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Abstract: The research reported in the paper aims the development of a suitable neural architecture for implementing 
the Bayesian procedure in solving pattern recognition problems. The proposed neural system is based on an 
inhibitive competition installed among the hidden neurons of the computation layer. The local memories of 
the hidden neurons are computed adaptively according to an estimation model of the parameters of the 
Bayesian classifier. Also, the paper reports a series of qualitative attempts in analyzing the behavior of a 
new learning procedure of the parameters an HMM by modeling different types of stochastic dependencies 
on the space of states corresponding to the underlying finite automaton. The approach aims the development 
of some new methods in processing image and speech signals in  solving pattern recognition problems. 
Basically, the attempts are stated in terms of weighting processes and deterministic/non deterministic 
Bayesian procedures. 

1 PRELIMINARIES 

Stochastic models represent a very promising 
approach to temporal pattern recognition. An 
important class of the stochastic models is based on 
Markovian state transition, two of the typical 
examples being the Markov model (MM) and the 
Hidden Markov Model (HMM). In a Markov model, 
the transition between states is governed by the 
transition probabilities, that is, the state sequence is 
a Markov process and the observable state is then 
directly observed as the output feature. However, 
usually, there are two sorts of variable to be taken 
into consideration, namely the manifest variables 
which can be directly observed and latent variables 

that are hidden to the observer. The HMM model is 
based on a doubly stochastic process, one producing 
an (unobservable) state and another producing an 
observable feature sequence.  

The doubly stochastic process is useful in coping 
with unpredictable variation of the observed patterns 
and its design requires a learning phase when the 
parameters of both, the state transition and emission 
distributions have to be estimated from the observed 
data. The trained HMM can be then used for the 
retrieving (recognition) phase when the test 
sequence (complete or incomplete) observations 
have to be recognized.    

The latent structure of observable phenomenon is 
modeled in terms of a finite automaton Q, the 
observable variable being thought as the output 
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produced by the states of Q.  Both evolutions, in the 
spaces of non observable as well as in the space of 
observable variables, are assumed to be governed by 
probabilistic laws.  

In the sequel, we denote by ( ) 0nn ≥Λ  the 
stochastic process describing the hidden evolution 
and by ( ) 0nnX ≥  the stochastic process corresponding 
to the observable evolution. 

Let Q be the set of states of the underlying finite 
automaton; mQ = .  We denote by nτ  the 
probability distribution on Q at the moment n. Let 
( )P,,ℑΩ  be a probability space, ( )σ,C,ℵ  be a 
measure space, where σ  is a σ -finite measure.  

We assume that *CQ: →ρ  is a σ -experiment, 
that is for any Qq∈ , ( ) σρ <<q , where C* is the 
set of all probability measures defined on the σ  
algebra C. Let ( ).fq  be a measurable version of the 

Radon-Nycodim derivative ( )
σ
ρ
d

qdfq = . The output 

of each state Qq∈  is represented by the random 
element ℵ→Ω:X  of density function ( ).fq . Let 
ξ  be the apriori probability distribution on Q; for 
any Qq∈ , ( )qξ  is the subjective credibility that q 
is the true emitting state at any moment. We assume 
that ( ) 0q,Qq ≠∈∀ ξ . The conclusions on the 
hidden evolution are derived using the Bayesian 
procedure when the apriori probability distribution 
ξ  and the set of density functions ( )Qq,f q,n ∈  are 
known. 

If ),0[: ∞→×QQL  is a risk function, then, for 

any  Qq,q * ∈ , ( )*q,qL  represents the cost implied 
by taking the output emitted by q  as being emitted 
by q*. The outputs of the automaton are represented 
by the sequence of random elements ( ) 0nnX ≥ , where 
the output at the moment n, nX  is distributed ( )nqρ  
if it was emitted by the state nq .  

A random decision procedure is an element of 
  

[ ]( ){ }ℵ
∈= Q1,0t/tR , 

 where, for any ,x,Qq,Rt ℵ∈∈∈ ( )( )qxt  is the 
probability of deciding that the output x is produced  
by the state q. 

