
A PERSONAL FILE SYSTEM OVER EMAIL STORAGES
Developing Towards a Persistent Internet Storage for Mobile Users

Chih-Yin Lin, Shih-Fang Chang and Chen-Hwa Song
Industrial Technology Research Institute,195 Sec. 4, Chung-Hsing Rd., Chutung, Hsinchu 310, Taiwan

Keywords: Email Quota, Internet Storage, Personal File System, Utility Computing.

Abstract: In 2004 Jones (Jones, 2004) developed a software tool called GmailFS that turns GoogleTM Gmail into a
two-gigabyte file folder in the personal computer. Such virtual folder is not just an interesting innovation
but quite useful as a backup depot hosted remotely at Google. GmailFS is technically sound but relies
critically on the hypertext scripts of Gmail web pages. Thus, it can be easily averted by the mail server
administrator with minor changes of the html scripts or web topology. In this paper, we use another
approach to achieve the same goal of GmailFS and extend the capability to accommodate all email servers
rather than just Gmail. The proposed system is named ePFS that utilizes three primitive email protocols, i.e.
SMTP and POP3/IMAP, to respectively store and retrieve the data in and from the e-mail servers. In
addition, we enforce security features of user privacy, data confidentiality and error recovery in ePFS. The
proposed system is a work in progress heading toward a persistent Internet storage for mobile applications.

1 INTRODUCTION

For the past decade, the storage technology has
expanded the disk space of a standard computer hard
drive from several megabytes to hundreds of
gigabytes. Although the disk space is still an
important hardware resource, the average cost per
storage unit has significantly declined. Therefore,
the available space is now not as limited as it was
when provided to software programs in a personal
computer or to an individual user space in a
networked service. In the near future, it might be
possible for a server to allocate virtually unlimited
space for every user that, ideally, would facilitate the
development of all kinds of large scale Internet
services.

Email is the primary service that almost
everyone who has Internet access has at least one
email accounts, e.g. school email, company email,
Internet webmail, etc. A typical email service
provides one hundred megabytes space for each user,
if it is complimentary. Recently, there is a trend for
email service providers to give its users free of
charge a relatively large enough email quota. The
email quota is now, for instances, two gigabytes in
AIM mail (http://mail.aol.com), 2.7 gigabytes in
Gmail (http://mail.google.com), five gigabytes in
Inbox (http://www.inbox.com/), and unlimited in

Yahoo mail (http://mail.yahoo.com/), etc. The quota
of several gigabytes in practice allows an active user
to accommodate almost all her/his emails without
having to worry about exceeding the mail quota. On
the other hand, however, for most users a lot of
portion of this enormous space is simply left unused
and wasted.

Lately there is an idea to make a different use of
such large size email quota (Jones, 2004; Viksoe,
2005; Traeger et al., 2006), and some tools are being
developed. The most famous tool is GmailFS (Jones,
2004), developed by Richard Jones no longer after
Gmail’s beta released. In essence, GmailFS mounts
Gmail’s email space as a networked drive in a Linux
system. Although a two gigabyte space is not very
large nowadays, as a remote folder hosted by a
known service provider, it might be a good
alternative for the file backup purpose (Chervenak et
al., 1998). After all, such virtual folder is somehow
more crash-free than the file system within any
consumer level computers. The downside of the idea
is that files placed in a virtual folder might lose the
privacy and confidentiality since they are actually
stored remotely at somewhere else with no security
guarantee.

Inspired by GmailFS, in this paper we will
propose a new personal file system named ePFS to
employ email spaces as virtual file folders. ePFS

211
Lin C., Chang S. and Song C. (2007).
A PERSONAL FILE SYSTEM OVER EMAIL STORAGES - Developing Towards a Persistent Internet Storage for Mobile Users.
In Proceedings of the Second International Conference on Wireless Information Networks and Systems, pages 195-200
DOI: 10.5220/0002147801950200
Copyright c© SciTePress

uses three primitive mail protocols, simple mail
transfer protocol - SMTP (Postel, 1982), post office
protocol version 3 - POP3 (Myers, 1996) and
Internet message access protocol - IMAP (Crispin,
2003), to respectively function as the operations of
file storing and retrieval. Moreover, we consider
several security features in ePFS, including
confidentiality, integrity, and availability. With these
features, ePFS can provide access to email space as
access to a local file folder, and in a more secure
manner. As a software application, ePFS supports
friendly user experiences of file storing and retrieval,
and outdoes GmailFS with a unified method and
interface to communicate with different email
servers.

