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Abstract: IPSec is a suite of protocols that adds security to communications at the IP level. Protocols within IPSec make
extensive use of two databases, namely the Security Policy Database (SPD) and the Security Association
Database (SAD). The ability to query the SPD quickly is fundamental as this operation needs to be done for
each incoming or outgoing IP packet, even if no IPSec processing needs to be applied on it. This may easily
result in millions of query per second in gigabit networks.
Since the databases may be of several thousands of records on large secure gateways, a dedicated hardware
solution is needed to support high throughput. In this paper we discuss an architecture for these query units,
we propose different query methods for the two databases, and we compare them through simulation. Two
different versions of the architecture are presented: the basic version is modified to support multithreading.
As shown by the simulations, this technique is very effective in this case. The architecture that supports
multithreading allows for 11 million queries per second in the best case.

1 INTRODUCTION

IPSec is a suite of protocols that adds security to
communications at the IP level. This suite of pro-
tocols is becoming more and more important as it is
included as mandatory security mechanism in IPv6.
IPSec is mainly composed of two protocols, Authenti-
cation Header (AH) and Encapsulating Security Pay-
load (ESP). The former allows authentication of each
IP datagram’s selected header fields or – depending
on the operational mode that has been selected – of
the entire IP datagram. The latter allows encryption –
and optionally authentication – of the entire IP data-
gram or of the IP payload, depending on the opera-
tional mode that has been selected, namely the trans-
port and the tunnel modes. The former was designed
for being used in host machines, the latter is for se-
cure gateways. In tunnel mode the entire original IP
datagram is processed; the result becoming the data
payload of a new IP datagram with a new IP header.
In transport mode only parts of the original IP data-
gram are processed (e.g., the data payload for the ESP
protocol) and the original IP header is kept with some

small modifications. Through encryption, authentica-
tion, and other security mechanisms included in IPSec
(e.g., anti-reply), data confidentiality, data authenti-
cation, and peer’s identity authentication can be pro-
vided (Kent and Atkinson, 1998c) (Kent and Atkin-
son, 1998a) (Kent and Atkinson, 1998b) (Harkins and
Carrell, 1998) (Kent, 2005a) (Kent, 2005b). IPComp,
a protocol for data payload compression, is also in-
cluded in the IPSec suite of protocols (Shacham et al.,
1998).

Two databases are involved in processing IP traf-
fic. These two databases are the Security Pol-
icy Database (SPD) and the Security Association
Database (SAD). The former specifies the policies
that determine the disposition of all IP traffic. The lat-
ter contains parameters that are associated with each
SA. The SPD needs to be queried for each packet
traversing the IP communication layer. Upon the con-
formance with the SPD, an IP datagram needs to be
processed by IPSec, the SAD also needs to be queried
to discover the parameters of the considered SA. In-
formation about whether a SA has already been cre-
ated or not are contained in the SPD. If a suitable SA
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for the IP datagram to be processed does not exist,
it needs to be established using the Internet Key Ex-
change protocol (IKE) (Harkins and Carrell, 1998).

IPSec is often used to create Virtual Private Net-
works (VPNs). A VPN is an extension of a pri-
vate network on a public network (e.g., the Internet)
(Feghhi and Feghhi, 2001) (Yuan and Strayer, 2001).
The extended part of the network logically behaves
like a private one. Typical usage scenarios for VPNs
are: remote user access to a private LAN over the
Internet and connection of two private networks. In
these cases a virtual secure channel needs to be cre-
ated, respectively, from the user’s PC to the LAN pub-
lic access point or from one LAN to the other. Private
network public access points are calledsecure gate-
ways. A secure gateway is a router or a router/firewall
also running a VPN-enabled software (e.g., an IPSec
implementation). All the traffic within the LAN is
usually not protected, while the traffic going out or
coming in the LAN through the secure gateway is pro-
tected by some security mechanisms.