For any Rt∈  we denote the expected risk by,  
( ) ( ) ( ) ( ) ( ) ( )∑∑∫

∈ ∈ ℵ

=
Qq Qq

qq dxxfxtqqLqftR σξξ ,,,  

The Bayesian decision procedure Rt~∈  assures 
the minimum risk that 
is, ( ) ( ) ( )f,f,t,Rinff,t~,R

Rt
ξΦΔξξ

∈
=  and it is given 

by, 
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( )2 ( ) ( ) ( ) ( )∑
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⎨
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q\Qq*
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The true evolution in the space Q of non 

observable variables is governed by probabilistic 
laws, ( ) 0nn ≥τ , where nτ  represents the probability 
distribution on Q at the moment n.  

Let ( ) 0nnu ≥  be a sequence of subjective utilities 
assigned to the states of the automaton; 

),0[:,0 ∞→≥∀ Qun n . We assume that, for any 
( ) 0qu,1n

Qq
n ≠≥ ∑

∈

.  For any 0n ≥  and Qq∈ , 

( )qun  stands for the subjective utility assigned to 
the state q at the moment n. Typically, ( )qun  can be 
taken as the relative emitting frequency of the state q 
during the time interval [ ]n,0 . 

In case the HMM evolution is directly 
observable of a certain time interval [ ]N,1 , that is a 
sequence of N-realizations of both processes ( ) 0nn ≥Λ  
and ( ) 0nnX ≥  are available to the experimenter, we 
get a learning sequence of length N which can be 
used to estimate the hidden evolution on Q as well 
as to derive estimations for the conditional density 
functions ( )Qq,f q,n ∈ . Let ( ) 1nng ≥  be a sequence of 
measurable functions, ),0[: ∞→ℵ×ℵng , 1n ≥∀ , 
such that the following regularity conditions hold, 

 
( ) ( ) ( ) 1dyy,xg,1nA n1 =≥∀ ∫

ℵ

σ , σ−.s.a  

( ) ( ) 1y,xg0,y,x,1nA n2 ≤≤ℵ∈∀≥∀  
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( ) ( )( ) =∈∀
∞→

XxgEQqA nqn
,lim,3

( ) ( ) ( ) ( )xfdyyfyxg qqnn
=σ∫

ℵ
∞→

,lim , σ−.s.a  

Our method is a supervised technique based on 
the learning sequence ( )( )1n/X,S nn ≥= Λ , where 
the true probability distribution nτ is approximated 
by a weighting process ( )( ) 0nn Qq,q ≥∈ξ  defined by 

( ) ( ) ( )
( ) ( )∑

∈

=

Qq
n

n
n quq

quqq
ξ
ξξ  representing the guess that q 

is the emitting state at the moment n. The decision 
procedure *

nt
~  is defined by ( )1  in terms of ( )qnξ  

and ( ) ( ) ( ) ( )∑
=

=
n

1j
jnj

n
q,n X,xgq,

qn
1xf Λδ
ξ

, where 

( )
⎩
⎨
⎧

≠
=

=
qq,0
qq,1

q,qδ . The criterion function ( )x,qT  

given by ( )2  is replaced by 
( ) ( ) ( ) ( )∑

∈

=
Qq

q,nn xfq,qLqx,qT ξ . 

2 QUALITATIVE ANALYSIS OF 
THE LEARNING SCHEME 

Let ( ) ( )( )f,t~,REt~R *
n

*
n ξξ =  be the expected risk 

corresponding to the random decision procedure *
nt

~  
when ξ is the true probability distribution on Q and 

( )Qq,ff q,n ∈=  is the set of output density 
functions.  

Theorem 1. Let ( ) 0nng ≥  be a sequence of 
measurable functions such that the assumptions A1, 
A2, A3, A4 hold, where,  
( )4A for any 1k ≥  , ℵ∈∈ x,Qq , 

 
( )( ) ( )xfX,xgE qkq = . 

