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Abstract: Tree pattern matching is one of the most fundamental tasks for XML query processing. Prior work has 
typically decomposed the twig pattern into binary structural (parent-child and ancestor-descendent) 
relationships or paths, and then stitch together these basic matches by join operations. In this paper, we 
propose a new algorithm that explores both the document tree and the twig pattern in a bottom-up way and 
show that the join operation can be completely avoided. The new algorithm runs in O(|T|⋅|Q|) time and 
O(|Q|⋅leafT) space, where T and Q are the document tree and the twig pattern query, respectively; and leafT 
represents the number of leaf nodes in T. Our experiments show that our method is effective, scalable and 
efficient in evaluating twig pattern queries. 

1 INTRODUCTION 

In XML, data is represented as a tree; associated 
with each node of the tree is an element type from a 
finite alphabet ∑. The children of a node are ordered 
from left to right, and represent the content (i.e., list 
of subelements) of that element.  
To abstract from existing query languages for XML 
(e.g. XPath, XQuery, XML-QL, and Quilt), we 
express queries as twig patterns (or say, tree 
patterns) where nodes are types from ∑ ∪ {*} (* is a 
wildcard, matching any node type) and string values, 
and edges are parent-child or ancestor-descendant 
relationships. As an example, consider the query tree 
shown in Fig. 1, which asks for any node of type b 
(node 2) that is a child of some node of type a (node 
1). In addition, the b type (node 2) is the parent of 
some c type (node 4) and an ancestor of some d type 
(node 5). Type b (node 3) can also be the parent of 
some e type (node 7). The query corresponds to the 
following XPath expression: 
 a[b[c and //d]]/b[c and e//d].  

In this figure, there are two kinds of edges: child 
edges (c-edges) for parent-child relationships, and 
descendant edges (d-edges) for ancestor-descendant 
relationships. A c-edge from node v to node u is 
denoted by v → u in the text, and represented by a 
single arc; u is called a c-child of v. A d-edge is 
denoted v ⇒ u in the text, and represented by a  
double arc; u is called a d-child of u. 
Definition 1. An embedding of a twig pattern Q into 
an XML document T is a mapping f: Q → T, from 

the nodes of Q to the nodes of T, which satisfies the 
following conditions: 
(i) Preserve node type: For each u ∈ Q, u and f(u) 

are of the same type. (or more generally, u’s 
predicate is satisfied by f(u).) 

(ii) Preserve c/d-child relationships: If u → v in Q, 
then f(v) is a child of f(u) in T; if u ⇒ v in Q, 
then f(v) is a descendant of f(u) in T. 

If there exits a mapping from Q into T, we say, Q 
can be imbedded into T, or say, T contains Q. In 
addition, if label(T’s root) = label(Q’s root), we say 
that the embedding is root-preserving. 

As an example, see the document tree and the 
twig pattern shown in Fig. 2(a).  

There exits a mapping from Q to T as illustrated 
by the dashed lines, by which each node of Q is 
mapped to a different node of T. However, 
according to the definition, an embedding could map 
several nodes of Q (of the same type) to the same 
node of T, as shown in Fig. 2(b), by which nodes q2 
and q5 in Q are mapped onto a single node v2 in T, 
and q3 and q4 are mapped onto a single node v3 in T. 
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Figure 1: A query tree. 
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For the purpose of query evaluation, either of the 
mappings is recognized as a tree embedding. 

In fact, almost all the existing strategies are 
designed to work in this way. 

In this paper, we discuss a new algorithm, which 
works in a bottom-up way and shows that the join or 
join-like operations can be completely avoided. The 
algorithm works in O(|T|⋅|Q|) time and O(|Q|⋅leafT) 
space, where leafQ is the number of the leaf nodes of 
Q. 

The remainder of the paper is organized as 
follows. In Section 2, we review the related work. In 
Section 3, we discuss our main algorithm. Section 4 
is devoted to the implementation and experiments. 
Finally, a short conclusion is set forth in Section 5. 

