
MODEL-DRIVEN DESIGN OF
CONTEXT-AWARE APPLICATIONS

Boris Shishkov and Marten van Sinderen
Department of Computer Science, University of Twente, 5 Drienerlolaan, Enschede, The Netherlands

Keywords: Business modeling, Application design, Context, SOA, LAP.

Abstract: In many cases, in order to be effective, software applications need to allow sensitivity to context changes.
This implies however additional complexity associated with the need for applications’ adaptability (being
capable of capturing context, interpreting it and reacting on it). Hence, we envision 3 ‘musts’ that, in
combination, are especially relevant to the design of context-aware applications. Firstly, at the business
modeling level, it is considered crucial that the different possible context states can be properly captured and
modeled, states that correspond to certain desirable behaviors. Secondly, it must be known what are the
dependencies between the two, namely between states and behaviors. And finally, what is valid for
application design in general, business needs are to be aligned to application solutions. In this work, we
address the mentioned challenges, by approaching the notion of context and extending from this perspective
a previously proposed business-software alignment approach. We illustrate our achieved results by means of
a small example. It is expected that this research contribution will be useful as an additional result
concerning the alignment between business modeling and software design.

1 INTRODUCTION

In designing a software application, the engineer
should take into account not only the user
requirements but also the characteristics of the
environment in which the application will be used
(Shishkov et al., 2006b). This sometimes leads to the
identification of different possible environmental
states – referred to as context states, where by
context is meant ‘the interrelated conditions in which
something exists’ (Van Sinderen et al., 2006).
Hence, sensitivity to context changes is sometimes
essential for the effectiveness of applications, in this
case labelled as Context-Aware (CA) applications. It
should be decided therefore which of the relevant
context states would be considered by the
application designer. Further, the application should
be capable of capturing context, interpreting it, and
reacting on it; we call this quality adaptability.

All this implies complex design. We envision 3
‘musts’ that, in combination, are especially relevant
to the design of CA applications: (i) At the business
modeling level, it is considered crucial that the
different possible context states can be properly
captured and modeled, states that correspond to
certain desirable behaviors; (ii) It must be known

what are the dependencies between the two, namely
between states and behaviors, as illustrated in Figure
1; (iii) Business needs are to be aligned to
application solutions (this ‘must’ is valid for
application design in general).

CA
application

environment

alignment

 S1 S2 ….. Sn

 B1 B2 ….. Bn

Legend: B – Behaviors; S – Context States
Figure 1: Essential issues in designing CA applications.

By business modeling we mean the modeling of
business-level entities and their corresponding
relations and behaviors. The desired application
behaviors must (logically) be appropriate
refinements of those business-level behaviors. This
implies that, in addressing the business-application
alignment, it might help approaching business
modeling and corresponding application design
separately: We could model firstly the entities and
behaviors that concern the technology-independent
‘view’ on business processes and secondly, we could
model the entities and behaviors that concern the

105
Shishkov B. and van Sinderen M. (2007).
MODEL-DRIVEN DESIGN OF CONTEXT-AWARE APPLICATIONS.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - ISAS, pages 105-113
DOI: 10.5220/0002360301050113
Copyright c© SciTePress

functionality of the application (viewing this is
inevitably technology-rooted). These modeling
endeavors concern different abstraction levels –
high-level business logic and technology-driven
application functionality. Bridging this gap is
partially considered in this paper and more
thoroughly approached in previously reported work
(Shishkov et al., 2006b).

The desired context sensitivity implies the
necessity for adequate capturing of context and
reaction on context changes as stated already.
Although and application would react on context
changes at real time, those changes should be
foreseen at design time, so that proper desirable
application behaviors are prescribed.

This context-driven design preparation is
focused in the current paper. In particular, we further
the development of a business-software alignment
approach (Shishkov et al., 2006b), by extending it in
the mentioned direction. The paper not only
considers the notion of context but also focuses on
consistency, as an issue claimed to be important in
the business-application alignment (concerning
especially CA applications). Consistency is a desired
relationship between models that address separate
concerns, for instance business and application
concerns (Alonso, 2004). We illustrate our achieved
results, by means of a small example.