 
If  ( )( )1n/X,S nn ≥= Λ  is a learning sequence 

such that the random elements ( ) 1n,X, nn ≥Λ  are 
independent, nΛ  is distributed ξ  and nX  is 
distributed qf  if  qn =Λ , then,  

 
( ) ( )f,t~Rlim *

nn
ξΦξ =

∞→
. 

 

Proof: The conclusion can be established using 
straightforward computations and invoking the 
strong law of large numbers and the dominated 
convergence theorem. 

Theorem 2. Let ( )( )1n/X,S nn ≥= Λ  be a 
learning sequence such that the random elements 
( ) 1n,X, nn ≥Λ  are independent, nΛ  is distributed 

nτ  and nX  is distributed qf  if  qn =Λ . If  for the 
sequence ( ) 0nng ≥ , the assumptions A1, A2, A3, A4 

hold and, for any Qq∈ , ( ) ( )qq
n
1lim

n

1j
jn

ττ =∑
=∞→

 , 

then, 
 

( )( ) ( )f,f,t~,RElim *
nn

ξΦτ =
∞→

. 

 
Proof: The following series of equations can be 

derived, 
 

( )( ) ( ) ≤Φ−≤ fftRE n ,,~,0 * ττ  

≤ ( ) ( ) ( ) ( ){ } ( )+στ−ξ∑ ∫
∈ ℵQq

qqnnq dxxfqxfqEL ,  

( ) ( ) ( )

( ) ( ) ( )dxxfxft

qq
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⎡
−+

,,

1,
1  

 
Obviously, the second term converges to 0 when 

∞→n .  
Also, using the strong law of large numbers, we 

obtain,  
 

( ) ( ) ( ) ( )[ ] 0,,1lim
1

=−Λ∑
=∞→

n

j
qjjnjn

xfqXxgq
n

τδ  a.s.-P 

for any Qqx ∈ℵ∈ , . 
 
Using the dominated convergence theorem, we 

get 
 

( ) ( ) ( ) ( ) 01lim
1

, =
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
− ∑

=∞→
xfq

n
xfqE q

n

j
jqnnn

τξ  a.s.-P 

 
for any Qqx ∈ℵ∈ ,  which finally implies that, for 
any Qq∈ , 
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( ) ( ) ( ) ( ) ( ) 01lim
1

, =
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−∫ ∑

ℵ∈ =∞→
x

q

n

j
jqnnn

dxxfq
n

xfqE στξ

which implies the conclusion of Theorem 2. 
Theorem 3. Assume that the conditions 

mentioned in theorem 2 hold. If, for any Qq∈ , 
( ) ( )qqlim nn

ττ =
∞→

 , then, 

 
( )( ) ( )fftRE nnn

,,~,lim * ττ Φ=
∞→

. 

 
Proof: Since  
 
( )( ) ( ) ( ) ( )[ ]+Φ−=Φ− fftREfftRE nnnnn ,,~,,,~, ** ττττ

+ ( ) ( )[ ]ffn ,, τΦ−τΦ  
we obtain, 

( ) ( ) ≤Φ−Φ ffn ,, ττ  

≤ ( ) ( ) ( ) ( )+−∑ ∫ ∑
∈ ℵ ∈Qq Qq

qqnqq dxxftxtxfL στ ,,~*
,  

+ ( ) ( )∑
∈

−
Qq

nq qqL ττ . 

 
Using the dominated convergence theorem, we 

get 
 

( ) ( ) ( ) ( ) 0,,~lim *
, =−∑ ∫ ∑

∈ ℵ ∈∞→ Qq Qq
qqnqqn

dxxftxtxfL στ  

and, consequently,  
( ) ( )[ ] 0,,lim =Φ−Φ

∞→
ffnn

ττ . 

