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Abstract: A distributed key generation scheme allows the key servers to distributively share a secret key and then com-
pute the corresponding public key. Canny and Sorkin (Canny and Sorkin, 2004) proppeaghhilistic
threshold distributed key generation scheme that is suitable for the case that the number of key servers is large.
The communication cost of their scheme is much less than that of previous schemes. Nevertheless, it is pos-
sible to improve their scheme in some aspects. In this paper we employ the randomness technique to cope
with some problems encountered by their scheme. Our contribution is twofold. Firstly, our scheme is secure
against a large cluster of dishonest key servers. Secondly, our scheme has better performance in some aspects.
We support this point by a series of simulation experiments. As a result, our scheme and Canny and Sorkin’s
scheme can be used in different situations.

1 INTRODUCTION Shamir (Shamir, 1979) proposed the first threshold
secret sharing scheme based on polynomial interpo-
The security of a cryptographic scheme usually relies lation. Feldman (Feldman, 1987) added verification
on protecting a secret key. One way to protect such of secret shares (verifiable secret sharing, VSS) to
a key is to distribute it to a set of key servers such Shamir's scheme. Pedersen (Pedersen, 1991a) further
that each key server holds a key share. Key sharingimproved the scheme by making the secret shares un-
not only enhances key protection, but also provides a conditionally secure.
robustness propertyf_or the secretkey. Forexample,in Bssed on his verifiable secret sharing scheme,
a threshold key sharing scheme, a set of key Serverspggersen (Pedersen, 1991b) proposed a threshold dis-
over a threshold number can recover the secret key.yiputed key generation scheme with some important
Even though some servers do not work, the system operties that a threshold distributed key generation
works. _ scheme should have. Gennaro et al. (Gennaro et al.,
A distributed key generation scheraiows the  1999) found that an adversary can bias the distribu-
key servers to distributively share a secret key and tjon of the generated secret key by a subtle maneuver.
then compute the corresponding public key. In this They then gave a formal definition and proposed a se-
paper we focus on discrete logarithm-based thresh-¢,re scheme. Chu and Tzeng (Chu and Tzeng, 2002)
old distributed key generation schemes, in which the g, ther pointed out that dishonest key servers should
secret key isx and the public key iy = g“mod ot obtain valid key shares to avoid abuse. Canny and
2 Almost all threshold dl_stnbuted key genera- gorkin (Canny and Sorkin, 2004) proposegrab-
tion schemes usseecret sharing schemess build-  gpjjistic threshold distributed key generation scheme
ing blocks. Each key server runs a secret sharing iny; js suitable for the case that the numbef in-
scheme to share its chosen secret to other key servers,gyeq key servers is large, for example, in the level

" *Supported in part by NSC projects 94-2213-E-009-110 Of hundreds or thousands. The main merit of their
and 95-2221-E-009-031, and Taiwan Information Security Scheme is that the total number of communications
Center at NCTU (TWISC@NCTU). between key servers is greatly reduced fraxn?)
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to O(nl/€?), wherel ande are security and robust- a should be less than/n, wherer; is the number
ness parameters, respectively. Nevertheless, it is pos-of key servers that communicate wigh 1 <i <n. If
sible to improve their scheme in some aspects. Sincewe want smaller; (communication cost), the security
the arrangement of key servers is very regular, the threshold is smaller.
scheme is vulnerable to a large cluster of dishonest A typical key share establishment stage consists
key servers. If the DoS attack occurs to block a cluster of two sub-stages:
of hongst key servers from conneqting to Interr]et, the 1 Each key server runssecret sharing schente
](caxetcr:]utlgnto_fl the scheme would fail. See Section 2.2 ghare its chosen secret to other key severs.
or the details. . :
In this paper we employ the randomness technique 2. Each key server combines the received secret
to cope with the problems encountered by Canny and ~ Shares to form its key share.
Sorkin’s scheme. We assign non-zero valuesto In the first sub-stage, dishonest key servers are de-
dom entries while Canny and Sorkin's scheme as- tected and excluded. In the second sub-stage, the re-
signs non-zero values to fixed entries. Our contribu- mained honest key servers compute their key shares,
tion is twofold. Firstly, our scheme is secure against which define a unique secret key.
a large cluster of dishonest key servers. Secondly, In the following two subsections, we introduce
its performance is better than Canny and Sorkin’s conventional and Canny and Sorkin’s approaches for
method in some aspects. We support this point by the key share establishment stage.
a series of simulation experiments. As a result, our
scheme and Canny and Sorkin’s scheme can be use?.1 Conventional Approaches
in different situations.
We first use the matrix representation to explain
Shamir's secret sharing scheme. It corresponds to a

