
ENTERPRISE INFORMATION SEARCH SYSTEMS FOR
HETEROGENEOUS CONTENT REPOSITORIES

Trieu C. Chieu, Shyh-Kwei Chen and Shiwa S. Fu
IBM T. J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA

Keywords: Integration, Federation, Search, Service-Oriented Architecture, Database.

Abstract: In larger enterprises, business documents are typically stored in disparate, autonomous content repositories
with various formats. Efficient search and retrieval mechanisms are needed to deal with the
heterogeneousness and complexity of this environment. This paper presents a general architecture and two
industrial implementations of a service-based information system to perform search in Lotus Notes
databases and data sources with Web service interfaces. The first implementation is based on a federated
database system that maps the various schemas of the sources into a common interface and aggregates
information from their native locations. This implementation offers the advantages of scalability and
accessibility to real-time information. The second one is based on a one-index enterprise-scale search engine
that crawls, parses and indexes the document contents from the sources. This latter implementation offers
the ability of scoring the relevance ranking of documents and eliminating duplications in search results. The
relative merits and limitations of both implementations will be presented.

1 INTRODUCTION

Today’s business environment is getting more
information-driven and data-centric. With the
explosive growth of information, enterprises are
looking for architectural solutions to information
access problems. The projected size of information
generated in the next few years will be more than all
of the recorded history (Lyman, 2003), and the
information will be stored in different autonomous
content repositories. The result is a decentralized
environment with different specialized content
management systems made of various techniques
and data models, and operated by different
organizations. In order to find and access a stored
document, each client program must understand the
different semantics of the local schemata. To address
this problem, enterprises often use data warehousing
solutions, wherein data from multiple sources is
collected in a centralized database. While this
approach simplifies the access and analysis of the
data stored in different repositories, it increases the
storage-related hardware and software costs, and
may require re-implementing specialized searches in
the data warehouses for data retrieval. Inconsistency

can arise due to a lag in synchronization between
sources and data warehouse.

One alternative to data warehousing is data
federation (Haas, 2002), wherein the data can
continue to be stored in its native locations and
retrieved via a middleware component. A number of
federated search engines (Dogpile site, n.d.,
Metacrawler site, n.d., Myriad Search site, n.d.) have
come to market to meet the demand. Federated
search is a technology that allows simultaneous
search from different databases. It has been
promoted as a method of providing “one stop
shopping” for searchers. A user enters search terms
using one search interface. The search is then
executed in all the associated databases, and the
results are returned in a single result list. This
technology is now being used for journal citation
databases, electronic journals, and other library
resources. However, keeping the data in its original
location and treating the data sources as “black
boxes” in the data federation architecture imposes
some challenging problems. There are issues such as
what is an effective way of communicating with the
heterogeneous data sources, what is an efficient way
to perform query generation and result integration,
and how can one easily eliminate duplicate
information from search results.

365
C. Chieu T., Chen S. and S. Fu S. (2007).
ENTERPRISE INFORMATION SEARCH SYSTEMS FOR HETEROGENEOUS CONTENT REPOSITORIES.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 365-371
DOI: 10.5220/0002349603650371
Copyright c© SciTePress

Recently, Service-Oriented Architecture (SOA)
has materialized as a preferred solution for
integrating distributed applications (Mahmoud,
2005, Weerawaran, 2005, Web Services
Architecture, n.d.). In SOA, an application that
needs to be accessed by another application can be
done by exposing a service interface. A service
consumer can discover a service from a service
directory and invoke the service remotely. SOA has
great promises to make the integration of
heterogeneous content repositories much simpler.

In this paper, we present a general architecture
and two different implementations of a service-
based information search system that integrates data
from various, heterogeneous data sources. The first
implementation is based on a federated database
management system, while the second one is based
on a one-index enterprise-scale search engine. To
illustrate the complexity and heterogeneity of the
environment, we choose two different data sources.
The first one is a powerful class of document
centric, collaborative groupware system known as
Lotus Notes/Domino document database (IBM
Lotus Notes/Domino site, n.d.). The second one is a
content repository server exposing Web services as
search interfaces. We will depict in details the
approaches of how to connect, map, search and
integrate information from these sources. Finally,
the relative merits and limitations of both
implementations will be presented and discussed.