2 RELATED WORK 

With the growing importance of XML in data 
exchange, the tree pattern queries over XML 
documents have been extensively studied recently. 
Most existing techniques rely on indexing or on the 
tree encoding to capture the structural relationships 
among document elements. 

XISS (Li and Moon, 2001) is a typical method 
based on indexing, by which single 
elements/attributes are indexed as the basic unit of 
query and a complex path expression is decomposed 
into a set of basic path expressions. Then, atom 
expressions (single elements or attributes) are 
recognized by direct accessing the index structure. 
All other kinds of expressions need join operations 
to stitch individual components together to get the 
final results.  

Paths are also used as the basic indexing unit as 
done by DataGuide (Goldman and Widom, 1997) 

and Fabric (Cooper and et al., 2001). By DataGuide, 
a concise summary of path structures for a semi-
structured database is provided, but restricted to row 
paths. No complex path expressions or regular 
expression queries can be handled. Fabric works 
better in the sense that the so-called refined paths are 
supported. Such queries may contain branches, wild-
cards (*) and ancestor-descendent operators (//). 
However, any query not in the set of refined paths 
has to resort to join operations. Another two 
strategies based on the path indexing are APEX 
(Chung and et al., 2002) and F+B (Kaushik and et 
al., 2002). APEX is an adaptive path index and uses 
data mining technique to summarize paths that 
frequently appear in the query workload. It has to be 
updated as the query workload changes. In stead of 
maintaining all paths starting from the root, it keeps 
every path segment of length 2. Obviously, to get the 
final results, the join operations have to be 
conducted. F+B (Kaushik and et al., 2002) shares the 
flavour of Fabric (Cooper and et al., 2001). It is 
based on the so-called forward and backward index 
(F&G index (Abiteboul and et al., 1999)), which 
covers all the branching paths. It works well for pre-
defined query types. In normal cases, however, such 
a set of F&B indexes tends to be large and therefore 
the performance suffers. The method discussed in 
(Wang and et al., 2003) can be considered as a quite 
different method, by which a document is stored as a 
sequence: (a1, p1), ..., (ai, pi), ..., (an, pn), where each 
ai is an element or a word in the document, and pi a 
path from the root to it. Using this method, the join 
operations are replaced by searching a trie structure 
(called suffix tree in (Wang and et al., 2003)). The 
drawback of this method is that a relatively large 
index structure has to be created. Another problem 
of this method is that a document tree that does not 
contain a query pattern may be designated as one of 
the answers due the ambiguity caused by identical 
sibling nodes. This problem is removed by the so-
called forward prefix checking discussed in (Wang 
and Meng, 2005). Doing so, however, the theoretical 
time complexity is dramatically increased. 

All the above methods need to decompose a twig 
pattern into a set of binary relationships between 
pairs of nodes, such as parent-child and ancestor-
descendant relations, or into a set of paths. The sizes 
of intermediate relations tend to be very large, even 
when the input and final result sizes are much more 
manageable. As an important improvement, 
TwigStack was proposed by Bruno et al. (Bruno and 
et al., 2002), which compress the intermediate 
results by the stack encoding, which represents in 
linear space a potentially exponential number of 
answers. However, TwigStack achieves optimality 
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Figure 2: Illustration for tree embedding.
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only for the queries that contain only d-edges. In the 
case that a query contains both c-edges and d-edges, 
some useless path matchings have to be performed. 
In addition, in the worst case, TwigStack needs 
O(|D||Q|) time for doing the merge joins as shown by 
Chen et al. (see page 287 in (Chen and et al., 2006)), 
where D is a largest data stream associated with a 
node q in Q, which contains all the document nodes 
that match q. Since then, several methods that 
improve TwigStack in some way have been reported. 
For instance, iTwigJoin (Chen and et al., 2005) 
exploits different data partition possibilities while 
TJFast (Lu and et al., 2005) accesses only leaf nodes 
of document trees by using Dewey IDs. But both of 
them still need to do some useless matchings as 
shown by the theoretical analysis made in (Choi and 
et al., 2003). Twig2Stack (Chen and et al., 2006) is 
the most recent method that improves TwigStack. By 
this method, the stack encoding is replaced with the 
hierarchical stack encoding, by which each stack 
associated with a query node contains an ordered 
sequence of stack trees. In this way, the path joins 
are replaced by the so called result enumeration. In 
(Chen and et al., 2006), it is claimed that Twig2Stack 
needs only O(|D|⋅|Q| + |subTwigResults|) time. But a 
careful analysis shows that the time complexity of 
the method is actually bounded by O(|D|⋅|Q|2 + 
|subTwigResults|). It is because each time a node is 
inserted into a stack associated with a node in Q, not 
only the position of this node in a tree within that 
stack has to be determined, but a link from this node 
to a node in some other stack has to be constructed, 
which requires to search all the other stacks. The 
number of these stacks is |Q| (see Fig. 4 in (Chen 
and et al., 2006) to know the working process.) 