The idea and implementation of using POP3/
SMTP to backup files was proposed in 2006 and the
system being developed is called MailBackup
(Traeger et al., 2006). Their prototype uses optional
encryption to provide data confidentiality. However,
it does not employ any fail recovery mechanism.
The file being processed is encrypted and sent as a
whole to an available email server, which is not loss
guarantee once the server fails.

In the long run we hope to improve ePFS to
support mobile devices like cellular phones with a
unified, effective and efficient virtual storage access
via Internet. ePFS is a work in progress that validate
the concept of using today’s large email quota as
virtual file folders. In this paper, we will show how
ePFS is designed and constructed. We consider
ePFS the first phase development of a persistent
Internet storage for mobile users. Eventually, the
system will provide mobile users and mobile
applications with virtually unlimited and secure
storage.

ePFS has the following advantages:
 Apply to all email servers that support SMTP

and POP3/IMAP protocols;
 Provide guaranteed retrieval of remotely

stored files with a tolerance ratio of server
failures;

 Dispatch sensitive files to email servers of
higher degree of trust;

 Dispatch frequently accessed files to email
servers of better availability;

 Assure the confidentiality of user data and
files stored at email servers;

 Assure the integrity regarding the data being
retrieved from the email servers;

 Support the integration of Windows™ file
manager user interface.

2 RELATED WORKS

We briefly review two related works, GmailFS and
Parchive (http://parchive.sourceforge.net/). GmailFS
is a Linux platform software that magically
transforms Gmail storage into a file folder. Parchive
is a data parity checking and archive tool using
Reed-Solomon codes (Plank, 1997; Plank & Ding,
2005). We employ Parchive in ePFS to against
server failure when retrieving files from the email
server.

2.1 GmailFS

Gmail is a free, search-based webmail service
provided by Google™. Like its Internet search
engine, there is no fancy user interface or
complicated functions, but simple control tabs and
large 2.7 gigabytes email storage. The free storage
space that a Gmail account provides is larger than
almost all free Internet storage services. It soon
becomes a trend igniting free emails to upgrade their
services for their users with mail quota in terms of
gigabytes. Some major free email services, e.g.
Microsoft, Yahoo, and AOL, are as depicted in
Table 1.

Table 1: Comparison of some free email services.

In August 2004, Richard Jones tried to utilize the

large space provided by Gmail in a different way
and released the first version of the famous software
tool called GmailFS (Jones, 2004). GmailFS
provides a mountable Linux file system that uses a
valid Gmail account as its storage space. Almost all
UNIX/Linux file manipulative instructions can be
used to access files stored in GmailFS. For GmailFS,
it uses the libGMail (http://libgmail.sourceforge.net/)
to access email through the Gmail web user interface,
and then translates email actions to file operations,
applies the file operations to a user space virtual file
system created by an application interface FUSE
(http://fuse.sourceforge.net/). LibGMail is a Python
binding to provide access to Google's Gmail web-
mail service, where FUSE is a Linux kernel module
bridges actual kernel to a user space file system. The
system architecture of GmailFS is shown in Figure 1.

There are some drawbacks in GmailFS. Firstly, it
does not provide confidentiality regarding the file

WINSYS 2007 - International Conference on Wireless Information Networks and Systems

212

when transferring over the network or storing into
the email server. Anyone with network sniffing
skills can easily listen and obtain the plaintext of the
file content. Like all email servers, the administrator
of Gmail can access all emails and files stored in
Gmail system. Secondly, The GmailFS does not
work once Gmail changes its web user interface.
This is the most critical disadvantage of GmailFS
and the reason why it has to update its version very
frequently to reflect the updates of Gmail. For the
purpose of consistent access, since GmailFS works
for Gmail only, its stability relies on the accessibility
and availability of Gmail. Moreover, if Gmail
crashes, or gets blocked behind the firewall, its user
has no way to acquire the files.

Figure 1: GmailFS system architecture.

GmailFS is not the only attempt that covets after
Gmail accounts for its 2.7 gigabyte storage. Firefox
GSpace (https://addons.mozilla.org/firefox/1593/) is
an add-on with the same purpose and functions,
which allows users to virtually transform their Gmail
space into personal file storages. Unlike GmailFS
works on Linux platform, similar tools include
GMail Drive (Viksoe, 2004) that works on Windows
platform, gDisk (http://gdisk.sourceforge.net/) that
works on Mac OS X, and GDrive (Kane, 2006)
developed by Google that will soon become one of
its new services. However, all of them are designed
in dedication to Gmail only, which is an unwelcome
constraint.