2 PRELIMINARY t x n-dimensionakvaluation matrix

1 il Cen 1
Let p=2qg+1 be alarge prime, whergs also prime. 1 2 - n
Let Gq be the subgroup of quadratic residuesZin E=1|. . .

andg andh be generators dBg. Hereafter, the oper- : 2:_1 S

ations used in exponents gfandh are overZ,. As- 1 on

sume that there are key serverss;, S,..., S, and For key share establishment, each key server

the threshold i$, wheret < n < qg. A bold character  §,1 <i < n, does the following:

is either a matrix, likeE, or a vector, likes;, . .
A probabilistic threshold distributed key genera- 2 erc»ose 6_1 randqmdlmensmnal (secret) vector

tion (PTDKG) scheme consists of three stages: setup, & @1z A

key share establishment and public key computation. 2. Computes =&E = [s;1S2 ---Sn]. The opera-

A PTDKG scheme should satisfy the following con- tions are oveiy.
ditions. 3. Sends j to the key servegj, 1< j #i<n.
Definition 1 An(a,3,8)-PTDKG scheme should sat- 4. Exclude dishonest key servers and compute a key
isfy the following conditions: sharex; from the received; j, 1< j <n.
C1. The key shares of any subset of key servers define |n the above the verification messages and steps
the same secret key X, or not at all. are ignored for simplicity. LeH C {S1,S,...,S}
C2. Any number gBn key servers can recover the se- be the set of honest key servers established in the key
cret key x with probabilityl — o at least. share establishment stage. Each key se8yén H
C3. The secret key x is uniformly distributed in Z computes its key share
S1. Any adversary who controls probabilistically up xi=Y s,
to an key servers cannot get any information i€

about the secret key x except the information com- The secret key defined by the key shares of the key
puted from the public key y directly. servers irH is

In conditionSl, it is necessary to assume that the X=Y aj1.
adversaryrandomlypicks the controlled key servers. i€
Otherwise, if the adversary chooses the controlled key Sinces = aE, we have
servers, he can choose those that communicate with
! ( ai)E: S:[X1X2"'Xn]~

the key servef§ and gets the secret shareSpf Thus, i£ i
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For A=1{S,,S,,..-,S,}. let EA be the matrix
with the columnsiy,ip,...,i; of E. For example,
E{SSS} is at x 3-dimensional matrix that has
columns 1, 3and 4 dE. A setT of key servers from
H can recover the secret kayif and only if ET has
the full rank, i.e.rank(ET) =t. We can solve by se-
lectingt independent columr&™ fromET, T/ C T,
and compute

ya= <_§Hs>T’<ET’>*1. )

Since anyt rows of E form a Vandermonde matrix,
these rows are independent and &gy servers can
recover the secret key, which is the first entry of
Yien &. Any set of less than key servers cannot ) )
compute the secret key Thus, the above defines a We note thakt andg is very regular and this reg-
((t—1)/n,t/n,0)-PTDKG scheme. qlarlty makes the system vul_nerable to burst interrup-
One disadvantage of the above method is that eachfion- For example, if a burst interruption keepson-
key servelS has to communicate with each other key secutive key servers from participating the scheme,
server. The total number of communications between 1€ scheme does not work even though the number
the key servers i©(n?), which shall entail heavy net- N~ ! of alive key servers is much larger th@n =
work overhead when is large. (1/f+¢&)n.
Distributed key generation schemes based on
Feldman’s and Pedersen’s verifiable secret sharing
schemes are similar except that the received shares o3 QUR CONSTRUCTION
each key server are verifiable (Feldman, 1987; Peder-
sen, 1991b).

wherej is a pre-determined index arkds the block
width. The vectoss = gE has only(k—1)f +1 non-
zero entries. The key serv& need send non-zero
shares j to the key server§;. With fixedt andn, we
can makgk — 1) f 4+1 small by tuning parameteks |
andf.

