
AUTOMATIC ORCHESTRATION OF WEB SERVICES
THROUGH SEMANTIC ANNOTATIONS

Philippe Larvet
Alcatel CIT, Research and Innovation, Route de Nozay, 91461 Marcoussis, France

Keywords: Web service, business process, orchestration, service composition, semantic web service, semantic
annotation.

Abstract: A new service can be developed as an orchestrated composition of existing web services. This paper describes
an original process to automate the composition of semantic web services, by processing their "semantic tags".
These tags can be extracted from the WSDL descriptions of the services and inserted into a light semantic
description attached to the operations of the considered web services. A specific mechanism can examine these
tags and determine automatically the possible "connectivity" of two given web services: the output of WS1, for
example, semantically fits with the input of WS2. Then, the two web services are semantically connectable. This
process can be used within the context of a service creation environment, in which the developer often wishes to
assemble different services corresponding to an initial request. By using the semantic tags, a specific
composition mechanism is able to connect automatically the chosen services and to assemble them to produce
the final service that fits with the original request.

1 PROBLEMATIC OF WEB
SERVICES DEVELOPMENT

Web services, as they are often stateless and
contextless pieces of software, accessible from any
point of Internet, are more and more suitable and
convenient to build light and reusable applications.
Globally, from the point of view of their internal
complexity, web services (WS) can be divided in two
families : elementary WS and composite WS.
The elementary ones provide a basic service,
comparable to mathematical libraries, and contain a
low level of data transformation, embedded in few
algorithms; for example, translation services are
elementary WS.
On the contrary, the composite WS are able to provide
a high level service and contain several levels of data
accesses and transformations, given by the cooperation
of several elementary services. For example,
reservation services or secured-payment services are
samples of composite WS.
If elementary Web Services can be built and relatively
easily deployed with standard environments like Java
with Apache/Axis or C# with .NET platforms, it could
be interesting to have at one's disposal a powerful

mechanism to compose WS as aggregations of existing
services.
The main problem addressed by this desired
mechanism is to express the aggregation of the legacy
services, their interaction and the way they have to run
in order to reach their objective and to provide the
final service.
Several composition techniques exist today, and even
if the industry is not yet agree on a common language,
there are two languages that are considered as
complementary:

• WSBPEL (Web Services Business Process
Execution Language) or BPEL (BPEL,
2005), (Kavantzas, 2003): it describes the
interactions between web services, including
business logic and order of the interactions

• WS-CDL (Web Services Choreography
Description Language) (Kavantzas, 2004): it
describes the messages exchanged between
web services, including order and constraints
on these exchanges.

Like BPEL, we focuse in this paper on the description
of the orchestration (Peltz, 2003). But BPEL is not the
only way to describe a business logic: Java or C# can
also be used.

269
Larvet P. (2007).
AUTOMATIC ORCHESTRATION OF WEB SERVICES THROUGH SEMANTIC ANNOTATIONS.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - SAIC, pages 269-274
DOI: 10.5220/0002357402690274
Copyright c© SciTePress

With SAMPAN, a multi-actor and agnostic Simple &
Agile Method and Platform for service AggregatioN
and deployment (Larvet, Bonnin, Ferres, Fontaine,
2005), we have proposed in 2005 an original way to
solve this problem: an orchestration is derived from a
constrained natural language description of the
requested service.
All these solutions are based upon a formal (in BPEL
or CDL) or pseudo-formal (in SAMPAN) description
of the requested composite service. But, if we add a
suitable description to the services to be composed,
would they not become able to make themselves their
composition? This is the challenge we propose to
solve in this paper.

