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Abstract: In the paper we present a new approach based on application of neural networks to detect SQL attacks. SQL
attacks are those attacks that take advantage of using SQL statements to be performed. The problem of
detection of this class of attacks is transformed to time series prediction problem. SQL queries are used as a
source of events in a protected environment. To differentiate between normal SQL queries and those sent by
an attacker, we divide SQL statements into tokens and pass them to our detection system, which predicts the
next token, taking into account previously seen tokens. In the learning phase tokens are passed to recurrent
neural network (RNN) trained by backpropagation through time (BPTT) algorithm. Teaching data are shifted
by one token forward in time with relation to input. The purpose of the testing phase is to predict the next
token in the sequence. All experiments were conducted on Jordan and Elman networks using data gathered
from PHP Nuke portal. Experimental results show that the Jordan network outperforms the Elman network
predicting correctly queries of the length up to ten.

1 INTRODUCTION

Large number of Web applications, especially those
deployed for companies to e-business purpose involve
data integrity and confidentiality. Such applications
are written in script languages like PHP embedded in
HTML allowing to establish connection to databases,
retrieving data and putting them in WWW site. Be-
sides that all Web contents is often based on the
retrieved data, a database also stores sensitive user
typed data like credit card numbers and personal in-
formation. Security violations consist in not autho-
rized access and modification of data in the database.
SQL is one of languages used to manage data in
databases. Its statements can be one of sources of
events for potential attacks. One of the ideas to detect
an intruder using SQL statements is to build a profile
of normal behavior and in detection stage compare it
with observed events.

In the literature there are some approaches to in-

trusion detection in Web applications. In (Valeur
et al., 2005) the authors developed anomaly-based
system that learns the profiles of the normal database
access performed by web-based applications using a
number of different models. A profile is a set of
models, to which parts of SQL statement are fed to
in order to train the set of models or to generate an
anomaly score. During training phase models are
built based on training data and anomaly score is cal-
culated. For each model, the maximum of anomaly
score is stored and used to set an anomaly threshold.
During detection phase, for each SQL query anomaly
score is calculated. If it exceeds the maximum of
anomaly score evaluated during training phase, the
query is considered to be anomalous. Decreasing
false positive alerts involves creating models for cus-
tom data types for each application to which this sys-
tem is applied.

Besides that work, there are some other works
on detecting attacks on a Web server which con-
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stitutes a part of infrastructure for Web applica-
tions. In (Kruegel and Vigna, 2003) detection sys-
tem correlates the server-side programs referenced by
clients queries with the parameters contained in these
queries. It is similar approach to detection to the
previous work. The system analyzes HTTP requests
and builds data model based on attribute length of re-
quests, attribute character distribution, structural in-
ference and attribute order. In a detection phase built
model is used for comparing requests of clients.

In (Almgren et al., 2000) logs of Web server are
analyzed to look for security violations. However,
the proposed system is prone to high rates of false
alarm. To decrease it, some site-specific available in-
formation should be taken into account which is not
portable.

In this work we present a new approach to in-
trusion detection in Web application. Rather than
building profiles of normal behavior we focus on a
sequence of tokens within SQL statements observed
during normal use of application. Two architectures
of RNN are used to encode stream of such SQL state-
ments.

The paper is organized as follows. The next sec-
tion discusses SQL attacks. In section 3 we present
two architectures of RNN. Section 4 shows training
and testing data used for experiments. Next, section
5 contains experimental results. Last section summa-
rizes results and shows possible future work.

2 SQL ATTACKS

2.1 SQL Injection

SQL injection attack consists in such a manipulation
of an application communicating with a database, that
it allows a user to gain access or to allow it to modify
data for which it has not privileges. To perform an
attack in the most cases Web forms are used to inject
part of SQL query. Typing SQL keywords and con-
trol signs an intruder is able to change the structure of
SQL query developed by a Web designer. It is pos-
sible because parts of SQL statements depend on the
data typed by a user. If variables used in SQL query
are under control of a user, he can modify SQL query
which will cause change of its meaning. Consider an
example of a poor quality code written in PHP pre-
sented below.

