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Abstract: A distributed key generation scheme allows the key servers to distributively share a secret key and then com-
pute the corresponding public key. Canny and Sorkin (Canny and Sorkin, 2004) proposed aprobabilistic
threshold distributed key generation scheme that is suitable for the case that the number of key servers is large.
The communication cost of their scheme is much less than that of previous schemes. Nevertheless, it is pos-
sible to improve their scheme in some aspects. In this paper we employ the randomness technique to cope
with some problems encountered by their scheme. Our contribution is twofold. Firstly, our scheme is secure
against a large cluster of dishonest key servers. Secondly, our scheme has better performance in some aspects.
We support this point by a series of simulation experiments. As a result, our scheme and Canny and Sorkin’s
scheme can be used in different situations.

1 INTRODUCTION

The security of a cryptographic scheme usually relies
on protecting a secret key. One way to protect such
a key is to distribute it to a set of key servers such
that each key server holds a key share. Key sharing
not only enhances key protection, but also provides a
robustness property for the secret key. For example, in
a threshold key sharing scheme, a set of key servers
over a threshold number can recover the secret key.
Even though some servers do not work, the system
works.

A distributed key generation schemeallows the
key servers to distributively share a secret key and
then compute the corresponding public key. In this
paper we focus on discrete logarithm-based thresh-
old distributed key generation schemes, in which the
secret key isx and the public key isy = gx mod
p. Almost all threshold distributed key genera-
tion schemes usesecret sharing schemesas build-
ing blocks. Each key server runs a secret sharing
scheme to share its chosen secret to other key servers.

∗Supported in part by NSC projects 94-2213-E-009-110
and 95-2221-E-009-031, and Taiwan Information Security
Center at NCTU (TWISC@NCTU).

Shamir (Shamir, 1979) proposed the first threshold
secret sharing scheme based on polynomial interpo-
lation. Feldman (Feldman, 1987) added verification
of secret shares (verifiable secret sharing, VSS) to
Shamir’s scheme. Pedersen (Pedersen, 1991a) further
improved the scheme by making the secret shares un-
conditionally secure.

Based on his verifiable secret sharing scheme,
Pedersen (Pedersen, 1991b) proposed a threshold dis-
tributed key generation scheme with some important
properties that a threshold distributed key generation
scheme should have. Gennaro et al. (Gennaro et al.,
1999) found that an adversary can bias the distribu-
tion of the generated secret key by a subtle maneuver.
They then gave a formal definition and proposed a se-
cure scheme. Chu and Tzeng (Chu and Tzeng, 2002)
further pointed out that dishonest key servers should
not obtain valid key shares to avoid abuse. Canny and
Sorkin (Canny and Sorkin, 2004) proposed aprob-
abilistic threshold distributed key generation scheme
that is suitable for the case that the numbern of in-
volved key servers is large, for example, in the level
of hundreds or thousands. The main merit of their
scheme is that the total number of communications
between key servers is greatly reduced fromO(n2)
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to O(nl/ε2), wherel and ε are security and robust-
ness parameters, respectively. Nevertheless, it is pos-
sible to improve their scheme in some aspects. Since
the arrangement of key servers is very regular, the
scheme is vulnerable to a large cluster of dishonest
key servers. If the DoS attack occurs to block a cluster
of honest key servers from connecting to Internet, the
execution of the scheme would fail. See Section 2.2
for the details.

In this paper we employ the randomness technique
to cope with the problems encountered by Canny and
Sorkin’s scheme. We assign non-zero values toran-
dom entries, while Canny and Sorkin’s scheme as-
signs non-zero values to fixed entries. Our contribu-
tion is twofold. Firstly, our scheme is secure against
a large cluster of dishonest key servers. Secondly,
its performance is better than Canny and Sorkin’s
method in some aspects. We support this point by
a series of simulation experiments. As a result, our
scheme and Canny and Sorkin’s scheme can be used
in different situations.

2 PRELIMINARY

Let p= 2q+1 be a large prime, whereq is also prime.
Let Gq be the subgroup of quadratic residues inZ∗

p
andg andh be generators ofGq. Hereafter, the oper-
ations used in exponents ofg andh are overZq. As-
sume that there aren key serversS1,S2, . . . ,Sn, and
the threshold ist, wheret ≤ n≪ q. A bold character
is either a matrix, likeE, or a vector, likeai ,

A probabilistic threshold distributed key genera-
tion (PTDKG) scheme consists of three stages: setup,
key share establishment and public key computation.
A PTDKG scheme should satisfy the following con-
ditions.