2 ARCHITECTURE OF
INFORMATION SEARCH
SYSTEM

Figure 1 illustrates the conceptual architecture of an
information search system that connects to a number
of disparate, heterogeneous content repositories.
The system is designed based on a service-oriented
architecture with service components that interact
with external systems through service calls. The
front end of the system is a query generator. The
back end is an integration layer that consists of a
model transformation engine and a number of
service adaptors used to integrate the various,
heterogeneous data sources. The system also accepts
client search request through a service interface.
When a search request is received, the query
generator customizes the user query into valid
queries for the data sources. The transformation
algorithm of the query generator relies on the
semantic information about the data sources (Chen,

2005). Based on the transformation result, the query
generator creates an executable query for all the
related data sources and triggers the integration layer
with the query.

To serve the integration needs, the integration
layer is architected with a pluggable framework to
allow multiple adaptors to be plugged in. Adaptors
(Fu, 2005) are software modules made up of data
source driver and software routines to interact with
data sources. Adaptor may have the capability to
transform and map the data representation of a
remote data source into a common format to
facilitate integration. Different adaptors are used for
different types of data sources such as file-system
adaptor, relational database adaptor, XML Web
Services adaptor, etc.

IBM TJ Watson Research Center

Information Search System

Client Request

Integration Layer

Query Generator

…

…

Content
Repository 1

Service
Interface 1

Content
Repository 2

Service
Interface 2

Content
Repository N

Service
Interface N

Service
Adaptor N

Service
Adaptor 2

Service
Adaptor 1

Service Call

Service Call Service CallService Call

Model Transformation Engine

Figure 1: Conceptual architecture of an Information
Search System.

Figure 2: Schema of the common data model used to
represent a search result.

The search results from various data sources are
combined into a common data structure by the
model transformation engine before returning to the
search client. Translating and mapping various
schemas into a common data representation is
essential in the service based architecture
(Madhavan, 2003). This approach basically abstracts

ICEIS 2007 - International Conference on Enterprise Information Systems

366

the heterogeneity of the various source schemas into
a common one, and thus reduces the complexity of
the system implementation by separating it into data-
source independent and dependent implementations.
The “DocumentResult” schema of the data model
used for a document search result is given in Figure
2. The data structure contains a number of elements
to specify the common meta-data information about
the resulting document, These elements include the
relevance ranking (Score) of the document within
the search results, its original URI location
(DocumentID), server name (HostName), title
(Title), description (Description), file update date
(ModifiedDate), file name (FileName), file type
(MimeType) and other characteristics of the
document file.

3 IMPLEMENTATION OF
INFORMATION SEARCH
SYSTEM

In this study, two different implementations of the
information search systems are presented. The first
implementation is based on a federated database
management system (DBMS). It uses an IBM DB2
Information Integrator (DB2 II) as the back end
integration layer for hosting information from
various content sources and generating optimized
queries for the sources. The heterogeneous data
sources include a file system, a Lotus Notes database
(IBM Lotus Notes/Domino site) and an IBM DB2
Content Manager server (IBM DB2 Content
Manager site, n.d.). The second implementation is
based on one-index enterprise-scale search engine to
crawl, parse and index the aggregated contents of the
information sources. Basically, this latter one uses
IBM WebSphere Information Integrator, OmniFind
Edition (IBM WebSphere Information Integrator,
n.d.), which provides different crawlers to crawl and
aggregate the information of various content
sources. The details of these two implementations
are given in the following Sections.

3.1 Federated Search Server with
Federated Database Management
System

Federated database management system (DBMS)
provides a flexible and effective means for
transparent access to heterogeneous data sources
(Hass and Lin, 2002, Tork Roth, 2001). It offers a
unified interface for accessing data, thus relieving

component developers of much of the burden
associated with connecting, combining, filtering and
transforming data from the sources.

Figure 3 shows an implementation of a federated
search server with a federated DBMS, namely the
IBM DB2 Information Integrator (DB2 II). This
server exposes its search interfaces through Web
services. It consists of a front-end SQL generator as
the query generator, and a back-end DB2 II system
as integration layer. As data sources, three content
repositories consisting of a flat file system, a Lotus
Notes database, and an IBM DB2 Content Manager
server are used. To communicate with the data
sources, three types of wrappers from DB2 II are
used. Wrappers are adaptors by which DB2 II
interacts with data sources. DB2 II uses routines
stored in a library module to implement a wrapper.
Each wrapper supports various operations,
depending on the capabilities of the data sources that
the wrapper is supposed to access. DB2 II provides
a set of default wrappers for some common sources.
There are the DB2 wrapper, ODBC wrapper, table-
structured files wrapper, XML wrapper, and Web
Services wrapper. Wrapper is also responsible for
mapping the data representation of remote query
results into a table format as required by the
federated database.