2 SEMANTIC WEB SERVICES
COMPOSITION

A service contains several operations, and when we
say service composition, in fact we mean composition
of the operations that belong to their respective
services.
The main idea to allow an automatic composition is to
complete the description of the operations of the
potentially composable services by adding to them
some metadata that give useful and semantic
information concerning the operations.
If these semantic informations are suitably chosen and
set, the connectivity of the services becomes possible.
For example, if the output of WS1.operation_A()
semantically fits with the input of
WS2.operation_B(), then WS1 can be
composed with WS2, through the link "output of A" to
"input of B", and we are authorized to write something
like:

out_A=WS1.operation_A(A_parameters);
out_B = WS2.operation_B(out_A);
or, more directly:
out_B=WS2.operation_B(WS1.operation_A(
A_parameters));

Figure 1: Connectivity of two services through a semantic
equivalence between inputs and outputs.

In this schematic example (see Fig.1) we consider
WS1 is connectable to WS2 through the operations
WS1.operation_A() and WS2.opration_B()
because the output of WS1.operation_A() is
semantically equivalent to the input of
WS1.operation_B(). Then, we can imagine an
orchestration of WS1 and WS2 in which
WS2.operation_B() is called just after
WS1.operation_A() and consumes as an input
the data provided by WS1.operation_A() as an
output.
This connection is possible because of the semantic
equivalence between the output of a given operation of
the first service and another operation of the second
one. What does that mean? It means that the two data
have the same semantic "dimension", i.e. they
semantically fit together - they are process-compatible.
In other terms, they have not only the same data type,
but the same "nature" of data.
For example, let us suppose WS1.operation_A()
provides a text, and WS2.operation_B() is the
Translate operation of a service Translator: it makes
sense to translate a text, then the output of
WS1.operation_A() has to fit with the input of
Translator.Translate. But suppose now that
WS1.operation_A() provides the stock value for
a given company. This value and the text taken as
input by Translator.Translate can have the same data
type (String), they are not semantically equivalent,
because it doesn't make sense to try to translate a stock
value. Then, the semantic information attached to
these two data must be different, and consequently the
two operations are not connectable.
To make possible the semantic connectivity between
two web services, we propose to attach to each
parameter of each operation a semantic information
that we call a semantic tag. This tag can be seen as a
"tagged value", as defined in UML (Rumbaugh,
Booch, Jacobson, 2004) and is intended to extend the
semantics of the tagged parameter.
The semantic tags are set in a formal XML description
of the web service, derived from its WSDL, and that
we consider as a light "semantic WSDL", but without
the complexity of SAWSDL (W3C, 2006).
For example, the Fig. 2 below shows the "Semantic
Light WS Description" (SLWD) for the service
Translator, in which the semantic tags have been
mentioned.

WS1
operation

WS2
operation

out_A

output
parameter

input
parametersemantic equivalence

ICEIS 2007 - International Conference on Enterprise Information Systems

270

<service name="Translation">
<URL>http://xxx.xx.xx.xx/services/Tra
nslationService.asmx</URL>

 <operation name="Translate">
 <input name="src_lang"
typ="string" semtag="language" />
 <input name="dest_lang"
typ="string" semtag="language" />
 <input name="text_to_ translate"
typ="string" semtag="text" />
 <output name="translated_ text"
typ="string" semtag="text" />
 </operation>
</service>

Figure 2: Semantic Light WS Description (SLWD) of
Translator service, with semantic tags.

Nota: within the context of our Alcatel projects, we
use some other semantic constructs in SLWD, for
example <goal> in order to describe semantically the
goal of an operation. But intentionally we don't show
here these details, because they are not used to help the
automatic services composition.

3 SETTING SEMANTIC TAGS IN
WEB SERVICES
DESCRIPTIONS

The web service description written in SLWD, as
shown in Fig.2 above, can be generated from the
WSDL. But how to set automatically the semantic
tags? In the scope of our projects, we use a specific
Semantic Module to do it.
This Semantic Module analyzes the names and types
of the operations' parameters, as described in WSDL,
and searches semantic correspondances in a specific
ontology.
This ontology contains the links between the
semantics of the current names and types of input and
output data, as they are usually used by programmers,
and the corresponding semantic tags.
For example, a data named "text" or "content" or
"translated_page" or "description", with the type
"string", will have the semantic tag "text" – because
the data has the "dimension" of a text. A data named
"date" or "current_date", with a type "Date" or
"String" will have the semantic tag "date", etc.
This ontology can be expressed as a simple
correspondence table, as shown in Fig. 3 below.