 
Using Theorem 2, the definition of procedures 

( ) ( )ftft n ,,, ττ  and dominated convergence 
theorem, we get, 

 
( ) ( )( )[ ] 0,,,,lim =−Φ

∞→
fftRf nn

τττ  

and 

( ) ( ) ( ) ( ) ( )
⎪⎩

⎪
⎨
⎧

⎢
⎣

⎡
−∑∑ ∫

∈ ∈ ℵ
∞→ Qq Qq

qnqn
dxxtxfqqqLE στ *

,
~,lim  

( ) ( ) ( ) ( ) 0,, =
⎪⎭

⎪
⎬
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⎥
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⎤
− ∫
ℵ

dxxftxfq nqq σττ  

 
Since 

 

( ) ( ) ( )( ) ( ) ( ) ( )
⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥∑ ∑ ∫⎨ ⎬

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
E L q,q τ q -τ q f x t τ ,f,x σ dx =0n q q n
qÎQqÎQ À

and 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )+
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⎪
⎨
⎧

⎢
⎣

⎡
−∑∑ ∫

∈ ∈ ℵQq Qq
qnqnnqn dxxtxfqxfqqqLE σξτ *

,,
~,

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )*
, ,q f x q f x t x dx L q qn n q q n q q n

q Q
ξ τ σ τ τ

⎫⎤⎪− ⎥ ≤ −∑∫ ⎬
⎥⎪ ∈ℵ ⎦⎭

 

we finally get, 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )*lim , , ,E L q q q f x q f x t x dxn q n n q n qn q Qq Q
τ ξ σ

⎧ ⎡⎪ ⎢ − +∑ ∑ ∫⎨
⎢→∞ ⎪ ∈ ∈ ℵ⎣⎩

( ) ( ) ( ) ( )( ) ( ) ( )* 0, ,q f x q f x t x dxn n q q n qξ τ σ
⎫⎤⎪− ⎥ =∫ ⎬
⎥⎪ℵ ⎦⎭

, 

which implies 
( ) ( )[ ] 0f,f,t~,RElim *

nnn
=−

∞→
τΦτ . 

 
Let us assume that ℵ  is a denumerable set, 
( ) ℵ∈∀= x,1xσ . Obviously, taking ( ) 0nng ≥  such 

that for any 0n ≥  and for any ℵ∈y,x , 
( ) ( )y,xy,xgn δ= , the conditions A1, A2, A3 hold. 

Since for any Qq∈ , 1k ≥ , 
( )( ) ( ) ( ) ( )xfyfy,xgX,xgE q

y
qkkq == ∑

ℵ∈

, we get that 

A4 also holds. 
Theorem 4. Let ( )( )1n/X,S nn ≥= Λ  be a 

learning sequence such that ( )1n,n ≥Λ  is a Markov 
chain of stationary transition probabilities having an 
unique recurrent class Q’. If ( ) 1n,X n ≥  are 
independent and nX  is distributed qf  if qn =Λ , 
then 

 
( )( ) ( )fftRE nn

,,~,lim * ττ Φ=
∞→

, 

 
where τ  is the probability distributions of 1Λ . 

Proof: For Qq∈ , ℵ∈x , we define,  
 

( ) ( )( ) ( ) ( )xXqxf ,,,3 δδ Λ=Λ . 
 
Obviously, f is ( )11,XΛℑ -measurable. Since 

( ){ }=Λ 11 , XfE  

( ) ( ) ( ) ( ) ( ) ( ) ∞<== ∑∑
ℵ∈ ∈

xfqqxfxxqq q
x Qq

q ττδδ ,, , 

 
we obtain,  

( ) ( ){ } ( ) ( )xfqXfE qτ=Λ 11 ,4 . 
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Also, the series ( )( )( )
∑

ℵ×∈Qxq
xqxq

r
,

,, **  converge 

uniformly in ( )** ,xq .  We get that, for f defined by 
( )3 , the conditions of Theorem 1 hold.  