In tackling this, we adopt service-orientation
(Alonso, 2004; Newcomer, 2002) as a preferred
architectural style (this decision is motivated and
inspired by previously achieved results (Shishkov et
al., 2006b)), meaning that at any design step we only
consider the external behaviors of entities. In
addition, composing services at high level (thus
hiding the technological complexity concerned with
service realization) is a way to speed up the
development of business-aligned application models,
and also to flexibly utilize advanced technological
platforms for their implementation.

We acknowledge that the models of the
application’s (business) environment have to be
faithful to the domain for which they are used, and
also that they are inevitably driven by the subjective
perception of the engineer who expresses through
them either observed or desired business situations
(Shishkov & Quartel, 2006). To be useful, such
‘descriptions’ must exhaustively disclose both statics
(entities) and dynamics (behaviors), as mentioned
already, and also corresponding governing norms
(Liu, 2000). Reflecting these considerations in the
design process, we take additional constraints into
account; they concern the desired adequacy of the
application’s operation in its environment and the

user requirements, and also of course the technology
platforms to be used and the project-driven technical
restrictions. In the current work however, we largely
ignore these constraints because they do not
immediately concern the derivation of (CA)
application models from business models.

We expect that this work would be useful as an
additional result related to the alignment between
business modeling and software design.

The paper’s outline is as follows. Section 2
motivates further our proposed design views and
also introduces concepts/theories and methods that
we use. Section 3 introduces a case study that is
elaborated in the next sections to outline and
illustrate the different phases of our approach.
Section 4 and Section 5 present respectively the
business and application modeling milestones and
phases. Finally, Section 6 contains the conclusions.

2 MODELING APPROACH

A consideration of business/application models,
concerns fundamentally the notions of
business/software system and environment (Bunge,
1979). They both are composed of entities which
could fulfil different roles. In doing this, entities
perform behaviors (Shishkov & Quartel, 2006). A
system integrates (complex) processes which
comprise together its overall external behavior. It
manifests the system’s service provided to the
system’s environment.

As mentioned before, such a service provisioning
needs to appear sometimes in different ‘versions’,
driven by corresponding environmental states. Said
otherwise, for one state of the environment, the
system should deliver one type of external behavior
while for another state, another behavior is to be
delivered. Hence, context changes trigger changes in
the system behavior (Maamar et al., 2006) including
changes in the behaviors of the same entities or even
changes in the statics (removed and/or added
entities). Based on these basic considerations,
concerning CA applications’ design, we identify a
number of challenges. Among them are:

 The application should be able to sense context
changes;

 It should also be able to interpret those changes
as triggers to alternative services;

 The application should be able to handle the
switching between its alternative services;

 It should be able to deliver adequate and
exhaustive domain-driven services covering
all possible context states.

ICEIS 2007 - International Conference on Enterprise Information Systems

106

I

S

w Legend:
S: Sensing
I: Interpretation
W: Switch
B: Serv. Delivery

○ = state
→ = transition

D

Figure 2: Model of a CA application’s overall behavior.

As illustrated in Figure 2, the overall behavior of
a CA application can be seen as a behavior cycling
through the following states: S (sensing a context
change), I (interpretation on what external behavior
is required in the new context state), w (switching
from one alternative service to another one, driven
by a context state change), D (delivery of an
alternative service).

In the following, we largely ignore Sensing
(supported by sensors, for example) and
Interpretation (supported by reasoning techniques
and rules, for example), because they are addressed
in a related work (Van Sinderen et al., 2006).
Further, we pay little attention to Switching between
alternative services of the application; this is
positioned as future research.

Hence we focus here on the modeling of
different alternative desired service behaviors (as
needed by the user in corresponding context states)
and their consequent realization by an application.
We face thus the gap, mentioned in Section 1,
between domain-driven requirements on the external
application behavior, or its alternative services, on
one hand, and technology-rooted application
realization of this behavior, on the other hand. In
properly addressing this, we need to consider
different aspects of consistency:

 Correspondence between environmental
(context) states and the business model (that
concerns the desired external behaviors);

 Consistency between the application model and
the business model;

 Consistency between dynamic aspects
(behavior) and corresponding static (entity)
aspects of business/application models.

Figure 3 illustrates these consistency aspects
(designated by dotted lines).