Definition 1 An(α,β,δ)-PTDKG scheme should sat-
isfy the following conditions:

C1. The key shares of any subset of key servers define
the same secret key x, or not at all.

C2. Any number ofβn key servers can recover the se-
cret key x with probability1−δ at least.

C3. The secret key x is uniformly distributed in Zq.
S1. Any adversary who controls probabilistically up

to αn key servers cannot get any information
about the secret key x except the information com-
puted from the public key y directly.

In conditionS1, it is necessary to assume that the
adversaryrandomlypicks the controlled key servers.
Otherwise, if the adversary chooses the controlled key
servers, he can choose those that communicate with
the key serverSi and gets the secret share ofSi . Thus,

α should be less thanr i/n, wherer i is the number
of key servers that communicate withSi , 1≤ i ≤ n. If
we want smallerr i (communication cost), the security
threshold is smaller.

A typical key share establishment stage consists
of two sub-stages:

1. Each key server runs asecret sharing schemeto
share its chosen secret to other key severs.

2. Each key server combines the received secret
shares to form its key share.

In the first sub-stage, dishonest key servers are de-
tected and excluded. In the second sub-stage, the re-
mained honest key servers compute their key shares,
which define a unique secret key.

In the following two subsections, we introduce
conventional and Canny and Sorkin’s approaches for
the key share establishment stage.

2.1 Conventional Approaches

We first use the matrix representation to explain
Shamir’s secret sharing scheme. It corresponds to a
t ×n-dimensionalevaluation matrix:

E =











1 1 · · · 1
1 2 · · · n
...

...
...

...
1 2t−1 · · · nt−1











.

For key share establishment, each key server
Si ,1≤ i ≤ n, does the following:

1. Choose a randomt-dimensional (secret) vector
ai = [ai,1 ai,2 · · · ai,t ].

2. Computesi = aiE = [si,1 si,2 · · ·si,n]. The opera-
tions are overZq.

3. Sendsi, j to the key serverSj , 1≤ j 6= i ≤ n.

4. Exclude dishonest key servers and compute a key
sharexi from the receivedsi, j , 1≤ j ≤ n.

In the above the verification messages and steps
are ignored for simplicity. LetH ⊆ {S1,S2, . . . ,Sn}
be the set of honest key servers established in the key
share establishment stage. Each key serverSj in H
computes its key share

x j = ∑
i∈H

si, j .

The secret key defined by the key shares of the key
servers inH is

x = ∑
i∈H

ai,1.

Sincesi = aiE, we have

(∑
i∈H

ai)E = ∑
i∈H

si = [x1 x2 · · · xn].
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For A = {Si1,Si2, . . . ,Sir}, let EA be the matrix
with the columnsi1, i2, . . . , ir of E. For example,
E{S1,S3,S4} is a t × 3-dimensional matrix that has
columns 1, 3 and 4 ofE. A setT of key servers from
H can recover the secret keyx if and only if ET has
the full rank, i.e.,rank(ET) = t. We can solvex by se-
lecting t independent columnsET ′

from ET , T ′ ⊆ T,
and compute

∑
i∈H

ai = (∑
i∈H

si)
T ′

(ET ′
)−1. (1)

Since anyt rows of E form a Vandermonde matrix,
these rows are independent and anyt key servers can
recover the secret keyx, which is the first entry of
∑i∈H ai . Any set of less thant key servers cannot
compute the secret keyx. Thus, the above defines a
((t −1)/n, t/n,0)-PTDKG scheme.

One disadvantage of the above method is that each
key serverSi has to communicate with each other key
server. The total number of communications between
the key servers isO(n2), which shall entail heavy net-
work overhead whenn is large.

Distributed key generation schemes based on
Feldman’s and Pedersen’s verifiable secret sharing
schemes are similar except that the received shares of
each key server are verifiable (Feldman, 1987; Peder-
sen, 1991b).

2.2 Canny and Sorkin’s Approach

The idea of Canny and Sorkin to reduce the commu-
nication cost is to makesi very sparse by choosing an
appropriateE. For a zero entrysi, j , the key serverSi
need not sendsi, j to the key serverSj . By this, the
communication cost fromSi to Sj is saved. Ifsi is
very sparse, the communication cost fromSi to other
key serversSj is much reduced.