Using ( )4 , Theorem 1 and the dominated 
convergence theorem, we get 

( ) ( ) ( ) ( )[ ] ( ) 0lim , =−∫
ℵ

∞→
dxxfqxfqE qqnnn

στξ , 

which implies 
( ) ( ) ( ) ( )[ ] ( ) 0lim , =−∑ ∫

∈ ℵ
∞→ Qq

qqnnqn
dxxfqxfqEL στξ . 

 
Finally, since 
 

( )[ ] ( )
( ) ( ) ( ) ( )[ ] ( )∑ ∫

∈ ℵ∞→
−≤

≤Φ−≤

Qq
qqnnq

n

n

dxxfqxfqEL

fftRE

στξ

ττ

,

*

lim

,,~,0
 

we get 
( )( ) ( )fftRE nn

,,~,lim * ττ Φ=
∞→

. 

3 NEURAL IMPLEMENTATION 

We assume that dR=ℵ . Then the neural 
architecture consists of the layers HX F,F  of d and 
respectively Q  neurons. The neurons of the input 
layer XF have no local memory, they distribute the 
corresponding inputs toward the neurons of the 
hidden layer HF . Each neuron of HF  is assigned to 
one of the pattern classes from Q. For simplicity 
sake, we’ll refere to each neuron of HF  by its 
corresponding pattern class.  

The local memory of each neuron 
HFq∈ consists of ( )qnξ  and the parameters needed 

to compute q,nf . The activation function of the 
neuron HFq∈  at the moment n is 

( ) ( ) ( )qfh nqnqn ξ= xx ,, . The layer HF  is fully 
connected, the connection from q to q is weighted 
by ( )( )q,qL− . Consequently, the input 

( )dxx ,...,1=x  applied to XF  induces the neural 
activations, 

 
( ) ( ) ( ) ( )

( ) H

Qq
qnn

FqqT

fqqLqqnet

∈−=

=ξ−= ∑
∈

,,

,0, ,

x

x
. 

 

The recognition task corresponds to the 
identification of the states q  for which ( )x,qT  is 
minimum. This task is solved by installing a discrete 
time competitive process among the neurons of HF .  
Let ( ) ( )( )t,qnetftSq =  be the output of the neuron 

HFq∈  at the moment t, where the competition 
process starts at the moment 0 and the activation 

function f is given by ( )
⎩
⎨
⎧

<
≥

=
0u,u
0u,0

uf . We denote 

by ( ) ( )( )Hq Fq,tStS ∈=  the state at the moment t. 
The initial state is ( ) ( )( )( )HFq,0,qnetf0S ∈= .  

The synaptic weights of the connections during 
the competition are, 

⎩
⎨
⎧

≠−
=

=
qq,

qq,1
w q,q ε

 , 

where 0>ε  is a vigilance parameter.  
The update of the state is performed 

synchronously, that is, for any HFq∈ ,  
 

( ) ( ) ( )

( ) ( ) ( )∑

∑

∈

≠

ε−ε+=

=ε−=+

HFq
qq

qq
qq

tStS

tStStqnet

1

1,
 

( ) ( )( )1t,qnetf1tSq +=+ . 
 
The conclusions concerning the behavior of the 

competition in the space of states stem from the 
following arguments. Note that ( ) 0tSq ≤ , for any 

0t ≥  and HFq∈ . 
1. If ( ) 0tSq = , then ( ) 01thq ≥+ , hence 
( ) 01tSq =+ . Moreover, for any ( ) 0'tS,t't q =≥ . 
2. Assume that for some HFq∈ , 0t ≥ , 
( ) 0tSq < . If ( ) 01t,qnet <+ then 

 
( ) ( ) ( ) ( )tStStS1tS0 q

q'q
'qqq ≥−=+≥ ∑

≠
ε  and 

( ) ( )tS1tS qq =+  if and only if ( ) 0tS 'q =  for all 
q'q ≠ . 