IPSec has proved to be computationally very in-
tensive (Miltchev et al., 2002) (Ariga et al., 2000)
(Alberto Ferrante et al., 2005b). Thus some hardware
acceleration is needed to support large network band-
widths, as may be required even in small secure gate-
ways. Cryptography is often believed to be the only
part of the IPSec suite that requires a large amount of
resources. In the reality, IPSec implementations also
require to perform other operations, such as header
processing and IPSec database querying. The lat-
ter may become a bottleneck for the system as it re-
quires to be done at least once for each IP packet that
is traversing the system. In fact, the SPD needs to
be queried for each IP packet, the SAD needs to be
queried only when IP packets are determined to re-
quire some IPSec processing. Considering an overall
traffic of 1Gbit/s, and the worst possible case (i.e. the
packets are received at the maximum possible rate and
their size is the smallest possible one, that is 40bytes),
the SPD needs to be queried 3,355,443 times per sec-
ond. On average, queries are usually fewer then one
million per second in a normal system operating at the
same speed. In any case, an efficient database query
unit is therefore vital to achieve high performance

In this paper we present a study about a database
query unit for the SAD and the SPD databases; in the
best configuration this unit is able to perform 11 mil-
lion of queries per second. Section 2 describes the
different possible architectural solutions and the dif-
ferent techniques that can be adopted for the database
query. This database unit has been taught to be used
in IPSec accelerators such as the one shown in (Al-
berto Ferrante and Vincenzo Piuri, 2007). Section 3

presents the model for the simulations and the ob-
tained results. Section 4 shows an improvement of
the proposed architecture and the related simulations
and results. Section 5 shows a study of the optimal
architecture when an area–delay cost function is con-
sidered.

2 SYSTEM ARCHITECTURE
AND DATABASE QUERY
TECHNIQUES

As shown in Figure 1, the main databases are stored
in an off-chip memory and are accessed through on-
chip caches, one for the SAD and the other one for
the SPD. This structure remains the same for both
hardware and software implementations of the query
unit. An off-chip memory for the databases provides
flexibility at the cost of diminishing performance. In
fact, an external memory provides ease expandability;
on the opposite, an internal memory delivers perfor-
mance that cannot be reached by external ones. The
main goal of the cache is to mask the access to the
external memory thereby reducing the access time. In
our case the total query time is not only given by the
physical access time of the external memory, but also
by the lookup time of the records that are stored in it.

The two caches are implemented as two Content
Addressable Memories (CAMs) (Kostas Pagiamtzis,
nd) (Pagiamtzis and Sheikholeslami, 2003). With this
kind of memory cells can be addressed by a part of
their contents. Therefore, they provide a good way
to implement lookup tables. For this reason they are
often used in routers and network processors (see, for
example, (Prashant Chandra et al., 2003)). The two
databases can be implemented in external memory ei-
ther in shared or unshared fashion; even if the mem-
ory is physically shared, the databases should be con-
sidered as logically separated.

When a new packet arrives, the database is first
queried in the cache; if a cache miss occurs, then a
query is performed in the main memory. Hence, the
worst case search time for a record is the sum of the
time required to perform a query in cache and the time
to perform a query in the main database. The best
case search time is defined as the time to do a query
in the cache. Depending on the implementation of the
database query unit, the memory may need more than
one port. Later in this section we discuss different
methods to query the databases and different cache
replacement techniques.
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Figure 1: Core of the database query unit.

2.1 Size of the Records

SPD record size is variable. In fact, several configura-
tion proposals can be stored in each one of them. All
of these proposals are used only during the SA nego-
tiation phase and not during the normal system oper-
ation. Therefore, the SPD records can be divided into
two parts: the first one containing the essential infor-
mation (i.e., the source and destination IP addresses,
the direction, the policy, the pointers to the SAs, and
the pointer to the first element of the list of proposals);
the second one containing the list of proposals. The
first part is cached; the second one – that is used only
during SA negotiations – is stored into a special area
of the external database memory. The size of the part
of the record that needs to be cached can be estimated
in 232 bits.