Context state i

Business entity model i

Business behavior model i

Application entity model i

Appl. behavior model i

Figure 3: Consistency aspects in the appl. design process.

As shown in the figure, the models considered in
the application design process take a context state as
input (i.e., different states lead to alternative
models). Two aspect models are considered, namely
entity and behavior models. Models are refined in
the design process, starting with abstract business
level models and ending up with detailed application
models, through gradually increasing consideration
of computational and technology platform aspects.
Two fundamental modeling phases and milestones
are distinguished, namely the business modeling
phase, which leads to a business model, and the
application modeling phase, which leads to an
application model.

We model a behavior as a set of related events;
each event corresponds to a unit of behavior, which
is indivisible at the abstraction level at which it is
defined. We distinguish two types of events, viz.
action (performed by a single entity) and interaction
(performed by two or more entities, in cooperation).
An interaction is expressed as two or more
connected interaction contributions that represent the
participation of the involved entities.

As for our business/application models, we
envision them in consistency with the Model Driven
Architecture – MDA (Rational, 2006; Caceras et al.,
2004), by considering: (i) business modeling from a
computational independent perspective (no decisions
are made with respect to the (partial) automation of
business processes), and (ii) application modeling
from a technology platform independent perspective
(even though the applications are technology-rooted,
no decisions are made with respect to specific
technological platform(s) on which the application
components are implemented). The consideration of
such specific technological platforms is left beyond
the scope of this paper – these issues seem to be well
studied (Newcomer, 2002).

Further, the mentioned adoption of service
orientation, affects our modeling in a way that we
are mainly interested in external behaviors (services)
that are relevant to application’s environment (Wang
& Zhang, 2006). We hence could arrive at a service
model from two directions: either by identifying
(high-level) services from business models (which is
certainly straightforward) or by abstracting from
application models (discarding some technology-
driven information). We claim that a business-
requirements-driven service model would possess
the right restrictions whose fulfilment (in application
design) would guarantee that the application would
be adequate to the external (context-driven)
demands.

MODEL-DRIVEN DESIGN OF CONTEXT-AWARE APPLICATIONS

107

With respect to the modeling of real-life-level
business requirements, we consider a theoretically-
rooted approach, namely the Language-Action
Perspective – LAP (Shishkov et al., 2006a) that
possesses strengths in modeling real-life
interactions. LAP distinguishes between two types
of activities (production acts and coordination acts)
and two types of roles that an entity could fulfil
(initiator and executor). The initiator initiates an
interaction and the executor delivers the required
production fact. This is accompanied however by
coordination acts which could be request, promise,
state, accept, and decline, and which together with
the production act form a generic interaction (GI)
pattern of a real-life interaction (Bunge, 1979;
Shishkov et al., 2006b). Complex interactions can in
most cases be decomposed into such patterns.

According to the pattern, the initiator initiates an
interaction, by making a request which could be
either taken or declined by the executor. If taken, it
should be fulfilled by him, by his delivering the
desired production fact, through performing a
corresponding production act. If the executor has
declined the request, he and the initiator enter a
negotiation whose negative result leads to
interaction’s failure. If they find a compromise
however, the executor must take commitment of
delivering the ‘updated’ desired result. The
production act is responsibility of the executor.
However, it does not mark the interaction’s
completion; a result delivery is subject to
announcement (explicit or implicit) by the executor.
The result is to be ‘evaluated’ by the initiator who
may accept it (interaction completed) or not
(interaction not completed and negotiation starts). If
unsuccessful, the negotiation leads to interaction’s
failure. If a compromise is found then the interaction
is to reach completion.

3 THE HEALTH-CARE
SCENARIO

We will describe and illustrate (in Sections 4 and 5)
the different modeling phases, supported by a
health-care scenario (outlined below), inspired by a
broader case (Van Sinderen et al., 2006).

In the scenario, we consider patients who are
suffering from conditions that are characterized by
occasional occurrences of undesired effects. For this
reason, these patients need help from caregivers
each time when symptoms occur.

We distinguish two situations: Situation 1 – the
traditional institutional-care situation, and Situation

2 – the situation in which patients are no longer
bound to an institution like a hospital, but receive
mobile care through monitoring and treatment
realized from distance, using advanced technology.