Let E be a t × n-dimensional evaluation matrix
with a band of non-zero entries as follows, where⋆
means a random number inZq, which is non-zero
overwhelmingly:

E =





















⋆ ⋆ ⋆ ⋆ 0 0 0 · · · 0 0 0
0 0 ⋆ ⋆ ⋆ ⋆ 0 · · · 0 0 0
0 0 0 0 ⋆ ⋆ ⋆ · · · 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 · · · 0 0 0
0 0 0 0 0 0 0 · · · ⋆ 0 0
0 0 0 0 0 0 0 · · · ⋆ ⋆ ⋆





















Let l be the width of the band andf be the offset of the
band between two consecutive rows. For example, the
above band matrix hasl = 4 andf = 2. In the scheme,
a dealer choosesE and publishes it. Each key severSi
chooses at-dimensional block vector

ai =
[

0 · · · 0 ai, j ai, j+1 · · · ai, j+k−1 0 · · · 0
]

where j is a pre-determined index andk is the block
width. The vectorsi = aiE has only(k−1) f + l non-
zero entries. The key serverSi need send non-zero
sharesi, j to the key serversSj . With fixed t andn, we
can make(k−1) f + l small by tuning parametersk, l
and f .

Canny and Sorkin’s PTDKG (called CS-PTDKG
hereafter) scheme is(1/ f − ε,1/ f + ε,δ), for some
small ε and δ, 0 < ε,δ < 1. Overall, their method
needsn((k−1) f + l)) node-to-node communications,
while most previous methods needn(n−1) node-to-
node communications. They suggest thatl = O(logn)
andk = l/(2ε2). This saves quite a lot of communi-
cations between key servers overall whenn is large.

We note thatE andai is very regular and this reg-
ularity makes the system vulnerable to burst interrup-
tion. For example, if a burst interruption keepsl con-
secutive key servers from participating the scheme,
the scheme does not work even though the number
n− l of alive key servers is much larger thanβn =
(1/ f + ε)n.

3 OUR CONSTRUCTION

We employ the randomness technique to cope with
the problem of burst interruption. We chooseE and
ai randomly such that it is more robust against burst
interruption. To see this, ifl consecutive key servers
cannot participate, the rest key servers can compute
the secret key with high probability.

For each row ofE, we randomly choosel entries
and assign random values inZq to them. For example,
the followingE hast = 3,n = 5, andl = 2:

E =





0 1 0 0 5
3 0 2 0 0
0 4 0 3 0



 . (2)

Each key serverSi ,1≤ i ≤ n, randomly choosesk en-
tries of ai and assigns random values inZq to them.
We see thatsi = aiE haskl non-zero entries at most.
Although the number of non-zero entries is more than
(k− 1) f + l in the CS-PTDKG scheme ifk and l
are the same. We shall show that our system needs
smallerk and l to achieve the same level of robust-
ness in simulation.

Before presenting our scheme, we need to discuss
some theoretical problems concerning the feasibility
of our construction. The framework is to consider
the probability thatE′, which is obtained fromE by
deleting some columns randomly, has the full rank.
If rank(E′) = t, the key shares of honest key servers
define the secret key uniquely.
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First, the following are some terminologies about
graphs. LetU andV be two sets of vertices. A graph
G = (U,V,E) is bipartite if the edge setE ⊆ U ×V,
that is, the vertices inU (andV) are not connected.
A bipartite graphG = (U,V,E) is left l-regular if all
vertices inU have degreel . A perfect matchingfor a
bipartite graphG = (U,V,E) with |U | ≤ |V| is a set
of edgesM ⊆ E with |M|= |U | such that every vertex
x ∈ U is incident to one edge inM and every vertex
y∈V is incident to at most edge inM.

We considerE as the matrix representation of a bi-
partite graphG = (U,V,E), where each row is a ver-
tex inU , each column is a vertex inV and(u,v) ∈ E
if the (u,v)-entry ofE is non-zero. Thus,|U | = t and
|V| = n. For example, the bipartite graph correspond-
ing to the matrix in Equation (2) is:

u1

u2

u3

v1

v2

v3

v4

v5

It is left l -regular since every vertexu∈U has degree
l . We see thatM = {(u1,v5), (u2,v1), (u3,v2)} is a
perfect matching for the graph.