Furthermore, as a storage tool, or as a personal
file system, no user would like to count on single
email portal that is not controlled by his own for his
files’ stability and viability. In addition, the file
being stored at Gmail using GmailFS is not
confidentiality guaranteed. There is no recovery
mechanism if the files are damaged, and there is no
checksum mechanism if the files are compromised.
These drawbacks devalue GmailFS in practice.

2.2 Parchive

Parchive is a tool designed to collect a set of files
and allows recovery when one or more of the files
are lost. Parchive implements Reed-Solomon error
correction coding mechanisms (Plank, 1997; Plank
& Ding, 2005) with two different and format
incompatible versions, Par and Par2. These two
versions are optionally incorporated by the USENET
newsgroup to process files posted to it, which is a
well-known application of Parchive.

When backup a file, a straightforward technique
to against possible server failures or data loss is
simply storing more replicates at different servers.
The tradeoff here is the server resource, which is too
expensive to be a practical option. Therefore we use
Parchive to balance the resource and the recovery
requirement. Unlike USENET, we deal with one file
instead of a set of files. Thus, the recovery tool will
work on the blocks that are slices of a file. In
specific, blocks are defined as the proper divisions
of a file that all of them together can reconstruct the
original file.

Assume a data file f is going to be stored with the
recoverable feature against server failure. f is firstly
sliced into smaller equal-sized blocks 1b , 2b , …,

nb that all blocks form a set often called recovery
set. The input of Par2 is the recovery set and its
output is a set of redundant blocks 1d , 2d , …, md ,
called PAR set. The size of PAR set is determined by
the size of recovery set and an adjustable parameter
R called recovery ratio. R equals to n/(n+m) and is
defined by the file owner. When the file needs to be
reconstructed, the collection of any n out of the
(n+m) blocks can re-build all the blocks in the
recovery set and the PAR set, and consequently
reconstructs the file. Notice that in the paper we
denote P set as the joint of the recovery set and the
PAR set.

3 THE PROPOSED SYSTEM

The proposed ePFS is a personal file system over
email storages. All files in ePFS have two security
properties: sensitivity and frequency that, sensitivity
is the importance of the file and frequency is how
often the file might be used by the user. All email
servers in ePFS have two relative properties:
trustworthiness and availability, which respectively
imply how much the user trusts the email server and
how stable the server is. We consider these
properties for the current version of ePFS and will

A PERSONAL FILE SYSTEM OVER EMAIL STORAGES - Developing Towards a Persistent Internet Storage for Mobile
Users

213

include more necessary ones in the future
development. Note that how to evaluate these
parameters and how to update them are not within
the scope of this paper.

There are two basic operations in ePFS, the file
storing operation Proc_FileStore and the retrieval
operation Proc_FileRetrieve. Proc_FileStore takes
in a file, protects it by encryption, slices it into
blocks, generates redundant blocks with Par2,
distributes the blocks to appropriate email servers
according to their attributes, and updates the file
distribution table for where these blocks are stored.
Proc_FileRetrieve takes in the file identifier, checks
the file distribution table, contacts available email
servers to retrieve enough number of blocks,
rebuilds the encrypted file with Par2, and finally
decrypts it to reconstruct the file. Proc_FileStore
functions immediately when a file is placed into the
ePFS folder, and Proc_FileRetrieve functions when
a file in the ePFS folder is being moved out.

Notice that for servers supporting IMAP, ePFS
reads the title first and determines if the mail should
be downloaded; for severs supporting POP3 only,
ePFS reads the title while downloading the mail, and
discards those that doesn’t match the retrieval
condition. Moreover, ePFS provides a user interface
to configure individual account information of
different email servers, as shown in Figure 2. If the
email server requires SSL/TLS connection (Dierks,
1999) to receive the user identity and password, a
check box can be w ePFS.

Figure 2: Email server configurations in ePFS.