Data name Type Semantic Tag
text, content, page,
description, … String text

date, current_date,
…

String |
Date date

phone_number,
mobile_phone, … String telephone_number

lang, language,
dest_lang, srce_
lang, …

String language

postal_code,
zip_code,
city_code, …

String zip_code

…

Figure 3: Ontology for automatic setting of semantic tags in
WS light descriptions.

Such an ontology is easy to build and to improve little
by little, by analyzing the contents of published
WSDL that show the practice of programmers and
then, by summarizing their "good usages".

4 AUTOMATIC SEMANTIC WEB
SERVICES COMPOSITION

Let us take an example to describe the process that
takes into account the semantic tags in order to build
an automatic orchestration of web services.
We want to compose a new service, from a user's
request: "I want a french version of the latest news
from Reuters". This request could be expressed into a
formal language or directly in natural language – this
is outside the scope of the present paper.
The analysis of the request determines the needs of
services able to cover the query and a specific
Discovery mechanism has to search – and to find – the
available services.
Within the context of our example, let us suppose that
two main services have been discovered: a RSS
service and a Translation service. The RSS service
aims to gather informations from RSS feeds accessible
on Internet, and contains two operations:
GetRSSTitles allows to get the main titles of the feed
for a given URL, and GetDescriptionOfTitle allows to
get the text of the news that details this title. The Fig. 4
below shows the SLWD for this service.

AUTOMATIC ORCHESTRATION OF WEB SERVICES THROUGH SEMANTIC ANNOTATIONS

271

<service name="RSS_Service">
<url>http://xxx.xx.xx.xx/services/RS
S_Service/RSS_Service.asmx</url>
 <operation name="GetRSSTitles">
 <input name="adr_site"
typ="string" semtag="URL" />
 <output name="list_of_titles"
typ="string[]" semtag="title" />
 </operation>
 <operation
name="GetDescriptionOfTitle">
 <input name="site_address"
typ="string" semtag="URL" />
 <input name="title" typ="string"
semtag="title" />
 <output name="description"
typ="string" semtag="text" />
 </operation>
</service>

Figure 4: Semantic Light Description for the RSS Service.

The Translation service is a classical one, that
transforms a text (given as an input parameter) written
in a given source language (input) into a translated text
(output) written in a destination language (input). The
SLWD of this service is shown in Fig.5 below:
<service name="Translation">

<url>http://172.25.75.xx/services/Trans
lationService/Translation.asmx</url>
 <operation name="Translate">
 <input name="src_lang"
type="string" semtag="language" />
 <input name="dest_lang"
type="string" semtag="language" />
 <input name="text_to_translate"
type="string" semtag="text" />
 <output name="translated_text"
type="string" semtag="text" />
 </operation>

</service>

Figure 5: Semantic Light Description for the Translation
Service.

Now, the problem is to compose automatically these
two services – these three operations (see Fig.6) – in
order to cover the original request: provide a french
version of the latest CNN news.

Figure 6: How to compose automatically these 3 operations?

For an automatic orchestration, the first key is to see
the semantic tags as inputs and outputs of the
operations. Then, some possible connectivities appear
(see Fig.7), but not precise enough to make a full-
consistent composition.

Figure 7: Some possible connections (in blue) appear thanks
to the semantic tags.