$connection=mysql_connect();
mysql_select_db("test");
$user=$HTTP_GET_VARS[’username’];
$pass=$HTTP_GET_VARS[’password’];

$query="select * from users where
login=’$user’ and password=’$pass’";

$result=mysql_query($query);
if(mysql_num_rows($result)==1)

echo "authorization successful"
else

echo "authorization failed";

The code is responsible for authorizing users. User
data typed in a Web form are assigned to variables
userandpassand then passed to the SQL statement.
If retrieved data include one row it means that a user
filled in the form login and password the same as
stored in the database. Because data sent by a Web
form are not analyzed, a user is free to inject any
strings. For example, an intruder can type: ”’ or 1=1
–” in the login field leaving the password field empty.
The structure of SQL query will be changed as pre-
sented below.

$query="select * from users where login
=’’ or 1=1 --’ and password=’’";

Two dashes comments the following text. Boolean
expression1=1 is always true and as a result user will
be logged with privileges of the first user stored in the
tableusers.

2.2 Proposed Approach

The way we detect intruders can be easily trans-
formed to time series prediction problem. Accord-
ing to (Nunn and White, 2005) a time series is a se-
quence of data collected from some system by sam-
pling a system property, usually at regular time inter-
vals. One of the goal of the analysis of time series
is to forecast the next value in the sequence based on
values occurred in the past. The problem can be more
precisely formulated as follows:

st−2,st−1,st −→ st+1, (1)

wheres is any signal, which is dependent on a solv-
ing problem andt is a current moment in time. Given
st−2, st−1, st , we want to predictst+1. In the prob-
lem of detection SQL attacks, each SQL statement is
divided into some signals, which we further call to-
kens. The idea of detecting SQL attacks is based on
their key feature. SQL injection and XSS attacks in-
volve modification of SQL statement, which lead to
the fact, that the sequence of tokens extracted from a
modified SQL statement is different than the sequence
of tokens derived from a legal SQL statement. For
example, letS means recorded SQL statement and
T1,T2,T3,T4,T5 tokens of this SQL statement. The
original sequence of tokens is as follows:

T1,T2,T3,T4,T5. (2)
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If an intruder performs an attack, the form of SQL
statement changes. Transformation of the modified
statement to tokens results in different tokens than
these shown in eq.(2). The example of a sequence of
tokens related to modified SQL query is as follows:

T1,T2,Tmod3,Tmod4,Tmod5. (3)

Tokens number 3, 4, 5 are modified due to an intruder
activity. We assume that intrusion detection system
trained on original SQL statements is able to predict
the next token based on the tokens from the past. If
the tokenT1 occurs, the system should predict token
T2, next tokenT3 is expected. In case of attacks token
Tmod3 occurs which is different thanT3, which means
that an attack is performed.

Various techniques have been used to analyze time
series (Kendall and Ord, 1999; Pollock, 1999). Be-
sides statistical methods, RNNs have been widely
used for that problem. In our study presented in this
paper we selected two RNNs, the Elman and the Jor-
dan networks.

3 RECURRENT NEURAL
NETWORKS

3.1 General Issues

In comparison to feedforward neural networks RNN
have feedback connections which provide dynamics.
When they process information, output neurons signal
depends on input and activation of neurons in the pre-
vious steps of teaching RNN. However, RNNs suffer
vanishing gradient(Lin et al., 1996). This is the main
reason why gradient-descent algorithms are not suffi-
ciently powerful to map relationship between output
of RNN and input that occur much earlier in time.
In (Lin et al., 1996) the authors compared the El-
man network with neural network based on NARX
model. The model assumes that output neuron signals
from n times in back are passed to the hidden layer
neurons. This partially overcomevanishing gradi-
enteffect. Some researchers introduce modifications
to known architectures of RNN to improve teach-
ing process. In (Drake and Miller, 2002) additional
self-feedback connection to context layer neurons of
the Elman network was added. Experimental results
show that error of network when weight of additional
connection is fixed is smaller than error of the Elman
network.