Canny and Sorkin's PTDKG (called CS-PTDKG
hereafter) scheme i€l/f —¢,1/f +¢€,0), for some
smalle andd, 0 < €,0 < 1. Overall, their method
needx((k—1)f +1)) node-to-node communications,
while most previous methods neath — 1) node-to-
node communications. They suggest thatO(logn)
andk = 1/(2¢?). This saves quite a lot of communi-
cations between key servers overall wimds large.

We employ the randomness technique to cope with
the problem of burst interruption. We chooseand
g randomly such that it is more robust against burst
interruption. To see this, if consecutive key servers
cannot participate, the rest key servers can compute
the secret key with high probability.

For each row oE, we randomly chooskentries
and assign random values4g to them. For example,
the followingE hast = 3,)n=5, andl = 2:

2.2 Canny and Sorkin's Approach

The idea of Canny and Sorkin to reduce the commu-
nication cost is to maks very sparse by choosing an
appropriateE. For a zero entry j, the key servef
need not send, j to the key serve6;. By this, the
communication cost frong to S is saved. Ifs is
very sparse, the communication cost fr@o other
key serversS; is much reduced. 0
Let E be at x n-dimensional evaluation matrix o

. ) E=]| 3
with a band of non-zero entries as follows, where 0
means a random number @y, which is non-zero
overwhelmingly:

1005
020 0. @)
4030

Each key serve$, 1 <i < n, randomly choosek en-

% x « » 0 0 O 0 0 07 tries of ; and assigns random values4g to them.

0 0O x x « « O 0 0O We see that = a,E haskl non-zero entries at most.

0 0 0 0 x =% 0 0O Although the number of non-zero entries is more than
E— | : : .« PR (k—=1)f +1 in the CS-PTDKG scheme i and |

L o are the same. We shall show that our system needs

coo0o0000-. 000 smallerk andl to achieve the same level of robust-

0000000 x00 ness in simulation.

0 00 O 0O 0 O- *  x ok

- ) ’ - Before presenting our scheme, we need to discuss
Letl be the width of the band arfdbe the offsetofthe  some theoretical problems concerning the feasibility

band between two consecutive rows. For example, theof our construction. The framework is to consider
above band matrix has= 4 andf = 2. Inthe scheme,  the probability thaE’, which is obtained fronE by

a dealer choosds and publishes it. Each key sevgr
chooses &dimensional block vector

34:[0 - 0@ @41 o @ jak1 0 - o]

deleting some columns randomly, has the full rank.
If rank(E’) =t, the key shares of honest key servers
define the secret key uniquely.
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First, the following are some terminologies about
graphs. LetJ andV be two sets of vertices. A graph
G = (U,V,E) is bipartite if the edge seE C U xV,
that is, the vertices iU (andV) are not connected.
A bipartite graphG = (U,V,E) is left I-regular if all
vertices inU have degreé. A perfect matchindor a
bipartite graphG = (U,V,E) with |U| < |V] is a set
of edgedM C E with |M| = |U| such that every vertex
x € U is incident to one edge iN and every vertex
y € V is incident to at most edge M.

We consideE as the matrix representation of a bi-
partite graphG = (U,V,E), where each row is a ver-
tex inU, each column is a vertex M and(u,v) € E
if the (u,v)-entry of E is non-zero. ThugU| =t and
[V| = n. For example, the bipartite graph correspond-
ing to the matrix in Equation (2) is:

Vi
Uy A
u, V3
Us v,
Vs

Itis left |-regular since every vertaxe U has degree
[. We see thaM = {(ug,vs), (U2,v1), (Us,v2)} is a
perfect matching for the graph.