IBM TJ Watson Research Center

DB2 Information Integrator

Web Services
Wrapper

IBM Content
Manager

Server

ODBC NotesSQL
Wrapper

Notes
Database

SQL Generator

Web Services

Web Services

DB2 Views (Common Data Model)

XML File
Wrapper

File
System

Client
Search

Application

Federated Search Server

Nickname
Tables

Nickname
Tables

Nickname
Tables

ODBC CallsNFS

Figure 3: Implementation of a federated search server
based on IBM DB2 Information Integrator and wrapper
technologies.

As mentioned earlier, Lotus Notes database is a
document-based database management system. It
has become a mainstay at many enterprises for
applications such as workgroup collaborations and
complex sales tracking and monitoring. Because
Notes organizes data into documents, Notes internal
database structure is not relational in design and is
far from tabular. Particularly, Notes allows users to
create and update documents using forms, and uses
views to define and display lists of documents. Its

ENTERPRISE INFORMATION SEARCH SYSTEMS FOR HETEROGENEOUS CONTENT REPOSITORIES

367

compound document data structure is designed for
maximum flexibility to support the rich object
collections in Notes text documents. Since Notes
users still have traditional analysis and reporting
requirements and need access to Notes information
from a variety of tools that rely on SQL data access,
a Lotus NotesSQL ODBC driver (Lotus NotesSQL
site, n.d.) has been made available for this purpose.
Thus, to connect to the Lotus Notes database in our
implementation, a NotesSQL driver incorporated
with a DB2 II ODBC wrapper is used. Once
connected, standard DB2 SQL statements can be
used to query the ODBC connection to the Notes
database. The wrapper then maps all the Folders,
Views and Forms within the Notes database to
simple relational database tables as nickname tables.

An example illustrating the mapping of the
Notes database views into DB2 II nickname tables
using the ODBC NotesSQL wrapper is shown in
Figure 4. Basically, all the Notes folders, views and
forms in the Notes database are mapped to DB2 II
nickname tables, and the Notes form fields and view
columns describing the Notes documents are
mapped to the columns in a nickname table. Since
Notes is more flexible about names than SQL, it
allows many special characters and sequences of
characters that are not part of the standard SQL
syntax when naming a form or view. Thus, certain
characters in Notes names such as periods, spaces,
backslash and forward slashes are mapped to the
“underscore” character in SQL names.

For the DB2 Content Manager repository that
exposes its service interfaces as Web services, DB2
II maps the service calls into nickname tables using
a Web service wrapper. Both input parameters and
output parameters of the Web service calls are
represented as columns within the corresponding
nickname tables. The tables and columns are
discovered and created by a DB2 II utility using the
WSDL and XSD files as inputs. The application that
accesses the Web services can then use a regular
SQL statement for that nickname. The SQL query
includes parameters for the columns representing the
input parameters. When a Web service call returns
complex and nested results, DB2 II uses multiple
nickname tables to hold data that are related via
primary and foreign key relationships.

Upon receiving a search request, the SQL
generator first composes and parses the user query
into valid DB2 II queries to be forwarded to the
integration layer. The wrappers in the integration
layer are responsible in executing the query on
individual data sources and retrieve the remote query
results back into table format. The final search

results are then combined and transformed into a
common data representation to be returned to the
search client. To simplify the implementation of the
model transformation, a DB2 view based on the
common schema of “DocumentResult” as given in
Section 2 is created to hold the intermediate results.
The DB2 view is generated using SQL statements by
selecting and joining the equivalent column names
in the nickname tables using concept mapping and
instance mapping (Chen, 2005) based on the
semantic relationships about the data source models.
Briefly, concept mapping is a renaming method that
translates the different names of the same concept in
different data sources, and instance mapping is an
interpretation method that correlates the equivalent
instances from different data models. In the current
implementation, the model transformation and
mappings are carried out manually by analyzing the
semantic concepts in the original data source
models.

IBM TJ Watson Research CenterNotes Database Views

DB2 II Nickname Tables

Figure 4: Example illustrating the mapping of Notes
database views into DB2 II nickname tables.