3.2 RNN Architectures

There are some differences between the Elman and
the Jordan networks. The first is that input signal
for context layer neurons comes from different layers
and the second is that Jordan network has additional
feedback connection in the context layer. While in
the Elman network the size of the context layer is the
same as the size of the hidden layer, in the Jordan net-
work the size of output layer and context layer is the
same. In both networks recurrent connections have
fixed weight equal to 1.0. Networks were trained by
BPTT and the following equations are applied for the
Elman network:

x(k) = [x1(k), ...,xN(k),v1(k−1), ...,vK(k−1)], (4)

u j(k) =
N+K

∑
i=1

w(1)
i j xi(k),v j(k) = f (u j(k)), (5)

g j(k) =
K

∑
i=1

w(2)
i j vi(k),y j(k) = f (g j(k)), (6)

E(k) = 0.5
M

∑
i=1

[yi(k)−di(k)]
2
, (7)

δ(o)
i (k) = [yi(k)−di(k)] f

‘ (gi(k)), (8)

δ(h)
i (k) = f ‘ (ui(k))

K

∑
j=1

δ(o)
j (k)w(2)

i j , (9)

wi j (k+1)(2) = wi j (k)
(2) +

sql−length

∑
k=1

[vi(k)δ
(o)
j (k)],

(10)

wi j (k+1)(1) = wi j (k)
(1) +

sql−length

∑
k=1

[xi(k)δ
(h)
j (k)].

(11)
In the equations (4)-(11), N, K, M stand for the size
of the input, hidden and output layers, respectively.
x(k) is an input vector,u j(k) andg j(k) are input sig-
nals provided to the hidden and output layer neurons.
Next, v j(k) andy j(k) stand for the activations of the
neurons in the hidden and output layer at timek, re-
spectively. The equation (7) shows how RNN error
is computed, while neurons error in the output and
hidden layers are evaluated according to (8) and (9),
respectively. Finally, in the last step values of weights
are changed using formulas (10) for the output layer
and (11) for the hidden layer.

3.3 Training

The training process of RNN is performed as follows.
The tokens of the SQL statement become input of a
network. Activations of all neurons are computed.
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Table 1: A part of a list of tokens and their indexes.

token index
... ...

WHERE 7
... ...

FROM string 28
... ...

SELECT string 36
... ...

string=number 47
... ...

INSERT INTO 54

a)

b)

vector 1
vector 2
vector 3
vector 4

SELECT user_password FROM nuke_users WHERE  user_id = 2

token 7token 36 token 28 token 47

000000000000000000000000000000000001000000000000000000
000000000000000000000000000100000001000000000000000000
000000100000000000000000000100000001000000000000000000
000000100000000000000000000100000001000000000010000000

Figure 1: Preparation of input data for a neural network:
analysis of a statement in terms of tokens (a), input neural
network data corresponding to the statement (b).

Next, an error of each neuron is calculated. These
steps are repeated until last token has been presented
to the network. Next, all weights are evaluated and
activation of the context layer neurons is set to 0. For
each input data, teaching data are shifted by one to-
ken forward in time with relation to input. Training
a network in such a way ensures that it will posses
prediction capability.

Training data consists of 276 SQL queries without
repetition. The following tokens are considered: key-
words of SQL language, numbers, strings and com-
binations of these elements. We used the collection
of SQL statements to define 54 distinct tokens. Each
token has a unique index. The table 1 shows selected
tokens and their indexes. The indexes are used for
preparation of input data for neural networks. The in-
dex e.g. of a keywordWHEREis 7. The index 28
points to a combination of keywordFROM and any
string. The token with index 36 relates to a grammat-
ical link betweenSELECTand any string. Finally,
when any string is compared to any number within a
SQL query, the index of a token equals to 47. Figure 1
presents an example of SQL statement, its represen-
tation in the form of tokens and related binary four
inputs of a network. SQL statement is encoded ask
vectors, wherek is the number of tokens constituting
the statement (see figure 1). The number of neurons
on the input layer is the same as the number of defined

tokens. Networks have 55 neurons in the output layer.
54 neurons correspond to each token similarly to the
input layer but the neuron 55 is included to indicate
that just processing input data vector is the last within
a SQL query. Training data, which are compared to
the output of the network have value either equals to
0.1 or 0.9. If a neuron numbern in the output layer
has small value then it means that the next processing
token can not have indexn. On the other hand, if out-
put neuron numbern has value of 0.9, then the next
token in a sequence should have index equals ton.