Throughout this paper f denotes the file and its
identity that will be processed by ePFS. All other
parameters and notations include:
n: the number of blocks f is sliced into;
m: the number of redundant blocks generated by

Par2;

ifb , : i-th block in the P set of file f, where ifb , ’s
are slices of encrypted f, for i = 1, 2, ..., n, and

ifb , ’s are generated by Par2, for i = (n+1),
(n+2), …,m;

fθ : sensitivity value of file f, 0 < fθ < 1;

fδ : the value of frequency of use about f, 0 <

fδ < 1;

idS : email server with identity id;

idST : trustworthiness value of idS , 0 < idST < 1;

idSA :availability value of idS , 0 < idSA < 1;

idSQ :the email quota of idS ;
E(): encryption operation with user key sk;
D(): decryption operation with user key sk;
SP: the storage pool of all email servers with

entries (idS , idSA , idST , idSQ);

fDT :the distribution table of f that serially

contains (n+m) iS ’s indicating that ifb , is

stored at iS .

In the followings, we describe Proc_FileStore

and Proc_FileRetrieve accordingly. Figure 3 and 4
present respectively the conceptual views of these
two procedures.

Figure 3: Store a file to email servers.

Proc_FileStore(f, fθ , fδ):

Step i. Encrypt f with sk;
Step ii. Slice E(f) into n blocks 1,fb , 2,fb , …,

nfb , ;

WINSYS 2007 - International Conference on Wireless Information Networks and Systems

214

Step iii. Generate m redundant blocks 1, +nfb ,

2, +nfb , …, mnfb +, via Par2 with input 1,fb ,

2,fb , …, nfb , , to constitute the P set of f;

Step iv. Select (n+m) idS ’s from SP satisfying

idST > fθ and idSA > fδ ;

Step v. Align selected idS ’s in random order and
place them into fDT ;

Step vi. Send an email ifeml , with f-i-ddmmyyyy

the title and ifb , the attachment to i-th idS in

fDT using SMTP, for i= 1, 2, …, (n+m);

Step vii. Update SP by deduce the block size from

idSQ for each selected idS .

Figure 4: Retrieve a file from email servers.

Proc_FileRetrieve(f):
Step i. Denote idS ’s in fDT serially as 1S ′ ,

2S ′ , …,)(mnS +′ ;

Step ii. Let j = 0 and k = n;
Step iii. Use POP3/IMAP to retrieve email

)(, ijfeml + from)(ijS +′ with email titled

initiated with f, for i= 1, 2, …, k;
Step iv. Update j = k and update k to be the
number of unsuccessful attempts in step iii;

Step v. If k <>0, goto step iii;
Step vi. Assume n collected emails be ifeml ′, ,

for i= 1, 2, …, n, and reconstruct E(f) by feeding
these ifb ′, ’s to Par2;

Step vii. Decrypt E(f) by sk to recover f.

Note that if there is no enough number of idS ’s
in SP, or no enough number of idS ’s that satisfy the
conditions of step iv in Proc_FileStore, , the user
might have to adjust the values of n and m. If
necessary, values of iST , iSA , fθ , and fδ also
have to be re-evaluated.

Moreover, when the email server idS fails to
provide the correct block ifb , previous stored in it,
whether it be the connection failure or the damages
found in the block, ePFS will invalidate the entry in
the fDT and pop out a notice to the user.

4 DISCUSSIONS

The design of ePFS is simple and effective. As an
application level protocol, it integrates tools of state-
of-the-art email protocols, security algorithms and
error recovery mechanisms.

4.1 User Experience

The blocks sliced from E(f) inherit the sensitivity
and frequency attributes of the file f. During Step iv
of the Proc_FileStore, ePFS selects proper email
servers that satisfy the distribution conditions. Files
that are more important to the user are dispatched
and stored at places the user trusts more. The values
of these attributes are adjustable and can be updated
by the user.

When a file is pull into the ePFS folder to be
distributed, ePFS runs in background to encrypt the
file, connect to email servers and send out emails
attaching sliced blocks. The user experience is
consistent to the conventional file copy or move
operation.

When a user selects a file f to be retrieved, ePFS
takes about 2 to 10 seconds for the reconstruction,
for a file of size about 400 KB. The performance
varies due to the number of the blocks that directly
incurs a great number of file I/O, which is the
heaviest operation in ePFS. The current performance
of file retrieval and reconstruction is absolutely not
satisfactory to any user experience. In the future we
hope to find the optimized values of block size,
recovery ratio, etc, and to establish some kind of
proxy scheme to speed up the process.