The method discussed in (Aghili and et al., 2006) 
incorporates a binary labeling as a pre-processing 
filtration step to reduce the search space. This 
method is effective only for the case that selective 
key words at leaf nodes are specified in queries. 

Finally, we point out that the bottom-up tree 
matching was first proposed in (Hoffmann and 
O’Donnell, 1982). But it concerns a very strict tree 
matching, by which the matching of an edge to a 
path is not allowed. In (Gottlob and et al., 2005), an 
XPath is transformed into a parse tree and then 
evaluated bottom-up or top-down. Both the bottom-
up and top-down strategies need O(|T|5⋅|Q|2) time 
and O(|T|4⋅|Q|2) space. In (Miklau and Suciu, 2004), 
an algorithm for tree homomorphism is discussed, 
which is able to check whether a tree contains 
another and returns only a boolean answer. But our 
algorithms show all the subtrees than match a given 
twig pattern query. 

In comparison with the above methods, our 
methods have the following advantages: 
- Our first algorithm needs less time than 

Twig2Stack. Concretely, our algorithm runs in 
O(|D|⋅|Q|) time. 

- Neither matching paths nor tree stacks are 
generated. Therefore, the costly path joins (Aghili 
and et al., 2006), as well as the result 
enumeration, a join-like operation (Chen and et 
al., 2006), are not needed. 

- The runtime memory usage is minimum. During 
the process, our algorithm transforms 
(dynamically) the data streams to a tree structure 
T with all the matching patterns recognized. To 
represent the results, each node v in T is 
associated with a set of nodes in Q (denoted as 
M(v)) such that for each q ∈ M(v) the subtree 
rooted at q can be embedded in the subtree rooted 
at v. If M(v) contains the root of Q, it indicates an 
answer and v will be stored in a global variable (or 
report the subtree rooted at v as an answer). Later 
on, M(v) will be removed once M(v’s parent) is 
established since M(v) will not be accessed any 
more. 

3 ALGORITHM 

In this section, we discuss our algorithm according 
to Definition 1. The main idea of this algorithm is to 
search both T and Q bottom-up and checking the 
subtree embedding by generating dynamic data 
structures. In the process, a tree labeling technique is 
used to facilitate the recognition of nodes’ 
relationships. Therefore, in the following, we will 
first show the tree labeling in 3.1. Then, in 3.2, we 
discuss the main algorithm. In 3.3, we prove the 
correctness of the algorithm and analyze its 
computational complexities. 

3.1 Tree Labeling 

Before we give our main algorithm, we first restate 
how to label a tree to speed up the recognition of the 
relationships among the nodes of trees.  

Consider a tree T. By traversing T in preorder, 
each node v will obtain a number (it can an integer 
or a real number) pre(v) to record the order in which 
the nodes of the tree are visited. In a similar way, by 
traversing T in postorder, each node v will get 
another number post(v). These two numbers can be 
used to characterize the ancestor-descendant 
relationships as follows. 
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Proposition 1. Let v and v’ be two nodes of a tree T. 
Then, v’ is a descendant of v iff pre(v’) > pre(v) and 
post(v’) < post(v). 
Proof. See Exercise 2.3.2-20 in [34]. 