3.2 Integrated Search Server with
Enterprise Search Engine

Figure 5 illustrates the implementation of an
integrated search server with an enterprise search
engine. Similar to the federated search server, this
server also exposes its search interfaces through
Web services. It consists of a front end query
generator and a back-end enterprise search engine,
namely the IBM WebSphere Information Integrator
OmniFind Edition. The query generator interacts
with OmniFind through a Java search API. In this
implementation, the model transformation and
mapping functions of the integration layer are
incorporated in the Omnifind search engine. As data

ICEIS 2007 - International Conference on Enterprise Information Systems

368

sources, a similar set of content repositories
consisting of a flat file system, a Lotus Notes
database, and an IBM DB2 Content Manager server
are used. To connect to these data sources, three
different crawlers, namely a file system crawler, a
Notes crawler and a Content Manager crawler
provided by the OmniFind engine are used. The
crawling, parsing and indexing tasks for these
content repositories are performed based on a
sequence of scheduled processes in an internal
scheduler. The indexing results are combined in a
single collection of searchable index made available
for search.

In general, the OmniFind search engine is an
enterprise-scale search engine to allow searching of
items from databases, e-mail archives, Web sites and
more. The engine consists of a crawler, a parser-
indexer, and a run time that provides client interface
services. The crawler is used to spider through
online assets within the enterprise. Results are
parsed into individual words and links, which are
then assembled into an index. This index supports
search queries. Particularly, the Notes crawler can
find and parse attached documents in Notes forms of
Notes database. Data parsed and extracted from the
crawler is fed into the indexing engine. After
parsing, categorizing, and weighting the data from
the crawler, the engine generates an index that
becomes the searchable information to answer
search queries.

IBM TJ Watson Research Center Client
Search

Application

Parser & Indexer

File System
Crawler

File
System

Content Manager
Crawler

Web Services

DB2 Raw Data Store

Notes
Crawler

Notes
Database

Integrated Search Server

WebSphere Information Integrator
OmniFind Search Engine

Query Generator

Search API

IBM Content
Manager

Server

NFS Notes Driver CM Driver

Figure 5: Implementation of an integrated search server
based on IBM WebSphere Information Integrator
OmniFind search engine.

Upon receiving a search request, the query
generator first composes and parses the user query
into search queries in XML fragment syntax
(Carmel, 2003) to be accepted by OmniFind. Using
the OmniFind search API, document search is then
carried out by the search engine on the combined
search index representing the multiple content
repositories. The final search results are organized

into a common data representation, and returned to
the search client. An example of search results with
the search keywords of “websphere DB2 server” is
shown in Figure 6. The results illustrate a mixture of
search items from all three data sources. Each item
in the result list consists of a collection of meta-data
based on the common schema “DocumentResult”
that specifies the corresponding DocumentID,
relative ranking Score, Title, Description,
ModifiedDate, and other characteristics of the
documents. The items are displayed in an order
according to their ranking score that indicates the
relative keyword match rate among all documents.
The DocumentID is an URI that links to the native
location of the document, and is used to retrieve the
original content from its content repository.

IBM TJ Watson Research Center

from Notes
Database

from DB2
Content Manager

Web Services

from File
System

Figure 6: Example of search results from the integrated
search server.

4 DISCUSSIONS

Federated search, also known as meta-search, has
been promoted as a method of providing “one stop
shopping” for searchers. Users exercise a single
search interface and find items that they may
overlook otherwise. There are a number of Internet
federated search sites (Dogpile site, n.d.,
Metacrawler site, n.d., Myriad Search site, n.d.) that
provide the ability to search across multiple search
engines. However, the results obtained from these
federated engines are not as good as the “one-index”
integrated search engines (Google site, n.d., Yahoo!
Site, n.d.), because they do not actually crawl and
index the documents, hence without enough
knowledge to perform analysis to refine the search
results. Particularly, they lack the capability to
remove duplicate documents from the search results
from multiple sources. In contrast, integrated search

ENTERPRISE INFORMATION SEARCH SYSTEMS FOR HETEROGENEOUS CONTENT REPOSITORIES

369

engines usually include intelligent algorithms to
avoid storing multiple copies of the same documents
in the index. Ranking of the relevance of documents
is also an issue in federated search. Federated search
engines can not perform relevance ranking of
documents effectively. They can only predict which
document is a better match by examining the titles,
snippets, and URIs from the results. In contrast,
integrated search engines can rank documents based
on contents in the documents, number of links to the
documents, and other factors.

Our federated search system also suffers the
same limitation as mentioned above for federated
search. Particularly, the NotesSQL driver used to
connect to the Notes database lacks the capability of
discovering document attachments in Notes forms,
thus is incapable of providing search results on
attached documents.