The property of the full rank oE is related to
perfect matchingpf G = (U,V,E), |U| < |V|. As-
sume thatVl C E is a perfect matching d6. We can
use the matching edge,v) € M as the pivot entry
(u,v) of E to eliminate non-zero entries in column
v. Furthermore, since the values in non-zero entries
are randomly selected from a very large Zgtit is
very unlikely that the elimination process by a pivot
would cause another pivot to be zero. Therefore, the
t columns associated with the perfect matcHihgre
independent. We would say thithas the full rank
t if and only if G has a perfect matching. The crite-
ria for a bipartite graph to have a perfect matching is
known as Hall's lemma.

Lemma 1 (Hall) A bipartite graph G=(U,V,E) has

a perfect matching fromU to V if and only if for every
subset S U, [F(S)| > |, wherel (S) is the set of S's
neighbor vertices in V.

We show that the probability that a random left

ing is higher. This means that our construction is bet-
ter than the analyzed one.
Theorem 1 For appropriate positive integersitand
n such that, fo8 < j <t,
t—j+H—j+2)"j-1 j—1
The probability that a random left I-regular bipar-
tite graph G= (U,V,E) has a perfect matching is
1-5(3)2-1 at least , wherdU| =t, [V| = n and
t<n.
Proof 1 We compute the probability that the condi-
tion in Hall's lemma is not satisfied. For a subset
SCU of j vertices and a subset TV of j— 1 ver-
tices, the probability that all edges from S hit into the
setT is

U=l ) >

=1
()

The probability that there is a subsetCU of j ver-
tices whose edges hit within a subset of fewer than j

vertices of V is at most
n
")

”:G>Q

Since, for3 < j <t, pj—1/p; =
j(i—-1) (i -2 n
t—j+-j+2)"j-1 -1
the probability that a left [-regular random bipartite
graph does not satisfy Hall's lemma is at most

t _1)\2 3
> pi< - Dpe= (< S

i-1
n

)

i) >

- )

)2I—1 2|—l.

1p2

Thus, the theorem holds.

We notice that the probability can be made arbitrarily
small even with rather smalllsincel is in the expo-
nent of I/nandnis large.

Now, we consider the recoverability of the secret
key after the key share establishment stage. After dis-
honest and unavailable key servers are discarded, a set
H of honest key servers is formed. The secret key is
computed from the key shares of the key serveis.in
The key servers ifl can recover the secret key if and
only if EM has the full rank, as explained in Equa-
tion (1). Assume thaH is randomly selected from
{S1,S,...,S}. The probability thaEH has the full
rank depends on the size df We show that as long
asH is not too small, the probability is close to 1.

LetV’ (that is, the seH of honest key servers) be

regular bipartite graph has a perfect matching is close a subset o¥/ by randomly deletingn vertices from

to 1. In the following two theorems, we allow multi-
ple edges in bipartite graphs for a simpler analysis. If
no multiple edges are allowed, which is like our con-
struction, the probability of forming a perfect match-
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V. Then, the bipartite graph’ = (U,V’ E|yuv)
has a perfect matching with an overwhelming proba-
bility with proper parameters, wheEg - is the set

of edges incident to vertices thhuUV'.
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Theorem 2 For appropriate positive intgers,t,m 1. Adealer does:

and n such that, foB < j <t, (a) Selectalarge primg=2q+ 1, whereg is also
ii-1 . prime.

t—j+1)(n—m—j+2) (b) Compute generatorg and h of Gg, where
j=2+4m i n | Gq = {a%|a€ Z3} is the subgroup of quadratic
() ) >, - s

j—14+m j—1+m residues o,

Let G= (U,V,E) be a left I-regular random bipar- (c) Choose & x n-dimensional evaluation matrix

titate graph. After deteting random m vertices from E such that each row hasion-zero entries.