SITUATION 1. In approaching the traditional
institutional-care situation, we identify the role of
Caregiver (fulfilled by medical doctors or medical
nurses) who provides help to patients. In this help
provisioning, the caregiver receives support from
medical workers who fulfil the following roles:
Triager (the allocator of treatment to patients),
Trend Synthesizer (the first checker of the patient’s
condition), Processor (the examiner of the patient’s
symptoms), Analyst (the patient history analyst), and
Advisor (the rules-supported generator of advice to
the Caregiver). Furthermore, we distinguish between
two possible states that are relevant to this care
provisioning, namely: State 1 – ‘not too busy’, some
doctors are immediately available to provide help,
and State 2 – ‘very busy’, all doctors are occupied or
have scheduled appointments (within half an hour,
for example). In State 1, a doctor helps a patient if
the patient had been directed by the Triager. In order
to give a proper direction to the patient, the Triager
must have received input from the Trend Synthesizer
who in turn must have checked (beforehand) the
patient’s condition, for which the Trend Synthesizer
needs two inputs, one coming from the Processor
and another one – coming from the Analyst. The
Processor provides information resulting from a
conducted examination of the patient’s symptoms
(for example, a consideration of vital signs, such as
blood sugar and blood pressure). The Analyst
delivers some conclusions resulting from the
medical history of the patient. In State 2, it is
desired, if possible, to minimize the work directed to
doctors and to replace them (in some cases) by
nurses. Then nurses take action in helping a patient
only if the patient had been directed by the Triager
and the Advisor had provided sufficient instructions
that allow the nurse to give adequate care to the
patient. Hence, the Advisor needs input from the
Triager who in turn needs input similar to State 1.

SITUATION 2. In approaching the technology-
facilitation-driven situation, we identify the same
roles and interactions as described in Situation 1,
and they are involved in the same scenario. The
difference however is that those who fulfil the roles
of Triager, Trend Synthesizer, Processor, Analyst,
and Advisor, are not human beings but components
belonging to a distributed software application; it
runs on a number of devices, supporting the doctors
and nurses in their help provisioning.

ICEIS 2007 - International Conference on Enterprise Information Systems

108

Section 4 will result in a CA model of Situation
1. Section 5 outlines, on this basis, the specification
of an application that could run on (advanced)
devices, adequately fulfilling the corresponding
requirements.

4 BUSINESS MODELING

In achieving the first modeling milestone we come
through the following 3 sub-phases:

The Context analysis sub-phase, approaching the
possible context states and corresponding desired
behaviors, includes: (i) study of the possible context
states and their occurrence probabilities; (ii)
discovery of useful context parameters whose values
indicate the occurrence of particular states.

The Structural (static) modeling sub-phase
includes the identification of: (i) business systems
relevant to each desirable behavior; (ii) relevant
entities belonging to the system/environment - for
each of the system ‘versions’; (iii) relations between
entities, representing interaction abilities that
concern only two-entity interactions (see Section 2) -
for each of the system ‘versions’; (iv) the entities’
Initiator/Executor roles in the relations - for each of
the system ‘versions’; (v) proper rules that define the
‘switch’ between different desired behaviors. All
this builds up a Business entity model.

The Behavior modeling and Service
identification sub-phase concerns the modeling of
entities’ integrated interaction behavior, abstracting
from interaction contributions. Being concerned
with different levels of abstraction and elaboration,
the modeling evolves as follows: (i) the system’s
external behavior is firstly modeled, considering the
system as a ‘black box’; (ii) the system’s internal
behavior is disclosed on this basis (relevant
interactions are modeled as well as the way the
interactions relate to each other); (iii) units of
composite behaviors are identified by grouping
interactions (putting together the coordination acts,
following the GI pattern), arriving therefore at a
service model. For more elaborations on these steps
and on the related conformance justification, readers
are referred to (Shishkov et al., 2006b).

4.1 Context Analysis Sub-phase

Deciding about states, the engineer is sometimes
inevitably driven by subjective judgements that are
hardly supportable by rules: How a situation is
perceived? What behaviors can be expected?
Further, the engineer must often make pragmatic

decisions – ignoring, for example, states that usually
do not occur (although they may occur). Besides
such subjective decisions, there are some steps
which in general help (in our view) to adequately
approach the context analysis challenge. These steps
concern the consideration of random variables.
Exploring their probabilities, allows us to apply
statistical analysis, including hypotheses testing and
parameters estimation (Levin & Rubin, 1997).