The second key – the real bootstrap of the process – is
to consider the main output of the targeted composed
service, to search which operation(s) can provide its
inputs, and to iterate the same process for this(ese)
operation(s): search which other operation(s) can
provide its(their) inputs. Then, progressively we go
back from the main output to the input data necessary
to produce it, and doing this, we assemble
automatically the different operations by linking their

title

RSS.GetRSSTitles adr_site list of titles

RSS.GetDescriptionOfTitle
site_address

description

text to translate

Translation.Translate
src lang

dest_lang
translated_text

title

RSS.GetRSSTitles title

RSS.GetDescriptionOfTitle

URL

text

text
Translation.Translate

text

language

language

URL

ICEIS 2007 - International Conference on Enterprise Information Systems

272

outputs and inputs. In the same time, we can write
these links in a FILO stack (first in, last out) under the
form of a pseudo-code expressing the calls of
operations. At the end of this process, the content of
the stack represents the orchestration of the new
targeted service.
The main output of the targeted service is given by the
expression of the original request. For our example,
one wants a translated version: the main output is a
translated text, i.e. the output of the operation
Translation.Translate. We can write in the
stack this main output, expressed as the "return" of the
function represented by the targeted orchestration:

translated_text =
Translation.Translate(src_lang,
dest_lang, text_to_ translate);

return translated_text;

Then, we go back now to the inputs of this operation,
whose the semantic tags are "language", "language"
and "text". A data with a semantic tag "text" is
provided by RSS.GetDescriptionOfTitle,
then we can connect this operation to
Translation.Translate: it means that we can
add in the stack the call of operation
RSS.GetDescriptionOfTitle, making the link
with Translation.Translate through the name
of the exchanged parameter:

text_to_translate =
RSS.GetDescriptionOfTitle(site_addr
ess, title);

translated_text =
Translation.Translate(src_lang,
dest_lang, text_to_ translate);

return translated_text;

Now, we go back to the inputs of
RSS.GetDescriptionOfTitle, whose the
semantic tags are "URL" and "title". A data with a
semantic tag "title" is provided by the operation
RSS.GetRSSTitles, and then we can connect also
these two operations, by pushing a new operation call
in the stack:

title = RSS.GetRSSTitles(adr_site);

text_to_translate =
RSS.GetDescriptionOfTitle(site_addres
s, title);
translated_text =
Translation.Translate(src_lang,
dest_lang, text_to_ translate);

return translated_text;

All the "discovered" services being used and
connected together, the stack contains now the general

texture of the orchestration. However, this texture
must be refined before to be executed:

- the data types must be taken into account; for
example, RSS.GetRSSTitles returns an
array of String and not a single String;

- some parameters can be solved with some useful
informations contained in the original request;
for example, one wants a french translation, then
the parameter "dest_lang" of the operation
Translation.Translate can be set to
"french";

- some other services can be used to solve other
parameters; for example, the parameter
"src_lang" can be set by using a utility service, a
"Language Finder", to determine automatically
the source language of a given text.

A specific module, whose the detailed description is
outside the scope of this paper, makes these
refinements in order to complete the pseudo-code:

String[] Orchestration(String
site_address) {

String[] result;
titles =
RSS.GetRSSTitles(site_address);
foreach title in titles {
text_to_translate =
RSS.GetDescriptionOfTitle(site_addr
ess, title);
source_lang =
LanguageFinder.GetLanguage(text_to_
translate);
translated_text =
Translation.Translate(source_lang,
"french", text_to_translate);
add to result title +
translated_text;
}
return result;

}

This pseudo-code can be finally transformed into an
executable BPEL file, for example, and transferred to
a BPEL engine, or it can be translated into C# or Java
and deployed as a new web service in Microsoft IIS or
Apache/Axis environments.