V, the probability that the remainded bipartite graph  Key share establishment

: t(t—1)2
has a perfect matching - (n—m) {1 ()2 ap 1. Each key serve® does the following:

least, wherdU| =t, [V|=nandt<n.

Proof 2 LetV' be the subset of V after deleting m ver-
tices, wheréV’'| = n’ = n—m. An edge from a vertex
in U that hits a vertex in -V’ makes no contribution
to Hall's lemma. For a subsetSU of j vertices and

T C V' of j— 1 vertices, the probability that Hall's
lemma doesnotholdon Sto T is

(a) Select twot-dimensional vectorsy; and a;
which each consists & non-zero random en-
tries. The non-zero entries are in the same in-
dexes ofg; anda].

(b) Computes = aE, 5 =aE and the set of his
communication key servef@ = {j | s, #0V

()" (c) Sends j ands|; to key serveiS;j via a secure
. . channel,j € Q.
Thus, the probability that there is a subset af § of /
j vertices whose edges hit a subset of fewer thar j (d) Broadcas€;j = g®ih%i modp, 1< j <t, to
vertices inVV orV —V' is at most all the key servers iQ;.
b — (t> (n m) ( j—1+ ;i 2. Each key serveB; does the following:
J _— . . -
1/\1-1 n (a) Check validity of the received shares, for each
Since i, j €Q,
pi1_ i(i-1) _ Co
P (t—j+D(n-m—j+2) giht = [1Cy (modp).  (3)
(ﬂ)(i*lﬂ( i V21 .
j—14m j—1+m’ =7 If the check fails fori, S broadcasts a com-
we have plaint agains§ to the key servers iQ;.
t 12 (b) If Sj is complained by, it sendss; ; ands; ; to
Zzp,- <({t-1Dp2= ) (n— m)(m—+1)2', the key servers iQ;.
= 2 The other key servers iQ; check validity of
which is an upper bound for the proability that Hall's sj; ands;; by Equation (3). _
lemma fails. If S fails the test, it is marked as "dishonest”
by the key servers iQ;.
3.1 Our Distributed Key Generation 3. Each key serve8; builds a setH of honest key
Scheme servers and sets his key share as
The structure of our scheme is based on Gennaro et X = ic _IEQ_SJ moda,

al.’s study on secure distributed key generation (Gen-
naro et al., 1999). Their scheme is secure againstthe  which is thejth entry of (Y- &)E. Note that the
attack of skewing the secret key distribution by dis- secret key is
honest key servers. Note that the key shares of their x=(Y &)1,
scheme are unconditionally secure. i&

At beginning, a dealer chooses:an-dimensional -
evaluation matrixE and publishes it in a public bul- wherel=[11 ---1].
letin board. Our distributed key generation scheme is Public-key computatian
as follows:

1. Each key serve® € H broadcastg x = g%« mod
Setup p, 1<k <t, to the key servers iHl.
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2. Each key serve; in Q; checks validity ofA x by 4 EXPERIMENTS AND

verifying whether COMPARISON
t .
gt = |‘| Aﬁi“ (mod p). 4) We first analyze the probability that the full rank is
k=1 achieved after deleting about a half of key servers.

Recall thatl is the band ofg, f is the offset, and

If the check fails, S; broadcasts a compliant .
is the number of rows.

against§ and sends; ; ands ; to the key servers ; .
ingQ-. 5 S #'J y The choice of parameters affects the communi-
' cation cost of the scheme. We discuss the param-

3. If § is ever complained, all the key serversQn  eters first. For the CS-PTDKG scheme, due to the
reconstructa by solvings = aE and compute  arrangement of, the number of rows is fixed to

correctAjk, 1<k <t. t=(n—1)/f. On allowingn(1/2— ¢) dishonest key
4. Then, each key server i computes the public ~ Servers (eg.£ = 1/10), Canny and Sorkin suggests
key as f=2,1=17logn andt = (n—17logn)/2. Theo-
retically, the probability of achieving the full rank is
! 1 o(n32).
— . — q(Ticca)-1 .
y= iDH DlAH mod p = g'=e mod p. For our PTDKG scheme, we shall do some simu-

lation experiments to obtain appropriéten the con-
dition that the probability of achieving the full rank is
the same as that of the CS-PTDKG scheme.