If v’ is a descendant of v, then we know that 
pre(v’) > pre(v) according to the preorder search. 
Now we assume that post(v’) > post(v). Then, 
according to the postorder search, either v’ is in 
some subtree on the right side of v, or v is in the 
subtree rooted at v’, which contradicts the fact that 
v’ is a descendant of v. Therefore, post(v’) must be 
less than post(v). The following example helps for 
illustration. 
Example 1. See the pairs associated with the nodes 
of the tree shown in Fig. 3. The first element of each 
pair is the preorder number of the corresponding 
node and the second is its postorder number. With 

such labels, the ancestor-descendant relationships 
can be easily checked.  
For instance, by checking the label associated with 
v2 against the label for v6, we see that v2 is an 
ancestor of v6 in terms of Proposition 1. Note that 
v2’s label is (2, 6) and v6’s label is (6, 3), and we 
have 2 < 6 and 6 > 3. We also see that since the pairs 
associated with v8 and v5 do not satisfy the condition 
given in Proposition 1, v8 must not be an ancestor of 
v5 and vice versa. 
Definition 1. (label pair subsumption) Let (p, q) and 
(p’, q’) be two pairs associated with nodes u and v. 
We say that (p, q) is subsumed by (p’, q’), denoted 
(p, q)  (p’, q’), if p > p’ and q < q’. Then, u is a 
descendant of v if (p, q) is subsumed by (p’, q’).  

In the following, we also use T[v] to represent a 
subtree rooted at v in T. 

3.2 Algorithm for Twig Pattern 
Matching 

Now we discuss our algorithm for twig pattern 
matching. During the process, both T and Q are 
searched bottom-up. That is, the nodes in T and Q 
will be accessed along their postorder numbers. 
Therefore, for convenience, we refer to the nodes in 
T and Q by their postorder numbers, instead of their 
node names. 

In each step, we will check a node j in T against 
all the nodes i in Q. 

In order to know whether Q[i] can be embedded 
into T[i], we will check whether the following two 
conditions are satisfied. 
1. label(j) = label(i). 
2. Let i1, ..., ik be the child nodes of i. For each ia (a = 

1, ..., k), if (i, ia) is a c-edge, there exists a child 
node jb of j such that T[jb] contains Q[ia]; if (i, ia) 
is a d-edge, there is a descendent j’ of j such that 
T[j’] contains Q[ia]. 

To facilitate this process, we will associate each j 
in T with a set of nodes in Q: {i1, ..., ij} such that for 
each ia ∈ {i1, ..., ij} Q[ia] can be root-preservingly 
embedded into T[j]. This set is denoted as M(j). In 
addition, each i in Q is associated with a value β(i), 
defined as below. 
i) Initially, β(i) is set to φ. 
ii) During the computation process, β(i) is 

dynamically changed. Concretely, each time we 
meet a node j in T, if i appears in M(jb) for some 
child node jb of j, then β(i) is changed to j. 

In terms of above discussion, we give the 
following algorithm. 

Algorithm Twig-pattern-matching(T, Q) 
Input: tree T (with nodes 0, 1, ..., |T|) and tree Q (with 
nodes 1, ..., |Q|) 
Output: a set of nodes j in T such that T[j] contains Q. 
begin 
1. for j := 1, ..., |T| do 
2. {let j1, ..., jk be the children of j;  
3. for l := 1, ..., k do 
4.  {for each i’ ∈ M( jl) do β(i’) ← j; 
5.   remove Μ( jl);} 
5.  for i := 1, ..., |Q| do 
6.  if label(i) = label(j) then 
7. {let i1, ..., ig be the children of i; 
8. if for each il (l = 1, ..., g) we have 
9.  (i, il) is a c-edge and β(il) = j, or 
10.  (i, il) is a d-edge and β(il) is subsumed by j; 
11.  then {insert i into M(j); 
12. if i is the root of Q, then report the subtree 