Although federated search system is subject to
lower-quality than integrated search, it possesses
other advantages. It is highly scalable because it
links directly to data sources and can compose the
search results in real-time. Thus, the information
obtained is more up to date than the integrated
search system. In contrast, the integrated search
engine has to produce a local index containing all
documents that it finds, and may eventually run out
of capacity due to the rapidly growing number of
documents to index. Moreover, there is always a
time lag between when a document is changed and
when the one-index search engine updates its index.

Resource requirement may be another advantage
of the federated search server. Federated search
system leverages distributed engines, thus may not
require much resources to support the runtime
performance. On the contrary, integrated search
system needs to frequently produce and store a local
index, thus may require excessive resources to
realize acceptable performance.

5 CONCLUDING REMARKS

In this paper, we present a general architecture and
compare two implementations of a service-based
information search system to search on multiple
content repositories. To illustrate the heterogeneity
of the complex environment, we select as data
sources a combination of a Notes database, an IBM
DB2 Content Manager server that uses Web services
for search interfaces, and a Windows file system.
First implementation is a federated search system
that integrates and maps the various schemas of the
sources into a common interface. This system

leverages data search capabilities in native source
locations, thus offering the advantages of scalability
and accessibility to real-time information. It is
simple to implement, and does not require much
resources to support the runtime. However, it suffers
the limitations of incapable to perform relative
ranking of search results, ineffective in eliminating
duplications, and unable to find document
attachments in Notes forms from Notes databases.
Second implementation is an integrated search
system. This system uses crawlers and indexers to
collect and analyze information from different
sources into a single index. It offers the ability to
perform relative ranking of documents, and
eliminates duplications in search results. However,
it undergoes the limitation of scalability, and may
require excessive resources for acceptable
performance in frequently refreshing the forever
growing index of information.

REFERENCES

Lyman et. al., 2003. How Much Information 2003?. From
http://www.sims.berkeley.edu/research/projects/how-
much-info-2003/

Haas et. al., 2002. Data Integration through Database
Federation. IBM Systems Journal, Vol. 41, No. 4, 578-
596.

Dogpile site. From http://www.dogpile.com/.
Metacrawler site. From http://www.metacrawler.com/.
Myriad Search site. From http://www.myriadsearch.com/.
IBM Lotus Notes/Domino site. From http://www-

142.ibm.com/software/sw-
lotus/products/product4.nsf/wdocs/noteshomepage.

Mahmoud, Q. H., 2005. Service-Oriented Architecture
(SOA) and Web Services: The Road to Enterprise
Application Integration (EAI). Sun Developer
Network Web site:
http://java.sun.com/developer/technicalArticles/WebS
ervices/soa/.

Weerawarana et. al., 2005. Web Services Platform
Architecture : SOAP, WSDL, WS-Policy, WS-
Addressing, WS-BPEL, WS-Reliable Messaging, and
More. Prentice Hall.

Web Services Architecture. From
http://www.w3.org/TR/2004/NOTE-ws-arch-
20040211/.

Chen et. al., 2005. Semantic Query Transformation for
Integrating Web Information Sources. In Proc. 7th
Int’l Conference on Enterprise Information Systems,
176-181.

Fu et. al., 2005. An Intelligent Event Adaptation
Mechanism for Business Performance Monitoring. In
ICEBE 2005, 2005 IEEE Int’l Conference on e-
Business Engineering, 558-563.

ICEIS 2007 - International Conference on Enterprise Information Systems

370

Madhavan, J., and Halevy, A., 2003. Composing
Mappings among Data Sources. In VLDB, 572-583.

IBM DB2 Content Manager site. From http://www-
306.ibm.com/software/data/cm/cmgr/.

Hass, L., and Lin, E., 2002. IBM Federated Database
Technology. IBM DeveloperWorks Web site:
http://www-
128.ibm.com/developerworks/db2/library/techarticle/0
203haas/0203haas.html.

Tork Roth et. al., 2001. An Architecture for Transparent
Access to Diverse Data Sources. Component Database
Systems, 175-206.

Lotus NotesSQL site. From http://www-
12.lotus.com/ldd/doc/notessql/3.0.1/notes_sql.nsf/662
08c256b4136a2852563c000646f8c?OpenView.

IBM WebSphere Information Integrator. From
http://www-
306.ibm.com/software/data/integration/db2ii/editions_
womnifind.html.

Carmel et. al., 2003. Searching XML Documents via XML
Fragments. In Proc. 26th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval.

Google site. From http://www.google.com/.
Yahoo! site. From http://www.yahoo.com/.

ENTERPRISE INFORMATION SEARCH SYSTEMS FOR HETEROGENEOUS CONTENT REPOSITORIES

371