The property of the full rank ofE is related to
perfect matchingof G = (U,V,E), |U | ≤ |V|. As-
sume thatM ⊆ E is a perfect matching ofG. We can
use the matching edge(u,v) ∈ M as the pivot entry
(u,v) of E to eliminate non-zero entries in column
v. Furthermore, since the values in non-zero entries
are randomly selected from a very large setZq, it is
very unlikely that the elimination process by a pivot
would cause another pivot to be zero. Therefore, the
t columns associated with the perfect matchingM are
independent. We would say thatE has the full rank
t if and only if G has a perfect matching. The crite-
ria for a bipartite graph to have a perfect matching is
known as Hall’s lemma.

Lemma 1 (Hall) A bipartite graph G= (U,V,E) has
a perfect matching from U to V if and only if for every
subset S⊆U, |Γ(S)| ≥ |S|, whereΓ(S) is the set of S’s
neighbor vertices in V .

We show that the probability that a random leftl -
regular bipartite graph has a perfect matching is close
to 1. In the following two theorems, we allow multi-
ple edges in bipartite graphs for a simpler analysis. If
no multiple edges are allowed, which is like our con-
struction, the probability of forming a perfect match-

ing is higher. This means that our construction is bet-
ter than the analyzed one.

Theorem 1 For appropriate positive integers t, l and
n such that, for3≤ j ≤ t,

j( j −1)

(t − j +1)(n− j +2)
(

j −2
j −1

)( j−1)l (
n

j −1
)l ≥ 1.

The probability that a random left l-regular bipar-
tite graph G= (U,V,E) has a perfect matching is

1− t3
2 (1

n)2l−1 at least , where|U | = t, |V| = n and
t ≤ n.

Proof 1 We compute the probability that the condi-
tion in Hall’s lemma is not satisfied. For a subset
S⊆U of j vertices and a subset T⊆V of j−1 ver-
tices, the probability that all edges from S hit into the
set T is

(
j −1

n
) jl .

The probability that there is a subset S⊆U of j ver-
tices whose edges hit within a subset of fewer than j
vertices of V is at most

p j =

(

t
j

)(

n
j −1

)

(
j −1

n
) jl .

Since, for3≤ j ≤ t, pj−1/p j =

j( j −1)

(t − j +1)(n− j +2)
(

j −2
j −1

)( j−1)l (
n

j −1
)l ≥ 1,

the probability that a left l-regular random bipartite
graph does not satisfy Hall’s lemma is at most

t

∑
j=2

p j ≤ (t −1)p2 =
t(t −1)2

2
(
1
n
)2l−1 <

t3

2
(
1
n
)2l−1.

Thus, the theorem holds.

We notice that the probability can be made arbitrarily
small even with rather smalll sincel is in the expo-
nent of 1/n andn is large.

Now, we consider the recoverability of the secret
key after the key share establishment stage. After dis-
honest and unavailable key servers are discarded, a set
H of honest key servers is formed. The secret key is
computed from the key shares of the key servers inH.
The key servers inH can recover the secret key if and
only if EH has the full rankt, as explained in Equa-
tion (1). Assume thatH is randomly selected from
{S1,S2, . . . ,Sn}. The probability thatEH has the full
rank depends on the size ofH. We show that as long
asH is not too small, the probability is close to 1.

Let V ′ (that is, the setH of honest key servers) be
a subset ofV by randomly deletingm vertices from
V. Then, the bipartite graphyG′ = (U,V ′,E|U∪V ′)
has a perfect matching with an overwhelming proba-
bility with proper parameters, whereE|U∪V ′ is the set
of edges incident to vertices inU ∪V ′.
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Theorem 2 For appropriate positive intgers t, l ,m
and n such that, for3≤ j ≤ t,

j( j −1)

(t − j +1)(n−m− j +2)
·

(
j −2+m
j −1+m

)( j−1)l (
n

j −1+m
)l ≥ 1.

Let G= (U,V,E) be a left l-regular random bipar-
titate graph. After deteting random m vertices from
V, the probability that the remainded bipartite graph

has a perfect matching is1−(n−m) t(t−1)2

2 (m+1
n )2l at

least , where|U | = t, |V| = n and t≤ n.