rooted at j as an answer;} 
13. } 
end 

In the above algorithm, each time we meet an j in 
T, we will establish the new β values for all those 
nodes of Q, which appear in Μ(j1), ..., Μ(jk), where 
j1, ..., jk represent the child nodes of j (see lines 1 - 
4). Then, all Μ(jl)’s (l = 1, ..., k) are removed. In a 
next step, we will check j against all the nodes i in Q 
(see lines 5 - 13). If label(i) = label(j), we will check 
β(i1), ..., β(ig), where i1, ..., ig are the child nodes of i. 
If (i, il) (l ∈ {1, ..., g}) is a c-edge, we need to check 
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Figure 3: Illustration for tree encoding.
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whether β(il) = j (see line 9). If (i, il) (l ∈ {1, ..., g}) 
is a d-edge, we simply check whether β(il) is 
subsumed by j (see line 10). If all the child nodes of 
i survive the above checking, we get a root-
preserving embedding of the subtree rooted at i into 
the subtree rooted at j. In this case, we will insert j 
into M(j) (see line 11) and report j as one of the 
answers if i is the root of Q (see line 12). 
Example 2. Consider the document tree T and the 
twig pattern query Q shown in Fig. 2(a) once again. 
When applying the above algorithm to T and Q, we 
will find that Q can be root-preservingly embedded 
into T. Fig. 4 shows the whole computation process. 

In the first four steps, we check respectively v3, 
v5, v6, and v6 against Q, generating a data structure as 
shown in Fig. 4(a), in which M(v3) = M(v5) = M(v6) 
= {q3, q4} and M(v7) = { }. In a next step, we meet v4 
and generate a data structure as shown in Fig. 4(b). 
In more detail, in this step, we first set β(q3) = v4 and 
β(q4) = v4, and then try to find any subtree in Q, 
which can be embedded into T[v4]. Since label(v4) = 
label(q2) = B and both β(q3) and β(q4) are equal to 
v4, it shows that T[v4] contains Q[q2]. So M(v4) 
contains q2. In addition, since q5 is a leaf node (no 
children) and label(v4) = label(q5), M(v4) also 
contains q5. In the sixth step, we will meet v2 and the 
data structure generated is shown in Fig. 4(c). Here, 
we should remark that not only β(q2) and β(q5) are 
set to v2, but β(q3) and β(q4) are also changed to v2. 
It is because in this step we have M(v3) = {q3, q4} 
and v3 is a child node of v2. Therefore, we have 
M(v2) = {q2, q5}. In the seventh step, we meet v8 and 
generate a data structure as shown in Fig. 4(d). 

Although we have label(v8) = label(q2), we cannot 
insert q2 into M(v8) since in this step both β(q3) and 
β(q4) are equal to v2, not to v8. So M(v8) contains 
only q5. In the final step, we meet v1. The 
corresponding data structure is shown in Fig. 4(e). 
Since M(v1) contains q1, the root of Q, we know that 
Q can be embedded into T. 

4 CORRECTNESS AND 
COMPUTATIONAL 
COMPLEXITIES 

In this subsection, we show the correctness of the 
algorithm given in 3.2 and analyze its computational 
complexity. 
- Correctness 

The correctness of the algorithm consists in a 
very important property of postorder numbering 
described in the following lemma. 
Lemma 1. Let v1, v2, and v3 be three nodes in a tree 
with post(v1) < post(v2) < post(v3). If v1 is a 
descendent of v3. Then, v2 must also be a descendent 
of v3. 
Proof. We consider two cases: i) v2 is to the right of 
v1, and ii) v2 is an ancestor of v1. In case (i), we have 
post(v1) < post(v2). So we have pre(v3) < pre(v1) < 
pre(v2). This shows that v2 is a descendent of v3. In 
case (ii), v1, v2, and v3 are on the same path. Since 
post(v2) < post(v3), v2 must be a descendent of v3.  
We illustrate Lemma 1 by Fig. 5, which is helpful 
for understanding the proof of Proposition 2 given 
below. 