SAD records contain the settings of the protocols
and of the algorithms, along with the keys for the
cryptographic algorithms. An estimation of the size
of each SAD record is of 792 bits.

2.2 Main Database Lookup Techniques

Two different techniques for database lookup have
been considered in this work: the Linear LookUp
Technique (LLUT) and the Partitioned LookUp Tech-
nique (PLUT) (Henry Hong-Yi Tzeng and Tony Przy-
gienda, 1999).

By using the LLUT technique, records are queried
in a linear fashion. This is the simplest technique to
implement, but it is very slow.

In the PLUT technique, the search in the database
is performed by using a tag that is obtained by sum-
ming up the first three decimal digits of the source
IP address. When IPv4 addresses are considered,
each database is divided into 10 sections. For ex-
ample, a record containing a source IP address that
is 192.168.8.1 should be placed in the DB space 3

(1+ 9+ 2 = 12 and 1+ 2 = 3). Inside each sub-
space the search is performed linearly. This technique
should provide far better speed performance than the
LLUT, but it also has a drawback: packets may tend
to concentrate in certain memory partitions. There-
fore, some of these will remain almost empty; others
will be overutilized.

2.3 Cache Replacement Policies

Two different cache replacement policies have been
considered: First In First Out (FIFO) and Least Re-
cently Used (LRU) (John Hennessy and Dave Patter-
son, 2002, p. 378). When the cache is full, the first
loaded record is replaced, according with the FIFO
policy. By considering the LRU policy, the least re-
cently used record in the cache is replaced. Before
replacing the record in the cache, the record is written
back in the memory just if some modifications have
occurred to it.

When the SAD is considered, it may happen that
the database memory (or a memory segment) be-
comes full. Two different actions can be taken in this
situation: no new SA creation is allowed, or the old-
est SAs are discarded and the creation of new ones is
allowed. In this work we adopted the second solution,
but in a real life system the behavior to adopt in this
case should be specified in the system security policy.

3 SIMULATIONS

The described architecture, along with the different
parameters, have been simulated by using a SystemC
model. The SystemC language (Sys, nd) was selected
to describe our model as it allows for specification of
hardware-software systems. Delays associated with
the operations can be easily modeled with this lan-
guage. The next subsections show the model and the
results of the simulations.

3.1 Description of the Model

Our SystemC model provides the ability to simulate
the different lookup techniques and cache replace-
ment methods described above, along with different
cache sizes. With this model the delays of the differ-
ent operations that are performed during the database
query phase are simulated.

Inputs used for the simulations are taken from net-
work trace files, e.g., the ones provided on the Internet
Traffic Archive (ITA, nd) website. These files con-
tain long traces obtained by using thetcpdumptool
(tcp, nd) on various networks. We have considered a
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Table 1: Sizes of the caches in number of elements and in
bytes.

Number of SPD size SAD size
elements [bytes] [bytes]
64 1,856 6,336
128 3,712 12,672
256 7,424 25,344
512 14,848 50,688
1024 29,696 101,376
2048 59,392 202,752
4096 Not used 405,504

trace taken from a 2Mbit/s gateway and that contains
about 3.8 million TCP packets. For our simulations
we used only 1 million of these packets to avoid long
simulations. Among the different parameters in the
trace file we considered source and destination IP ad-
dresses thereby ignoring the timestamps and all the
other information contained in the file.

During SPD query, only some parts of the SPD
records need to be fetched from memory to identify a
possible match; the size of this part is 203 bits. Dur-
ing SAD query, only some parts of the SAD records
need to be fetched from memory to identify a possible
match; the size of this part is 129 bits. The remaining
parts of the records need to be fetched only when a
match is found.