Proof 2 Let V′ be the subset of V after deleting m ver-
tices, where|V ′| = n′ = n−m. An edge from a vertex
in U that hits a vertex in V−V ′ makes no contribution
to Hall’s lemma. For a subset S⊆U of j vertices and
T ⊆ V ′ of j − 1 vertices, the probability that Hall’s
lemma does not hold on S to T is

(
j −1+m

n
) jl .

Thus, the probability that there is a subset of S⊆U of
j vertices whose edges hit a subset of fewer than j−1
vertices in V′ or V −V ′ is at most

p j =

(

t
j

)(

n−m
j −1

)

(
j −1+m

n
) jl

Since
p j−1

p j
=

j( j −1)

(t − j +1)(n−m− j +2)
·

(
j −2+m
j −1+m

)( j−1)l (
n

j −1+m
)l ≥ 1,

we have
t

∑
j=2

p j ≤ (t −1)p2 =
t(t −1)2

2
(n−m)(

m+1
n

)2l ,

which is an upper bound for the proability that Hall’s
lemma fails.

3.1 Our Distributed Key Generation
Scheme

The structure of our scheme is based on Gennaro et
al.’s study on secure distributed key generation (Gen-
naro et al., 1999). Their scheme is secure against the
attack of skewing the secret key distribution by dis-
honest key servers. Note that the key shares of their
scheme are unconditionally secure.

At beginning, a dealer chooses at×n-dimensional
evaluation matrixE and publishes it in a public bul-
letin board. Our distributed key generation scheme is
as follows:

Setup:

1. A dealer does:

(a) Select a large primep= 2q+1, whereq is also
prime.

(b) Compute generatorsg and h of Gq, where
Gq = {a2 | a∈ Z∗

p} is the subgroup of quadratic
residues ofZ∗

p.
(c) Choose at × n-dimensional evaluation matrix

E such that each row hasl non-zero entries.

Key share establishment:

1. Each key serverSi does the following:

(a) Select twot-dimensional vectorsai and a′i
which each consists ofk non-zero random en-
tries. The non-zero entries are in the same in-
dexes ofai anda′i .

(b) Computesi = aiE, s′i = a′iE and the set of his
communication key serversQi = { j | si, j 6= 0∨
s′i, j 6= 0}.

(c) Sendsi, j ands′i, j to key serverSj via a secure
channel,j ∈ Qi .

(d) BroadcastCi, j = gai, j ha′i, j mod p, 1≤ j ≤ t, to
all the key servers inQi .

2. Each key serverSj does the following:

(a) Check validity of the received shares, for each
i, j ∈ Qi ,

gsi, j hs′i, j ≡
t

∏
k=1

C
Ek, j
i,k (mod p). (3)

If the check fails fori, Sj broadcasts a com-
plaint againstSi to the key servers inQ j .

(b) If Sj is complained bySi , it sendssj,i ands′j,i to
the key servers inQ j .
The other key servers inQ j check validity of
sj,i ands′j,i by Equation (3).
If Sj fails the test, it is marked as ”dishonest”
by the key servers inQ j .

3. Each key serverSj builds a setH of honest key
servers and sets his key share as

x j = ∑
i∈H, j∈Qi

si, j modq,

which is thejth entry of(∑i∈H ai)E. Note that the
secret key is

x = (∑
i∈H

ai) ·~1,

where~1 = [1 1 · · · 1].

Public-key computation:

1. Each key serverSi ∈H broadcastsAi,k = gai,k mod
p, 1≤ k≤ t, to the key servers inH.
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2. Each key serverSj in Qi checks validity ofAi,k by
verifying whether

gsi, j ≡
t

∏
k=1

A
Ek, j
i,k (mod p). (4)

If the check fails, Sj broadcasts a compliant
againstSi and sendssi, j ands′i, j to the key servers
in Qi .

3. If Si is ever complained, all the key servers inQi
reconstructai by solving si = aiE and compute
correctAi,k, 1≤ k≤ t.

4. Then, each key server inH computes the public
key as

y = ∏
i∈H

t

∏
j=1

Ai, j mod p = g(∑i∈G ai)·~1 mod p.

Secret key recovery: Note that in some situations, we
don’t need to recover the secret keyx to finish a task.
Only eachSi computes a partial result from its key
sharexi .