5 PERSPECTIVES AND WORK IN
PROGRESS

Today, the building of the correspondence table used
to add the semantic tags to the light web services
semantic descriptions (see Fig.3) is still partially

AUTOMATIC ORCHESTRATION OF WEB SERVICES THROUGH SEMANTIC ANNOTATIONS

273

manual. This table comes from the analysis of the
WSDL content of our published web services.
We are currently working on a semantic module able
to expand the names of the operation parameters found
in WSDL and to search these expansions in external
ontologies, in order to discover their semantics. For
example, "lang" could be expanded into "language",
"src" could become "source", etc. and this clarification
allows a better search of the meaning of the term in
appropriate ontologies.
Another effort is made on the composition process
itself. In some cases where more than three operations
have to be composed together, some unexpected loops
or dead ends can occur; in other cases, a mediation
between data is necessary, for example to connect an
operation using a date expressed by three parameters
"day", "month", "year" with another operation where
"date" is only one parameter "dd/mm/yyyy". These
kinds of cases demand a more effective composition
module, on which we are currently working today.

6 CONCLUSION

We have tried to show in this paper a new strategy to
compose automatically web services by using simple
semantic annotations.
This strategy has several advantages:

- it is simple to implement: an adapted pre-
processing can easily build a light description of
a web service from its WSDL, and a post-
processing, using a simple correspondence table,
can complete this description by setting semantic
tags;

- it allows the processing of formal requests (or
even natural language requests), where the user
expresses the final service he wants; the
processing of a formal request allows to
determine (to discover) the pertinent services to
be composed;

- it allows the automatic composition of a set of
services that are given in any order; the logical
order of the composition – the order of the
operations calls – is determined with the help of
the semantic tags, and with the logic of the
original request;

- it can give the possibility to compose on-the-fly
some on-demand services, then it allows to
respond dynamically to the user's requests.

Inserted in a more general process – request analysis,
service discovery, automatic composition, final service

deployment and delivery – this strategy helps to build
a consistent orchestration, ready to be generated into
BPEL, C# or Java to become the new service wished
by the user.

REFERENCES

BPEL, 2005. BPEL Editorial Team, BPEL Learning Guide,
February 2005,

http://searchwebservices.techtarget.com/originalContent/0,2
89142,sid26_gci880731,00.html

BPMI, 2002. BPMI, Business Process Management
Initiative, BPML, Business Process Modeling Language
Specifications, BPMI.org, 2002, http://www.bpmi.org/
specifications.htm

Kavantzas Nickolaos & al., November 2004. Process-
centric realization of SOA: BPEL moves into the
limelight, Web Services Journal,
http://www.findarticles.com/p/articles/mi_m0MLV/is_1
1_4/ai_n7071401

Kavantzas Nickolaos, Dec. 2004. WS-CDL, Web Service
Choreography Description Language,

http://www.ebpml.org/ws_-_cdl.htm and
http://www.w3.org/TR/ws-cdl-10/

Larvet Philippe, Bonnin Bruno, Ferres Lamia, Fontaine
Patrick, 2005. A Multi-Actor Agnostic Platform for Web
Services Agile Development and Deployment, ICSSEA
2005, Vol.2, Sessions 9-16

Rumbaugh J., Booch G., Jacobson I, June 2004. UML
Reference Manual, Second Edition, Addison-Wesley.

W3C, January 2007. SAWSDL, Semantic Annotations for
Web Service Description Language,
http://www.w3.org/TR/sawsdl/

Dubray Jean-Jacques, June 2004. BPML for Web services,
in http://www.ebpml.org/bpel4ws.htm

Nanda Mangala & al., Nov. 2004. Decentralized
Orchestration of Composite Web Services, IBM
Research Computer Science, Innovation Matters,

http://www.research.ibm.com/compsci/project_spotlight/dis
tributed/

Peltz Chris, Jan. 2003. Web services orchestration, a review
of emerging technologies, tools, and standards,
Hewlett-Packard Co,

http://devresource.hp.com/drc/technical_white_papers/WSO
rch/WSOrchestration.pdf

Smith Howard, July 2003. BPM and MDA, Competitors,
Alternatives or Complementary, Business Process
Trends, White Paper,

http://www.bptrends.com/publicationfiles/07-
03%20WP%20BPM%20and%20MDA%20Reply%20-
%20Smith.pdf

ICEIS 2007 - International Conference on Enterprise Information Systems

274