In ePFS, we also provide the function to view all
blocks in a specific email server. This allows the
user to manually check and clean unused blocks in
the email server.

A PERSONAL FILE SYSTEM OVER EMAIL STORAGES - Developing Towards a Persistent Internet Storage for Mobile
Users

215

4.2 Security

In terms of security, ePFS assures the confidentiality
of files being stored at email servers with AES
symmetric encryption (Daemen & Rijmen, 2001).
All files processed with ePFS are in practice
confidential as long as the AES implementation is
sound and robust. On the other hand, although files
are not 100% guarantee retrievable in ePFS, the Par2
provides a very strong confidence of getting the files
back with adjustable server failure ratio. The
integrity of the files also relies on the Reed-Solomon
codes.

There is another security issue that concerns user
privacy when a user’ network behaviour is
maliciously monitored. In ePFS the file identity f is
not enciphered, so even if f itself is not indicative,
the occurrences of f are linkable to translate into
meaningful behaviours. The privacy of user
behaviours against the email server or any third
party can be enhanced by enforcing a scrambling
function to the file identity. That is, the file identifier
f can be transformed into plural unlinkable aliases
being applied to different email servers.

5 CONCLUSIONS

The storage of mobile devices is innate limited by
the flash ROMs and memory cards, in this paper
ePFS proposed a possible way to extend available
storage by trading bandwidth for it. Although
currently ePFS works on Windows PC only, it has
shown the feasibility of utilizing email space over
Internet. As the appearance of mobile devices
continuously gets tinier and tinier, we believe the
function that ePFS provides will soon be the need of
mobile applications.

In order to shape ePFS, we will re-examine
current file and server attributes to adopt more
proper parameters. Along with ePFS, we use a small
program to delete emails older than a specific date to
release unused email space. We will develop a new
garbage collection mechanism that takes file
attributes into consideration. Moreover, the
performance of block retrieval is a critical problem,
so we will target some specific applications that do
not require instant access to remote backups.

There are some future works based on ePFS that
require continuous efforts. The porting of ePFS to a
handset model is underway, i.e. we picked Windows
Mobile platform. Besides email services, we will
include more Internet storage resource like photo
albums, video blogs, free FTPs, etc., to be the

candidates of backup depots. In the long run we will
try to enhance ePFS to support a persistent storage
for mobile devices.

ACKNOWLEDGEMENTS

This research was sponsored by the Mobile Digital
Life core technology development projects 2006-
2009, monitored by the Ministry of Economic
Affairs, Taiwan.

REFERENCES

Chervenak, A., Vellanki, V., Kurmas. Z., 1998. Protecting
File Systems: A Survey of Backup Techniques. In
Proceedings of Joint IEEE and NASA Mass Storage
Conference.

Crispin. M., 2003. Internet Message Access Protocol
version 4 revision 1. In STD 1, RFC 3501, IETF.

Daemen. J., Rijmen. V., Rijndael Specification. In
Advanced Encryption Standard. NIST FIPS PUB 197.

Dierks, T., 1999. The TLS Protocol version 1.0. In STD 1,
RFC 2246, IETF.

Jones, R., 2004. GmailFS: A Gmail Based Linux
Filesystem. http://richard.jones.name/google-hacks
/gmail-filesystem/gmail-filesystem.html.

Kane, M., 2006. Going for a GDrive with google. In
CNET News, 7, March 2006. http://cnet.com/2061-
11199_3-6046686.html.

Klensin, J., 2001. Simple Mail Transfer Protocol. In STD
10, RFC 2821, IETF.

Plank, J.S., 1997. A Tutorial on Reed-Solomon Coding for
Fault-Tolerance in RAID-like Systems. In Software,
Practice & Experience, Vol. 27 (9).

Plank, J.S., Ding, Y., 2005. Note: Correction to the 1997
Tutorial on Reed-Solomon Coding. In Software,
Practice & Experience, Vol. 35 (2).

Traeger, A., Joukov, N., Sipek, J., Zadok, E., 2006. Using
Free Web Storages for Data Backup. In Proceedings
of the Second ACM Workshop on Storage Security and
Survivability, ACM Press.

Viksoe, B., 2004. GMail Drive Shell Extension.
http://www.viksoe.dk/code/gmail.htm.

Myers, J., 1996. Post Office Protocol version 3. In STD 53,
RFC1939, IETF.

WINSYS 2007 - International Conference on Wireless Information Networks and Systems

216