At the beginning, SQL statement is divided into
tokens. The indexes of tokens are: 36, 28, 7 and 47.
Each row is an input vector for RNN (see figure 1). In
the figure 1 the first token that has appeared is 36. As a
consequence, in the first step of training output signal
of all neurons in the input layer is 0 except neuron
number 36, which has value of 1. Next input vectors
indicate current indexes of tokens and the index of
a token that has been processed by RNN. The next
token in a sequence has index equals to 28. It follows
that only neurons 36 and 28 have output signal equal
to 1. The next index of a token is 7, which means
that neurons: 36, 28 and 7 send 1 and all remaining
neurons send 0. Finally, neurons 36, 28, 7, 47 have
activation signal equal to 1. In that moment weights
of RNN are updated and the next SQL statement is
considered.

4 TRAINING AND TESTING
DATA

We evaluated our system using data collected from
PHP Nuke portal(phpnuke.org, ). It is well known
application with many holes in older versions. Sim-
ilarly to (Valeur et al., 2005) we installed this portal
in version 7.5, which is susceptible to some SQL in-
jection attacks. Data without attacks were gathered
by visiting the Web sites using a browser. Each time
a Website is downloaded by a browser either a link
is clicked or filled forms are executed, SQL queries
are sent to a database and logged to a file simulta-
neously. During operation of the portal we collected
nearly 100000 SQL statements. Next, based on this
collection we defined tokens, which are keywords of
SQL and data types. The set of all SQL queries was
divided into 12 subsets, each containing SQL state-
ments of different length. 80% of each data set was
used for training and remaining data used for examin-
ing generalization. Teaching data are shifted one time
forward in time. Data with attacks are the same as
reported in (Valeur et al., 2005).
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Figure 2: Error and number of wrong predicted SQL queries
for each subset of data for Jordan’s network.

5 EXPERIMENTAL RESULTS

Experimental study was divided into four stages. In
the first one, we wanted to evaluate the best param-
eters of both RNNs and learning algorithm. These
features are: a number of neurons in the hidden layer,
α used in momentum, activation function of neurons
in the hidden and output layer,η that determines the
extent of weights update. For the Elman network all
neurons in the hidden layer have sigmoidal activation
function while all neurons in the output layer have
tanh function. For the Jordan networktanh function
was chosen for the hidden layer and sigmoidal func-
tion for the output layer. In the most casesη (training
coefficient) does not exceed 0.2 andα value (used in
momentum) is less than 0.2. Ranges 2-4, 13-14, 15-
16 and 17-20 of the data subset (see Table 2) means
that these subsets include SQL queries of length be-
tween 2 and 4, 13 and 14, 15 and 16, 17 and 20.
All remaining subsets contain fixed length statements.
The number of neurons in the hidden layer was also
evaluated during experiments - 58 neurons were used.

In the second phase of the experimental study we
trained 12 RNNs, one for each training data subset.
From the beginning of the training, the error of the
Jordan network was much smaller than error of the
Elman network. In the next a few epochs the error of
both networks decreased quickly but the Jordan net-
work error remained much smaller than the Elman
network error. Figures 2 and 3 show how error of
networks changes for all subsets of SQL queries. The
figures also depict how well the networks are verified.
Here, a statement is considered as well predicted if for
all input vectors, all neurons in the output layer have
values according to training data. All values pre-
sented in figures are averaged on 10 runs of RNNs.
One can see that nearly for all data subsets the Jor-
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Figure 3: Error and number of wrong predicted SQL queries
for each subset of data for Elman’s network.