3. Assume that for some HF'q,q ∈ , 0t ≥ , 
( ) ( ) 0tStS q'q <= . Then  
 

( ) ( ) ( ) ( )∑
∈

−+=+
HFq

qq tStS11t,qnet εε , 

( ) ( ) ( ) ( )∑
∈

−+=+
HFq

q'q tStS11t,'qnet εε , 
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that is ( ) ( ) 01tS1tS q'q ≤+=+  and, for any t't ≥ , 
( ) ( ) 0'tS'tS q'q ≤= . 
4. Assume that for some HF'q,q ∈ , 0t ≥ , 
( ) ( ) 0tStS q'q << . Then,  

( ) ( ) ( ) ( )∑
∈

−+=+
HFq

qq tStS11t,qnet εε , 

( ) ( ) ( ) ( )∑
∈

−+=+
HFq

q'q tStS11t,'qnet εε , 

that is ( ) ( )1t,'qnet1t,qnet +>+ .  
Obviously, if ( ) 01t,'qnet ≥+  then 
( ) ( ) 01tS1tS q'q =+=+ . Also, if 
( ) ( )1t,'qnet01t,qnet +≥>+  then  
 

( ) ( ) ( )1tS01t,'qnet1tS q'q +=≤+=+ , 
 
so we get ( ) ( )1tS1tS q'q +≤+ .  

Finally, if ( ) 01t,qnet <+  then  
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )1,'1

11,

' +=ε−ε+>

>ε−ε+=+

∑

∑

∈

∈

tqnettStS

tStStqnet

H

H

Fq
qq

Fq
qq

, 

that is ( ) ( )1tS1tS q'q +<+ .  
Consequently, if ( ) ( )tStS q'q < , then 
( ) ( )1tS1tS q'q +≤+ . Moreover, for any 

,t't ≥ ( ) ( )'tS'tS q'q ≤ .  
From  
 

( ) ( ) ( ) ( ) ( )( )tStS11tS1tS 'qq'qq −+=+−+ ε  
we get  

( ) ( ) ( ) ( ) ( )( )0S0S1tStS 'qq
t

'qq −+=− ε , 
 
that is if both components of the state vector were 
different from 0, for any 0t ≥ , then   

( ) ( )( ) ∞=−
∞→

tStSlim 'qqt
, hence ( )( ) −∞=

∞→
tSlim 'qt

, 

which obviously contradicts the conclusion 
established by 2.  

We arrived at the conclusion that there exists 
( ) 0'qt ≥  such that ( ) 0tS 'q =  for any ( )'qtt ≥ . 

5. Assume that for HF'q,q ∈ , 
( ) ( )xx ,',0 qTqT << , ( ) ( ) 00S0S q'q << .  

Using the previously obtained conclusions, we 
get that, for any 0t ≥ , ( ) ( ) 0tStS q'q ≤≤  and there 
exists ( ) 0'qt ≥  such that ( ) 0tS 'q =  for any 

( )'qtt ≥ . Therefore, the competition installed by the 
above mentioned process among the neurons of HF  

determines that the outputs of all neurons q’ that 
received values ( ) ( )xx ,min,' qTqT

HFq∈
>  are inhibited 

in a finite number of stages, that is there exists fint  
such that ( ) 0tS fin'q ≠  if and only if 
( ) ( )xx ,min,' qTqT

HFq∈
= .  

Moreover, using the remark 3, we get that, for 
any HF"q,'q ∈  such that 

 
( ) ( ) ( )xxx ,min,",' qTqTqT

HFq∈
== , 

( ) ( ) 0tStS fin"qfin'q ≠=  
 

and for any 0t ≥ , ( ) ( )tStS "q'q = . 
The local memories of the hidden neurons are 

determined in a supervised way by adaptive learning 
algorithms using a learning sequence 

( )( )1n/X,S nn ≥= Λ . The recurrent relations for 
( ) Hnq,n Fq,1n,q,f ∈≥ξ  are derived in terms of the 

particular relationships of ( )( ) ( )( )yx,, nn gqu .  

4 CONCLUSIONS 

The supervised estimation techniques of the 
Bayesian decision procedure in pattern recognition 
presented in the paper were tested against data in 
automated speech recognition.   
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