Some memory structure need to be used for imple-
menting FIFO and LRU policies. These structures,
which are saved in an on-chip memory, are updated
while data are fetched from the memory; therefore,
their management does not introduce any further de-
lay.

During the simulations, an access time of 7ns
has been considered for the CAMs as suggested in
(Kostas Pagiamtzis, nd); an access time of 30ns has
been used for the memory. A read/write time of 10ns
has been used for all the memory transfers (on a 64-bit
bus) after the first one.

3.2 Simulation Results

The simulations provide different results: the average
time per query and the hit and replacement rates of
the caches. The average time per query is computed
as the total simulated time divided by the number of
requests that have been processed in such a time.

Table 1 shows the correspondence between cache
sizes in number of elements and in bytes for the SAD
and for the SPD. All of these cache sizes have been
simulated; they have been combined with the LLUT
and the PLUT query techniques and with the FIFO
and the LRU replacement methods. All the possible
combinations of these parameters result in 168 differ-

 0

 512

 1024

 1536

 2048

 2560

 3072

 3584

 4096

 4608

 0  8  16  24  32  40  48  56  64  72  80  88

C
ac

h
e 

si
ze

s 
[n

u
m

b
er

 o
f 

el
em

en
ts

]

Configuration number

SPD cache size
SAD cache size

Figure 2: Cache sizes for configurations 1–84.
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Figure 3: Average number of queries per second.

ent system configurations. In the first 84 configura-
tions the LLUT technique is considered. Configura-
tions from 85 to 168 are similar to the first 84 ones;
in these configurations the PLUT technique is consid-
ered instead of the LUT one. Figure 2 shows the dif-
ferent SPD and SAD cache sizes that have been con-
sidered in system configurations from 1 to 84; odd
configuration numbers identify the use of the FIFO
cache replacement policy; even configuration num-
bers are used to represent the configurations in which
the LRU policy is used.

The average number of queries that can be per-
formed in one second is the inverse of the average
query time (i.e., the average time that is required to
complete a query). Figure 3 shows the average num-
ber of queries that can be performed in one second
for the different configurations. Some of the fastest
solutions (i.e., the ones adopting the PLUT technique
and 1024-2048 elements in the SPD cache) provide
the capability to perform from 4 to 7.5 million of
queries per second. This speed is good enough to sup-
port a total bandwidth of 7-8Gbit/s. If, as previously
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Figure 5: Hit and replacement rates for the SPD cache.

proposed, two database query units are adopted, full
duplex communications at 7Gbit/s can be easily sup-
ported. Figure 4 shows the average global query time
as well as the SPD and SAD average query times.
SPD query time gives the major contribution to the to-
tal query time for slow configurations. In fast config-
urations, the query time of both SAD and SPD plays a
major role in total query time. The average query time
noticeably decreases for increasing sizes of the SPD
cache. The adoption of the PLUT technique provides
a large reduction of the average query time. The LRU
replacement policy provides better results in terms of
query time. The difference in performance between
the FIFO and the LRU policies is quite noticeable.

Figure 5 shows the hit and the replacement rates
of the SPD cache obtained by considering all the dif-
ferent system configurations. This graph helps in ex-
plaining the results shown previously: larger SPD
caches provide a hit rate close to 100% (99.7% for the
2048-element cache), therefore the SPD query time
becomes close to the query time in the cache.

A similar behavior is observed when the SAD
cache is considered, larger caches provide best results
in terms of performance. Caches larger than 1,024 el-
ements provide better results (the hit rate is of 99.4%
for 4096-element caches). The LRU technique gives
better results over the FIFO for both the SAD and the
SPD caches.