Considering just possible outcomes is sometimes
not enough in approaching a phenomenon; we might
need to refer to an outcome in general. This is
possible if we have a random variable and we study
the occurrence probability of the outcomes.

As concerns the Health-Care Scenario, we have
there exactly two possible states, namely: ‘not too
busy’ and ‘very busy’. We consider the random
variable Y with respect to these outcomes. Y would
be a discrete random variable (Levin & Rubin,
1997) since it may take on only a countable number
of distinct values (in our case 2). Provided the
number of possible distinct values is exactly 2, we
have the case of a priori probabilities of each of the
alternative outcomes (one of these probabilities can
be calculated by deducting the other one from 1).

A conducted experiment shows that on average,
the ‘busy’ hours are 3 per a 24-hour period – 1
during daytime and 2, during night-time. We
therefore conclude that the a priori probability of the
first of the mentioned possible values is around 0.9.
The a priori probability of the second alternative
outcome is thus 0.1 (1-0.9).

Our context states represent the ‘not too busy’
and ‘very busy’ alternatives, with a priori
probabilities 0.9 and 0.1, respectively (Figure 4).

Knowing the occurrence probability of each
outcome helps in deciding of the ‘default’ desired
external behavior and also what could be ignored.

In order to prescribe how to recognize each of
these 2 states, we assume that the state at a particular
moment is recognizable through observing the
values of appropriate parameters. If we have n
parameters appropriate to our scenario and if each of
them has certain possible values, then each values
combination would point to a particular state.

Alternative ‘not too busy’ ‘very busy’

A priori probability 0.9 0.1

Context

Figure 4: Two context-state alternatives.

MODEL-DRIVEN DESIGN OF CONTEXT-AWARE APPLICATIONS

109

For brevity, we exemplify with just two
parameters, namely p1 and p2:

 p1 is about the ratio between the number of
patients and the number of doctors at a
moment, and is with just 3 possible values: v11
(the number is less than 1), v12 (it is exactly
1), and v13 (it is more than 1);

 p2 concerns the particular moment – normal or
not (‘not’ would be during night-time, for
example), and has just 2 possible values,
respectively for ‘normal’ and ‘not’ (not
normal), namely v21 and v22.

Hence, there are 6 possible value (p1,p2)

combinations, namely v11.v21, v11.v22, v12.v21,
v12.v22, v13.v21 and v13.v22. Driven by some
additional domain analysis, omitted here for brevity,
we determine the last combination only as validly
corresponding to the 0.1-probability alternative (the
‘Second’ alternative), and thus all the rest,
corresponding to the 0.9-probability alternative (the
‘First’ alternative), as depicted in Figure 5.

 First alternative v11.v21, v11.v22, v12.v21, v12.v22, v13.v21

 Second alternative v13.v22

Parameters’ values’ combinations

Figure 5: Context state’s recognition.

Knowing the values of the 2 parameters (the
values could be captured using sensors for example),
one could actually ‘sense’ the context state at a
particular moment.

4.2 Structural Modeling Sub-phase

We omit the steps leading to the derivation of
Business entity models concerning each of the two
desired behaviors, namely the ones corresponding to
the ‘First alternative’ and ‘Second alternative’ states,
including steps concerning decisions on what are the
relevant entities and how they are related to each
other. We omit these steps not only because the
SDBC approach is exhaustive regarding them,
possessing capabilities to transform unstructured
case information into a Business model (Shishkov et
al., 2006a), but also because a consideration of such
early business analysis problems would shift the
focus from the business-software alignment issue.