Proposition 2. Let Q be a twig pattern containing 
only d-edges. Let v be a node in the document tree T. 
Let q be a node in Q. Then, q appears in M(v) if and 
only if T[v] contains Q[q].  
Proof. If-part. A query node q is inserted into M(v) 
by executing lines 6 - 11 in Algorithm Twig-pattern-
matching( ). Obviously, for any q inserted into M(v) 
we must have T[v] containing Q[q]. 
Only-if-part. Assume that there exists a q in Q such 
that T[v] contains Q[q] but q does not appear in 
M(v). Then, there must be a child node qi of q such 
that (i) β(qi) = φ, or (ii) β(qi) is not subsumed by v. 
Obviously, case (i) is not possible since T[v] 

Figure: 4: A sample trace. 
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contains Q[q] and qi must be contained in a subtree 
rooted at a node v’ which is a descendent of v. So 
β(qi) will be changed to a value not equal to φ. Now 
we show that case (ii) is not possible, either. First, 
we note that during the whole process, β(qi) may be 
changed several times since it may appear in more 
than one M’s. Assume that there exist a sequence of 
nodes v1, ..., vk for some k ≥ 1 with post(v1) < 
post(v2) <... < post(vk) such that qi appears in M(v1), 
..., M(vk). Without loss of generality, assume that v’ 
= vi for some i ∈ {1, ..., k} and there exists an j such 
that post(vj) < post(v) < post(vj+1). Then, at the time 
point when we check q, the actual value of β(qi) is 
the postorder number for vj’s parent, which is equal 
to v or whose postorder number is smaller than 
post(v). If it is equal to v, then β(qi) is subsumed by 
v, contradicting (ii). If post(β(qi) is smaller than 
post(v). Thus, we have 
   post(v’) < post(β(qi) < post(v). 

In terms of Lemma 1, the value of β(qi) is a 
descendent of v and therefore subsumed by v. The 
above explanation shows that case (ii) is impossible. 
This completes the proof of the proposition. 

Lemma 1 helps to clarify the only-if part of the 
above proof. In fact, it reveals an important property 
of the tree encoding, which enables us to save both 
space and time. That is, it is not necessary for us to 
keep all the values of β(qi), but only one to check the 
ancestor-descendent relationship. Due to this 
property, the path join (Bruno and et al., 2002), as 
well as the result enumeration (Chen and et al., 
2006), can be completely avoided. 

Concerning the correctness of the general case 
that Q contains both c-edges and d-edges, we have 
to answer a question: whether any c-edge in Q is 
correctly checked. 
To answer this question, we note that any c-edge in 
Q cannot be matched to any path with length larger 
than 1in T. That is, it can be matched only to a c-
edge in T. It is exactly what is done by the 
algorithm. See Fig. 6 for illustration.  
Each time we meet a node v, we will set β values for 
all those qj’s that appear in an M associated with 
some child node of v (see lines 3 - 4). Then, in lines 
9 - 10, when we check whether q can be inserted 
into M(v), any outgoing c-edge of q is correctly 
checked. As shown in Fig. 6, after the value of β(q1) 
is set to be v, q is checked and the value of β(q1) 
indicates that v’ is a child of v. Since (v, v’) is also a 
c-edge, it matches (q, q1). Although the value of 
β(q1) is changed from v1 to v during the process, it 
does not impact the correctness of c-edge checkings 
which use only the newly set β values that are 
always the parent of the corresponding nodes.  

In conjunction with Proposition 2, the above 
analysis shows the correctness of the algorithm. We 
have the following proposition. 
Proposition 3. Let Q be a twig pattern containing 
only both c-edges and d-edges. Let v be a node in T. 
Let q be a node in Q. Then, q appears in M(v) if and 
only if T[v] contains Q[q].  
Proof. See the above discussion. 
 