# SQL statement

1                                        7

2                                        2

3                                        1

4                                        2

5                                        2

6                                        1

7                                        2

8                                        0

# index of input vector number of errors

Figure 4: RNN output for an attack.

dan network outperforms the Elman one. Only for
data subsets 11 and 12 (see table 2) the error of the
Jordan network is greater than the error of the Elman
network. Despite of this for all data subsets percent-
age number of wrong predicted SQL queries for the
Jordan network is less than the number of wrong pre-
dicted SQL statements for the Elman network. The
Jordan network is able to predict all tokens of 10
length statements (20.6% false alarms).

In the third part of experiments we checked if
RNNs correctly detect attacks from section 4. Each
experiment was conducted using trained RNNs from
the second stage. Figure 4 presents the typical RNN
output if an attack is performed. The left column
depicts the number of input vector for RNN, while
the right column shows the number of cases in which
the index of the token indicated by network output
is different than the index of the next processed by
RNN token. What is typical for each network is that
nearly each output vector of a network has a few er-
rors. This phenomenon is present for all attacks used
in this work. Based on that observation, a decision
about good or bad verification and generalization of a
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# SQL statement
# index of input vector num. of errors−ver num. of errors−gen

1                                        0                                                  0

2                                        1                                                  1

3                                        1                                                  2

4                                        0                                                  1

5                                        0                                                  1

6                                        1                                                  1

7                                        1                                                  1

8                                        1                                                  0

Figure 5: RNN output for known and unknown SQL state-
ment.

network can be taken in the correlation with a form of
network output against attacks. Figure 5 shows RNN
output for SQL statements derived from the training
set and that, which was not present in the training set.
The second column (see figure 5) relates to the case
if the SQL query was in the training set and the third
column concerns the SQL query, which was not in the
training set.

It is easy to see that the number of errors during
verification and generalization is much smaller than
the number of errors when an attack is processed by
RNN. Moreover, there is also more output vectors free
of errors. Easily noticeable difference between an at-
tack and normal activity allows us to re-evaluate ob-
tained results presented in figures 2 and 3. Figure 5
presents typical outcomes for all trained RNNs and
our training data. To distinguish between an attack
and a legitimate SQL statement we define the follow-
ing rule for the Jordan network: an attack occurred
if the average number of errors for each output vec-
tor is not less than 2.0 and 80% of output vectors in-
clude any error. When the Elman network is used,
the threshold equals to 1.6 and the percentage of out-
put vectors possessing errors equals to 90%. Apply-
ing these rules ensures that all attacks are detected by
both RNN. The table 2 presents the percentage num-
ber of SQL statements wrongly predicted during ver-
ification and generalization if results were processed
by the rules.

For the most cases the Jordan network outper-
forms the Elman network. Only for data subsets con-
taining statements made from 11 and 12 tokens, the
Elman network is a little better than the Jordan net-
work. The important outcome of defined rules is that
both RNNs thought all statements and only few legit-
imate statements, which were not in the training set
were detected as attacks.

Table 2: Results of verification and generalization of Elman
and Jordan networks.

index of length of Elman Elman Jordan Jordan

data subset data subset ver gen ver gen

1 2-4 0 0 0 0

2 5 0 1.4 0 0

3 6 0 24.2 0 12.8

4 7 0 15.7 0 1.4

5 8 0 5 0 1.6

6 9 0 3.33 0 0

7 10 0 2.5 0 0

8 11 0 10 0 13.33

9 12 0 0 0 6.66

10 13-14 0 0 0 0

11 15-16 0 3.33 0 3.33

12 17-20 0 40 0 13.33

6 CONCLUSIONS

In the paper we have presented a new approach to
detecting SQL-based attacks. The problem of detec-
tion was transformed to time series prediction prob-
lem and two RNNs were examined to show their po-
tential use for such a class of attacks. Deep analysis of
the experimental results lead to the definition of rules
used for distinguishing between an attack and legiti-
mate statement. When these rules are applied, both
networks are completely trained for all SQL queries
included in the all training subsets. The advisable
part of experimental study is to apply defined rules
to the other data set, which can confirm efficiency of
the proposed approach to detecting SQL attacks. In
the future we are going to compare gradient-based al-
gorithms with nature inspired algorithms, especially
coevolutionary genetic algorithms.
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