Hence, we directly ‘arrive’ at the Business entity
model for the Health-Care (HC) case (Figure 6); the
model is expressed using a diagramming technique,

inspired by DEMO (Shishkov & Quartel, 2006). The
identified entities are presented in named boxes –
these are Caregiver (C; D/N – fulfilled by a
doctor/nurse), Triager (T), Trend Synthesizer (TS),
Processor (P), Analyst (A), and Advisor (Adv),
while the small grey boxes, on one end of each
connection, indicate the executor role of the
connected entities. The lines that connect entities,
indicate the need for interactions between those
entities, in order to achieve the objective of
delivering a health-care service; with each such
‘connection’ we associate a single interaction, as
follows: C(CaregiverD)-T (i1), T-TS (i2), TS-P
(i3), and TS-A (i4). As for the delimitation, C is
positioned in the environment of the health-care
(HC) system, and T, TS, P, and A together form the
system. Through i1, the HC system is related to its
environment (represented by C). Thus, from the
perspective of C, there is no difference between the
system and T. All this concerns the First alternative,
as depicted in the left part of the figure, labelled ‘a)’.

a)

i4

i1

 HC system

i2

C

T

TS

A

i3

P

i4

A

i3

P

i2

TS

 HC system

 i1b

i1a

T

Adv

C

b)

Legend

C = Caregiver D/N
T = Triager
TS = Trend
 Synthesizer
A = Analyst
P = Processor
Adv = Advisor

Figure 6: Business entity model for the HC case.

In the Second alternative model - ‘b)’ an Advisor
(Adv) is envisioned ‘between’ C (CaregiverN) and
T (interaction i1 is replaced by two interactions,
namely i1a and i1b).

For brevity, we will consider further only the
First-alternative model since it would allow us to
discuss the business-software alignment almost
sufficiently. As for modeling a transition from one
state to another, this can be done using Semiotic
norms (Liu, 2000).

4.3 Behavioral Modeling and Service
Identification Sub-phase

We decide firstly on the external behavior of the HC
system, at a high level of abstraction, and then we
move to the abstraction level which concerns the
internal behavior of HC.

ICEIS 2007 - International Conference on Enterprise Information Systems

110

With respect to the external behavior model, it
should envision the interaction between the
Caregiver (C) and the system (HC), and is
represented by a single action (expressed by an oval)
in Figure 7-a).

Regarding the internal behavior model, it should
reflect the interactions between the entities of the
system, as exhibited in Figure 7-b). This model
shows how the interaction i1 (between the
CaregiverD C and the Triager T) is made dependent
on other interactions (i2, i3 and i4). The black box
indicates that the results of both i3 and i4 are
necessary for the triggering of i2. Such models can
be extended further (e.g., with attributes) and
interested readers could find more on this issue in
(Shishkov et al., 2006b).

i1i2

i

a) b)

i4

i3

Figure 7: a) HC external behavior represented by a single
action; b) Interactions in decomposed HC system,
implementing the HC external behavior.

We need to further elaborate this model, in order
to achieve a service specification that allows for a
better ‘link’ to relevant real-life aspects. As
mentioned already, we will apply the LAP-driven GI
pattern in enriching our behavior model. We thus
consider the coordination acts request (r), promise
(p), state (s), and accept (a). We also follow the
interaction-interaction triggering ‘mechanism’: if the
initiator of one interaction requests something and if
the executor promises to do the requested production
act, and if this requires another interaction’s output
then in parallel with promising to realize the
production act, the executor requests a result
delivery, which actually is the triggering of another
interaction. For more information on this, readers are
referred to (Shishkov & Quartel, 2006).

We replace each interaction by its corresponding
coordination acts – r, p, s, a, following the above
mentioned ‘mechanism’. We group together
coordination acts based on their relation to
production acts (Figure 8).

We need however to model also the possible
decline acts (see Section 2); we could model them
(decline-after-request and decline-after-state) by a
special value of an information attribute (e.g., Result
r ׀ r = ‘decline’) of the promise and accept acts,

respectively. Information attributes of the act and
constraints on the values of these attributes are not
represented in the figure.

r4 p4

r3 p3 s3 a3

Service T

r1 p1 s1 a1

r2 p2 s2 a2

Service TS

Service A
s4 a4

Service P

Figure 8: Refined interactions in decomposed HC system,
implementing the HC-service behavior.

The model, presented in this way, defines
services rooted in the GI pattern, consistently with
our initial modeling output (Figure 6-a)).

5 APPLICATION MODELING

In achieving the second modeling milestone we
come through the following 4 sub-phases.