 

 

 

 

 

- Computational complexities 
The time complexity of the algorithm can be 

divided into two parts: 
1. The first part is the time spent on generating β 

values (see lines 2 - 5). For each node j in T, we 
will access M(jl) for each child node jl of j. 
Therefore, this part of cost is bounded by 

  O( ∑
=

⋅
||

1
|)(|

T

j
j jMd ) ≤ Ο( ∑

=
⋅

||

1
||

T

j
j Qd ) = O(|T|⋅|Q|), 

 where dj is the outdegree of j. 
2. The second part is the time used for constructing 

M(j)’s. For each node j in T, we need O( ∑
i

ic ) 

time to do the task, where ci is the outdegree of i in 
Q, which matches j. So this part of cost is bounded 
by 

  O( ∑ ∑
j i

ic ) ≤ O( ∑
=

||

1
||

T

j
Q ) = O(|T|⋅|Q|). 

The space overhead of the algorithm is easy to 
analyze. During the processing, each j in T will be 
associated with a M(j). But M(j) will be removed 
later once j’s parent is encountered and for each i 
∈ M(j) its β value is changed. Therefore, the total 
space is bounded by 
 O(leafT⋅|Q| + |T| + |Q|), 
where leafT represents the number of the leaf nodes 
of T. It is because at any time point for any two 
nodes on the same path in T only one is associated 
with a M. 

5 EXPERIMENTS 

We conducted our experiments on a DELL desktop 
PC equipped with Pentium III 864Mhz processor, 
512MB RAM and 20GB hard disk. We use Oracle-

M(v’) = {…, q1, …} 
β (q1) has been once set to be v1. 

M(v’) = {…, q1, …} 
β (q1) is changed to v when v is 
recognized to be the parent of v’. 

Figure 6: Illustration for c-edge checking. 

a • v a • q 

c • v1 b • v’ b • q1 c • q2 

b • v1’
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9i Enterprise Edition as the working platform and 
implement the algorithms in Oracle PL/SQL 
language. We set the size of the buffer cache of 
Oracle-9i to be 8 MBytes and the B+-tree built in the 
system is used as the index. 
- Tested methods 
In the experiments, we have tested three methods: 
 TwigStack (TS for short) [4], 
 Twig2Stack (T2S for short) [10], 
 Twig-pattern-matching (discussed in this paper; 
TPM for short), 
and compare their execution times. 
- Data 
The data set used for this test is DBLP data set [24] 
and a synthetic XMARK data set. The quantitative 
characteristics of the sets are described below.  
- DBLP. It is a computer science bibliography 

database. In this data set, each author is 
represented by a name, a homepage, and a list of 
papers. In turn, each paper contains a title, the 
conference or the journal title where it was 
published, and a list of coauthors. In the version 
we downloaded, there are 3,332,130 elements and 
404,276 attributes, totaling 127 MBytes of data. 
Each record in DBLP corresponds to a publication 
which is a simple tree structure of maximum depth 
6. The average length of a structure-encoded 
sequence derived through the reference mechanism 
in a tree is around 31. The B+-tree established on 
individual publications is about 2 MBytes of data. 

- XMARK. It is a popular database in benchmarking 
XML index methods. It is a very large and 
complicated tree structure, containing some 
substructures such as regions, items (objects for 
sale), people, open-auction, closed-auction, etc. In 
our experiment, we generate an XMARK set by 
using xmlgen with scaling factor 1.0. It contains 
about 108 MBytes of data. The B+-tree established 
on individual sales is about 1.3 MBytes of data. 

- Queries 
As we know, XML queries may have different 
patterns and may or not be with parameters being 
specified. To study the performance impact of these 
two characteristics, we have tested 10 queries 
against DBLP database, which are divided into two 
groups. In the first group all the 5 queries are with a 
constant while in the second group (another 5 
queries) no parameter is specified. Over XMARK 
database, we have also tested 10 queries, divided 
into 2 groups with each containing 5 queries. In the 
first group, each query contains a constant. In the 
second group, for each query no constant is 
specified. All the queries are shown in Table 1 - 
Table 4. 