4 FURTHER IMPROVING SPEED:
PARALLELIZING QUERIES

When a cache miss occurs, the DB query unit must
query the database that is contained in the main mem-
ory. This is a time consuming operation that could
lead to a long waiting time both for the packet that
is under processing and for all the other incoming
packets. One natural extension to the architecture
presented in this section, is to introduce multithread-
ing: when a query in the main database starts, other
queries (one at a time) related to the subsequent pack-
ets can be started too. If these queries produce a
cache hit, they will be served much faster than in the
non-multithreaded system. If they produce another
cache miss, their main database query requests will
be queued and served after the current one. This tech-
nique has the disadvantage of requiring a memory to
store the requests under processing and to queue the
processing requests. This disadvantage is highly com-
pensated by far better speed performance, especially
when queries in main DB are much slower than the
ones in cache.

In some cases the multithreaded queries cannot be
done: when a query related to a specific SA is already
being performed either in the SPD or in the SAD, no
new queries related to the same SA should be started.
This is due to problems that possible DB and cache
modifications may cause. In this case the new request,
along with all the subsequent ones, is made to wait
until the current query is completed.

4.1 Simulations

The model presented above has been modified to in-
clude multithreading. Figure 6 shows a comparison
of the number of queries per second that can be per-
formed by the serial and by the parallel units. As
shown in the figure, the parallel architecture always
outperforms the serial one. The parallel architec-
ture provides the ability to perform up to 11 million
queries per second, 50% more than the serial one.

The query time for the SPD and the SAD, along
with the global query time, are shown in Figure 7.
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Figure 7: Average number of queries per second.

The global query time is obtained by dividing the to-
tal simulation time by the number of processed pack-
ets, hence this time is less than the sum of the query
times of the SPD and of the SAD. The SPD query
time is much greater than in the serial architecture. In
fact, in some cases packets need to wait in the input
queue before being processed. In any case, the global
query time is smaller when the parallel architecture
is adopted. In fact, the query time of different pack-
ets overlap in this case, thus providing better global
performance.

5 OPTIMIZING THE
AREA–DELAY PRODUCT

In the previous sections, the proposed architecture has
been optimized only for speed. In many cases we may
need to optimize the architecture by minimizing some
cost functions such as the area–delay product. This
approach is similar to the one adopted in (Alberto Fer-
rante et al., 2005a).
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Figure 8: Area–Delay product for the multithreaded archi-
tecture.

Figure 8 shows the area–delay product we have
obtained for the multithreaded architecture. Only
SAD and SPD caches have been considered for area
measurements. These values have been computed by
means of CACTI (Norm Jouppi et al., nd), by consid-
ering a 0.13µmtechnology; the obtained sizes (in cen-
timeters square) have been incremented by 50% to ac-
complish the fact that CAMs are used instead of stan-
dard memories. The considered delay (in seconds)
is the total simulated time for processing 1,000,000
datagrams. Our results emphasizes the fact that the
configuration number 114 minimizes the area–delay
product, in which SPD cache size is 256 and SAD
cache size is 64 elements. The replacement policy
employed is LRU and the memory lookup techinque
is PLUT. This configuration allows to query 6.2 mil-
lion of queries per second; the fastest configuration
allows for 11 million of queries per second. In gen-
eral, all the configurations with small SAD caches al-
lows to obtain low values for the cost function. In fact,
SAD records are bigger than SPD ones, therefore the
area of the SAD cache has more influence on the cost
function value than the SPD cache area.

Similar results have been obtained for the non-
multithreaded version of the system, but in that case
we have to consider that the control unit will be less
complex than in the multithreaded case.

6 CONCLUSIONS AND FUTURE
WORK

In this paper we presented an architecture that pro-
vides the ability to query the IPSec databases effi-
ciently. We also developed some simulations to es-
timate the performance that can be obtained by us-
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ing the proposed architecture. An improvement of the
architecture, namely the adoption of multithreading,
has also been proposed. The multithreaded architec-
ture provides the ability to perform up to 11 million
queries per second.

Future work will be put into developing better
simulations and to derive more accurate results. Mul-
tithreading may be improved to allow out of order
processing of the queries. This should allow to fur-
ther improving the performance when more than one
packet belonging to the same SA needs to be pro-
cessed.
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