The Delimitation-requirements sub-phase
concerns the following decisions: (i) which part of
the business model is addressed by the overall
application service; (ii) what are the user
requirements and how are we reflecting them in the
application model. Decision (ii) is beyond the direct
scope of this paper.

The SOA decisions sub-phase addresses the
SOA-related decisions on the desired realization of
the (distributed) application service. In particular,
these are decisions concerned with the way in which
re-usable services are addressed and coordinated by
application-specific component(s), in support of
achieving the desired functionality of the
application.

The Application design sub-phase is concerned
with according refinement and extension of the
models from the business modeling phase.

The Consistency analysis sub-phase (not
addressed in the current paper; addressed in
(Shishkov et al., 2006b)) envisions the consistency
between the original business models and the
(derived) application models; such an analysis
supports therefore the validation of the built
application models.

MODEL-DRIVEN DESIGN OF CONTEXT-AWARE APPLICATIONS

111

5.1 Delimitation-Requirements
Sub-phase

The scenario statement is not exhaustive in
connection to the (users’) intended automation level
or criteria helping to make related choices (e.g., on
non-functional aspects, such as cost/performance
and ease-of-use). Getting the ‘message’ of the
statement, we could assume nevertheless that the
whole business (HC) system should be automated.
Thus, the HC business service is also the initial
specification of the overall application service.

5.2 SOA Decisions Sub-phase

The easiest-to-do decision is one-to-one mapping
between business processes and application
components. Such a mapping would be
disadvantageous however, because the identified
services are tightly coupled. This means that there is
a dependency of the service provided by one entity
on services provided by other entities (Figure 8). We
claim that a solution would be to introduce ‘in
between’ an additional application component that
has the task of coordination. We label such a
component as ‘Orchestrator‘.

The Orchestrator is an application-specific
component (as the coordination is application-
specific). The (subordinate) services, however,
which are coordinated by the Orchestrator, may be
useful for many different types of applications. Their
description may therefore be published through a
public or corporate registry, such that they can be
discovered, and selected for invocation by an
orchestration component. Related to its coordination
tasks, the Orchestrator could sometimes supply to
one service the result of another service, if this is
necessary for the service to perform its task.

a) b)

TS

T

A

P

O

C

C i1a i1b

i2a i2b

i3a

i4a

i3b

i4b

O

TS

A

P

T

Figure 9: a) Illustration of the role of the Orchestrator; b)
The Application entity model.

Figure 9-a illustrates the Orchestrator’s (O) role.
It concerns the interactivities between the original

entities as well as coordination. The Orchestrator
mediates not only the interaction between the
‘customer’ (C) and the system but also all
interactions between entities inside the system.

5.3 Application Design Sub-phase

In the application design, we firstly refine the
Business entity model (Figure 6-a)), by reflecting
there the Orchestrator entity (colored grey in Figure
9-b)) that mediates interactions between entities.

Then, analogously to what we did in Section 4,
we can derive an application behavior model and a
service-oriented model. We omit this for brevity.

6 CONCLUSIONS

This paper proposes improvements with respect to
the business-application alignment in the design of
context-aware applications. A model-driven service-
oriented approach has been introduced, which is
essentially concerned with consistency as the target
quality to ensure business-application alignment. We
have shown how different business and application
models that progressively capture more details, can
be consistently derived from an initial business
model. Moreover, the approach allows useful design
preparations in cases of desired adaptability of the
application to possible context changes. In support
of the proposed approach, is an explicit design
decision - to specify applications according to the
Service-Oriented Architecture (SOA). Such a SOA
application model applies an orchestration
component responsible for coordinating the use of
subordinate services, such that the required external
behavior is provided to the application’s
environment. The orchestration component in this
model is typically application-specific, whereas the
subordinate services are not: they could be
discovered from a registry. The SOA application
model is still at a high level of abstraction and does
not depend on any specific technology platform; in
particular, the model uses integrated interactions. A
further step in the design would be the distribution
of such interactions, i.e. consider the exchange of
information necessary for an interaction in a
distributed environment, using a communication
pattern that is supported by a commercially available
middleware or data transport platform. The
consideration of mappings onto particular
technology platforms (such as Web services,
CORBA or J2EE) is beyond the scope of this work.