We taken = 1000 and delete about = 500 dis-
honest key servers randomly. We consider different

Secret key recoveryNote that in some situations, we
don't need to recover the secret keto finish a task.
Only each§ computes a partial result from its key

sharex; offsets  — 2, f — 3, andf — 4) for the CS-PTDKG
1. LetT be the set of shown-up key serversHn If scheme. The results are shown in Figures 1-3. In each
ET is full-ranked, solveyic & by the system of  figure, they-axis indicates the probability of achiev-
equations ing the full rank and the-axis indicates the numbeér
(Y a)E =Y s. of non-zero entries in each row Bf The probability
i€ i€ is computed by randomly sampling 500 key servers

as "dishonest” many times. We summarize the com-

parison results in Table 1 on 90% of achieving the full

. rank. From the table, we can see that the nunibeir

3.2 Analysis non-zero entries in each row of olris much smaller
than that () of the CS-PTDKG scheme.

The correctness and security of our scheme is shown

in the following theorem. Table 1: Comparison of with 90% of achieving the full

Theorem 3 Assume that t, I, and m satisfy the con- rank. There are = 1000 key servers and m=500 of them

dition in Theorem 2. The scherzne in Section 3.1 is a are dishonest.

secure(t —g,1— 1 (n—m) 05 (mid)2) pTPKG

scheme for some small0 < € < 1. t=408|t=318|t=242

(f=2)| (f=3) | (f=4)

CS-PTDKG|1=185| | =45 | | =33
Ours I"'=14|1"=11] I'=8

2. The secretkey i8= Yjcy & .

Proof 3 (Sketch) Correctness follows from the results
of Gennaro et al. (Gennaro et al., 1999) almost in the
same way.

The bound$ =1—m/n andd= (n—m)(t(t —
1)?/2)((m+1)/n)? are from Theorem 2 directly. For Communication cost.The total communication

a =1/l —&, each Qcontains ki key servers at most. - ;s of our scheme Il’n and that of the CS-PTDKG
Any adversary who controls up to a random fraction ¢-heme is(k—1)f +1)n. If we want our scheme

a of them contains less than k dishonest key serversy, nave the same communication cost as that of the
in Q; in average. Since there are k unknown entries CS-PTDKG scheme, we skt= ((k—1)f +1)/I’, the

in eacha;, the adversary who controls less than k key number of non-zero entries in eaahof our scheme.
servers in Qcannot know the information aboat

For the uniform distribution of x overg we con-
struct a simulator for the scheme. The details are de-
ferred to the full paper.
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column=1000; cut=500

full rank (%)

——CS DKG (offset=2)
—=—Ours

Figure 1: Probability of achieving the full rank for different
I, whenf = 2.

column=1000; cut=500

full rank (%)
Ey

—— CS-DKG (offset=3)
—&— Qurs

60

9 12 15 30 40 45 50 100

J=# of non-zero entries

Figure 2: Probability of achieving the full rank for different
|, whenf = 3.

column=1000; cut=500

100
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70 F
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50 |

full rank (%)

w0 F

—*— CS-DKG (offset=4)
—#— Ours

1=# of non-zero entries

Figure 3: Probability of achieving the full rank for different
I, whenf =4,

5 DISCUSSION

Our scheme and the CS-PTDKG scheme have dif-
ferent security parameters. For ous= 1/I' —¢€
andp = 1—m/n. For the CS-PTDKG scheme, =

1/f —eandP =1/f +¢&. These two set of param-

eters can be used for different situations. For exam-
ple, if the number of dishonest key server is relatively
small (about one ilf key servers), our scheme is suit-
able. Since we are dealing with a large number of
key servers, a small percent of dishonest key servers
is very likely. Ourf is adjustable under some con-
straints. If large is desirable, our scheme provides
such choice.
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