Queries over DBLP: 

Table 1: Group I. 
query Xpath expression 
Q1 //inproceedings/[author]//year [text() = ‘1999’] 
Q2 //inproceedings/[author and /title]//year [text() = ‘1999’] 
Q3 //inproceedings/[author and /title and //pages]//year [text() = ‘1999’] 
Q4 //inproceedings/[author and /title and //pages and //url]//year [text() = 
Q5 //articles/[author and /title and //volume and //pages and //url]//year 

[text() = ‘1999’] 

Table 2: Group II. 
query Xpath expression 
Q6 //inproceedings/[author]//year 
Q7 //inproceedings/[author and /title]//year 
Q8 //inproceedings/[author and /title and //pages]//year 
Q9 //inproceedings/[author and /title and //pages and //url]//year 
Q10 //articles/[author and /title and //volume and //pages and //url]//year 

Queries over XMARK: 

Table 3: Group III. 
query Xpath expression 
Q11 /site//open_auction[seller/person]//date [text() = ‘10/23/1999’] 
Q12 /site//open_auction[//seller/person and //bidder]//date [text() = 

/ /Q13 /site//open_auction[//seller/person and //bidder/increase]//date [text() = 
‘10/23/1999’] 

Q14 /site//open_auction[//seller/person and //bidder/increase and 
//initial]//date [text() = ‘10/23/1999’] 

Q15 /site//open_auction[//seller/person and //bidder/increase and //initial and 
//description]//date [text() = ‘10/23/1999’] 

Table 4: Group IV. 
query Xpath expression 
Q16 /site//open_auction[seller/person]//date 
Q17 /site//open_auction[//seller/person and //bidder]//date 
Q18 /site//open_auction[//seller/person and //bidder/increase]//date 
Q19 /site//open_auction[//seller/person and //bidder/increase and 

//i i i l //dQ20 /site//open_auction[//seller/person and //bidder/increase and //initial and 
//description]//date 

- Test results 
Now we demonstrate the execution times of all 

the four strategies when they are applied to the 
above queries.  

In Fig. 7(a), we show the test results of the first 
group. From these we can see that our first algorithm 
outperforms all the other strategies. It is because this 
algorithm works only in one scan of the data streams 
and neither the path join nor the result enumeration 
is involved. TwigStack has the worst performance 
since some path joins have to be performed.  
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Figure 7: Results of Group I and Group. 
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Fig. 7(b) shows the test results of the second 
group. The execution time of all the strategies are 
much worse than Group 1 since the queries are all of 
quite low selectivity and thus almost all the data set 
has to be downloaded into main memory. In this 
case, I/O dominates the cost. Again, our first 
algorithm has the best performance. Especially, 
when the size of queries becomes larger, this 
algorithm is 3 - 4 times better than Twig2Stack. First, 
the time for constructing a matching tree is much 
less than that for constructing the hierarchical stacks. 
Secondly, the space used by our first algorithm is 
much smaller than Twig2Stack. It is because our 
algorithm removes useless data structures earlier 
than Earlier Result enumeration utilized by 
Twig2Stack. TwigStack shows an exponential-time 
behavior since for each path in a query a great many 
matching paths will be produced and the cost of join 
operations increases exponentially. 

In Fig. 8, the test results over the XMARK 
database are demonstrated. From these, we can see 
that our first algorithm still has the best performance 
for this data set. 
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6 CONCLUSIONS 

In this paper, a new algorithm is proposed to 
evaluate twig pattern queries in XML document 
databases. The algorithm works in a bottom-up way, 
by which an important property of the postorder 
numbering is used to avoid join or join-like 
operations. The time complexity and the space 
complexity of the algorithm are bounded by 
O(|T|⋅|Q|) and O(|Q|⋅leafT), respectively, where T is 
the document tree and Q the twig pattern query, and 
leafT represents the number of leaf nodes in T. 
Experiments have been done to compare our method 
with some existing strategies, which demonstrates 
that our method is highly promising in evaluating 
twig pattern queries. 
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