ICEIS 2007 - International Conference on Enterprise Information Systems

112

We claim that this paper makes useful
contributions concerning (i) the possibility to
analyze application’s context in support of the
(application’s) design; (ii) the proposed use of the
Language-Action Perspective (LAP) in business
modeling, motivated by relevant strengths, namely
possibilities for capturing real-life aspects; (iii) the
SOA focus that facilitates an adequate business-
application alignment. To justify our claim, we have
studied related work. On the basis of the study, we
have identified several approaches/methods which
usefully address the business-software alignment
challenge, notably SDBC, Catalysis, Tropos
(Shishkov et al., 2006b).

SDBC supports the identification of re-usable
business models that are soundly mappable to UML-
driven software specification models. Catalysis
provides a coherent set of techniques for business
analysis and system development, and also well-
defined consistency rules across models. Tropos
facilitates application specification, supporting it
with sound goal-driven requirements analysis.

A distinctive feature of our proposed approach
(compared to the mentioned ones) is the
combination of: (i) LAP-based business-capturing;
(ii) behavior model consistency; (iii) SOA focus; (iv)
CA-related strengths (presented). This allows for an
adequate consideration of relevant real-life aspects in
consistency with which we specify service models,
guaranteeing in this way that the developed services
would adequately function in their environment.
These features distinguish the proposed approach
also from currently popular SOA methods, such as
Crystal, XP and DSDM (Wang & Zhang, 2006).

To further this research, we plan to work on
procedures for automated derivation of the
orchestration component. We are also interested in
specifying techniques that allow for automated
assessment of the consistency between business and
application models.

ACKNOWLEDGEMENTS

This work is part of the Freeband AWARENESS
and A-MUSE projects (http://awareness.freeband.nl;
http://a-muse.freeband.nl). Freeband is sponsored by
the Dutch government under contract BSIK 03025.

REFERENCES

Alonso, G., F. Casati, H. Kuno, V. Machiraju, 2004. Web
services, concepts, architectures and applications,
Springer-Verlag. Berlin Heidelberg.

Bunge, M.A., 1979. A world of systems, Treatise on basic
philosophy, Vol. 4, Reidel Publ. Company. Dordrecht.

Caceres, P., Marcos, E., De Castro, V., 2004. Integrating
agile and model-driven practices in a methodological
framework for the Web information systems
development. In ICEIS’04, 6th International
Conference on Enterprise Information Systems.
INSTICC Press.

Levin, R.I and D.S. Rubin, 1997. Statistics for
management, Prentice Hall. USA.

Liu, K., 2000. Semiotics in information systems
engineering, Cambridge University Press. Cambridge.

Maamar, Z., Baina, K., Benslimane, D., Narendra, N.C.,
Chelbabi, M., 2006. Towards a contextual model-
driven development approach for Web services. In
ICEIS’06, 8th International Conference on Enterprise
Information Systems. INSTICC Press.

Newcomer, E., 2002. Understanding Web services, XML,
WSDL, SOAP and UDDI, Addison-Wesley. Boston.

Rational / OMG MDA, 2006. SModel-Driven
Architecture, Object Management Group,
http://www.omg.org/mda.

Shishkov, B., Quartel, D., 2006. Refinement of SDBC
business process models using ISDL. In ICEIS’06, 8th
International Conference on Enterprise Information
Systems. INSTICC Press.

Shishkov, B., Dietz, J.L.G., Liu, K., 2006. Bridging the
Language-Action Perspective and Organizational
Semiotics in SDBC. In ICEIS’06, 8th International
Conference on Enterprise Information Systems.
INSTICC Press.

Shishkov, B., Van Sinderen, M.J., Quartel, D., 2006.
SOA-driven business-software alignment. In
ICEBE’06, IEEE International Conference on e-
Business Engineering. IEEE Press.

Van Sinderen, M., Van Halteren, A., Wegdam, M.,
Meeuwissen, E., Eertink, H., 2006. Supporting
context-aware mobile applications: an infrastructure
approach. IEEE Communications Magazine.

Wang, H., Zhang, H., 2006. Enabling enterprise resources
reusability and interoperability through Web services.
In ICEBE’06, IEEE International Conference on e-
Business Engineering. IEEE Press.

MODEL-DRIVEN DESIGN OF CONTEXT-AWARE APPLICATIONS

113