1. LetT be the set of shown-up key servers inH. If
ET is full-ranked, solve∑i∈H ai by the system of
equations

(∑
i∈H

ai)ET = ∑
i∈H

si .

2. The secret key isx = ∑i∈H ai ·~1.

3.2 Analysis

The correctness and security of our scheme is shown
in the following theorem.

Theorem 3 Assume that n, t, l, and m satisfy the con-
dition in Theorem 2. The scheme in Section 3.1 is a
secure(1

l − ε,1− m
n ,(n−m) t(t−1)2

2 (m+1
n )2l )-PTDKG

scheme for some smallε, 0 < ε < 1.

Proof 3 (Sketch) Correctness follows from the results
of Gennaro et al. (Gennaro et al., 1999) almost in the
same way.

The boundsβ = 1−m/n and δ = (n−m)(t(t −
1)2/2)((m+1)/n)2l are from Theorem 2 directly. For
α = 1/l − ε, each Qi contains kl key servers at most.
Any adversary who controls up to a random fraction
α of them contains less than k dishonest key servers
in Qi in average. Since there are k unknown entries
in eachai , the adversary who controls less than k key
servers in Qi cannot know the information aboutai .

For the uniform distribution of x over Zq, we con-
struct a simulator for the scheme. The details are de-
ferred to the full paper.

4 EXPERIMENTS AND
COMPARISON

We first analyze the probability that the full rank is
achieved after deleting about a half of key servers.
Recall thatl is the band ofE, f is the offset, andt
is the number of rows.

The choice of parameters affects the communi-
cation cost of the scheme. We discuss the param-
eters first. For the CS-PTDKG scheme, due to the
arrangement ofE, the number of rows is fixed to
t = (n− l)/ f . On allowingn(1/2− ε) dishonest key
servers (eg.,ε = 1/10), Canny and Sorkin suggests
f = 2, l = 17logn and t = (n− 17logn)/2. Theo-
retically, the probability of achieving the full rank is
O(n−2).

For our PTDKG scheme, we shall do some simu-
lation experiments to obtain appropriatel ′ on the con-
dition that the probability of achieving the full rank is
the same as that of the CS-PTDKG scheme.

We taken = 1000 and delete aboutm= 500 dis-
honest key servers randomly. We consider different
offsets (f = 2, f = 3, and f = 4) for the CS-PTDKG
scheme. The results are shown in Figures 1-3. In each
figure, they-axis indicates the probability of achiev-
ing the full rank and thex-axis indicates the numberl
of non-zero entries in each row ofE. The probability
is computed by randomly sampling 500 key servers
as ”dishonest” many times. We summarize the com-
parison results in Table 1 on 90% of achieving the full
rank. From the table, we can see that the numberl ′ of
non-zero entries in each row of ourE is much smaller
than that (l ) of the CS-PTDKG scheme.

Table 1: Comparison ofl with 90% of achieving the full
rank. There aren = 1000 key servers and m=500 of them
are dishonest.

t = 408 t = 318 t = 242
( f = 2) ( f = 3) ( f = 4)

CS-PTDKG l = 185 l = 45 l = 33
Ours l ′ = 14 l ′ = 11 l ′ = 8

Communication cost.The total communication
cost of our scheme isk′l ′n and that of the CS-PTDKG
scheme is((k− 1) f + l)n. If we want our scheme
to have the same communication cost as that of the
CS-PTDKG scheme, we setk′ = ((k−1) f + l)/l ′, the
number of non-zero entries in eachai of our scheme.
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Figure 1: Probability of achieving the full rank for different
l , when f = 2. ./0123456667 .184966
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Figure 2: Probability of achieving the full rank for different
l , when f = 3. \]^_`abcddde \_fbgdd
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Figure 3: Probability of achieving the full rank for different
l , when f = 4.

5 DISCUSSION

Our scheme and the CS-PTDKG scheme have dif-
ferent security parameters. For ours,α = 1/l ′ − ε
andβ = 1−m/n. For the CS-PTDKG scheme,α =
1/ f − ε and β = 1/ f + ε. These two set of param-

eters can be used for different situations. For exam-
ple, if the number of dishonest key server is relatively
small (about one inl ′ key servers), our scheme is suit-
able. Since we are dealing with a large number of
key servers, a small percent of dishonest key servers
is very likely. Ourβ is adjustable under some con-
straints. If largerβ is desirable, our scheme provides
such choice.
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