ad-hoc changes caused by an error, a rare event or a
customer specific demand; and evolutionary changes
that are the result of new strategic businesses, re-
engineering efforts and permanent changes in
external conditions (Aalst, et al, 1999). Workflow
changes are not only changes in the process flow,
and can also include participant and role changes,
timing changes (e.g. activity start time), etc.

The possibility of negotiating task assignments
and deadlines, and publishing revised workflows
after execution has begun, coupled with the P2P
architecture and scalability leads to new
opportunities in for dynamic workflow control,
breaking away from the strict structures normally
found in traditional workflow systems.

More efficient strategies for contract negotiation,
workflow definition and execution in P2P work
environments can be studied, providing more
flexibility and dynamicity to the process, without

losing the control and coordination provided by
workflow systems.

The current prototype restricts workflow creation
to only one peer, which means that only one peer
can be the publisher of a workflow. One possibility
would be to allow peers to suggest alterations or
improvements to the workflow, or even the group
definition of a workflow. This would lead to extra
research questions, such as how to identify peers
that might share a workflow; how to define criteria
for the selection of executors for a workflow; or the
execution order of the workflow.

REFERENCES

Aalst, W.M.P. van der; Basten, T.; Verbeek, H.M.W.;
Verkoulen,P.A.C.; Voorhoevoe, M., 1999. Adaptive
Workflow On the Interplay Between Flexibility and
Support. Proc. of the 1st Int. Conf. Ent. Information
Systems, Vol 2, pages 353–360, Setubal, Portugal.

Ellis, C., 1999. Workflow Technology. In Beaudouin-
Lafon, M. (ed.) Computer Supported Co-operative
Work, England: John Wiley and Sons.

Georgakopoulos, D., 1995. An Overview of Workflow
Management: From Process Modeling to Workflow
Automation. Distributed and Parallel Databases, n.3,
p. 119-153.

Han, Y.; Sheth, A; Bussler,C. A., 1998. Taxanomy of
Adaptive Workflow Management Proceedings of the
CSCW-98 Workshop Towards Adaptive Workflow
Systems, Seattle, USA.

Jablonski, S., Bussler, C.,1996. Workflow Management.
Modeling Concepts, Architecture and Implementation.
London, Thomsom Computer Press.

Joeris, G., 1999. Defining Flexible Workflow Execution
Behaviors in P. Dadam, M. Reicher (ed.) Enterprise-
wide and Cross-enterprise Workflow Management -
Concepts, Systems, Applications, GI Workshop
Proceedings - Informatik' 99, Ulmer Informatik
Berichte Nr. 99-07, University of Ulm.

Miranda, M.; Xexeo, G. B.; Souza, J. M, 2006. Building
Tools for Emergent Design with COPPER.
Proceedings of 10th Int. Conf. CSCWD, Nanjing, v. I.
p. 550-555.

Weske, M., 1999. State-Based Modeling of Flexible
Workflow Executions in Distributed Environments.
Society for Design and Process Science Printed in the
United States of America, Vol. 3, n. 2, p. 49-62.

Yan, J.; Yang, Y.; Raikundalia, K.G, 2006. SwinDeW ─
A p2p-based Decentralised Workflow Management
System. In ASWEC’06, Proceedings of Australian
Software Engineering Conference, pp.61-69.

ICEIS 2007 - International Conference on Enterprise Information Systems

278

