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Abstract: Physically-based modeling for computer animation has become a wide spread framework because it allows
to produce more realistic motions in less time without requiring the expertise of skilled animators. But, a
computer animation is not only a numerical simulation based on classical mechanics since it follows a precise
story-line. One common way to define aims in an animation is to add geometric constraints. There are
several methods to manage these constraints within a physically-based framework. In this paper, we present
an algorithm for constraints handling based on Lagrange multipliers. After few remarks on the equations of
motion that we use, we present a first algorithm proposed by Platt. We show with a simple example that this
method is not reliable. Our contribution consists in improving this algorithm to provide an efficient and robust
method to handle simultaneous and antagonist constraints.

1 INTRODUCTION

For about two decades, the computer graphics com-
munity has investigated the field of physics in order
to produce more and more realistic computer anima-
tions. In fact, physically-based modeling in animation
allows to generate stunning visual effects that would
be extremely complex to reproducemanually. On one
hand, the addition of physical properties to 3D objects
automates the generation of motion just by specifying
initial external forces. On the other hand, physically-
based animations are even more realistic than tradi-
tional key-framed animations that require the exper-
tise of many skilled animators. As a consequence, the
introduction of physically-based methods in model-
ing and animation significantly reduced the cost and
production time of computer generated movies. But,
one main drawback of this kind of framework is that
it relies on heavy mathematics usually hard to tackle
for a computer scientist. A second main disadvantage
concerns the input of a physically-based animation:
in fact, forces and torques are not reallyuser-friendly
since it is really difficult to anticipate a complex mo-
tion just by specifying an initial set of external forces.

A computer animation is definitely not a numer-

ical simulation because it follows a story-line. Ac-
cording to Demetri Terzopoulos (Terzopoulos et al.,
1989), an animation is simulation plus control. One
way to ensure that the objects fulfill the goals defined
by the animator is to use geometric constraints. A
constraint is an equality or an inequality that gath-
ers different parameters of the animation like the total
time elapsed, the positions or the orientations of the
moving objects. In a less general way, mechanical
simulations also benefit from the use of constraints
in order to prevent interpenetration between physical
objects for example.

There are several methods to handle constraints,
summarized in a survey paper by Baraff (Baraff,
1993). But, since our research work is mostly de-
voted to mechanical simulation, we decided to focus
on the use ofLagrange multipliersto manage the ge-
ometric constraints. In fact, numerical simulations re-
quire robust and reliable techniques to ensure that the
constraints are never violated. Moreover, with this
method we are also able to measure the amount of
strain that is necessary to fulfill a given constraint.
In this paper, we present a novel algorithm to man-
age efficiently several simultaneous active geometric
constraints. We begin by detailing the physical equa-
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tions that we use before presenting Platt’s algorithm
(Platt, 1992) that is the only algorithm of this type
based on lagrange multipliers. With a simple exam-
ple, we demonstrate that this algorithm is not suitable
for handling simultaneous active constraints. We then
introduce our own contribution in order to show how
to improve Platt’s algorithm to make it reliable, robust
and efficient.

2 LAGRANGE EQUATIONS OF
MOTION

Lagragian dynamics consist in an extension of new-
tonian dynamics allowing to generate a wide range of
animations in a more efficient way. In fact, Lagrange
equations of motion rely on a set of unknowns, de-
noted as a state vectorx of generalized coordinates,
that identifies the real degrees of freedom (DOF) of
the mechanical systems involved. Within this for-
malism, the DOF are not only restricted to rotations
or translations. For example, a parameteru ∈ [0, 1]
which gives the relative position of a point along a 3D
parametric curve can be considered as a single gener-
alized coordinate.

2.1 Unconstrained Motion

The evolution of a free mechanical system only sub-
ject to a set of external forces is ruled by the Lagrange
equations of motion (1).

M ẍ = f (1)

M is themass matrix. ẍ is the second time deriva-
tive of the state vector. Finally, the vectorf corre-
sponds to the sum of external forces. For more details
concerning this formalism, we suggest to read (Gold-
stein, 1980) and (Arnold, 1989).

2.2 Constrained Motion

By convention, an equality constraint will always be
defined as in equation (2) whereE is the set of indices
of all the equality constraints.

gk(x) = 0 ∀k ∈ E (2)

Constraints restrict the set of reachable configura-
tions to a subspace ofR

n wheren is the total number
of degrees of freedom. As mentioned before, there
exists three main methods to integrate constraints in
equation (1)

The projection method consists in modifying the
state vectorx and its first time derivativėx in
order to fulfill the constraint. This modification
can be performed with an iterative method like
the Newton-Raphson method (Press et al., 1992).
Even if this method is very simple and seems to
ensure an instantaneous constraint fulfillment, it
is not robust enough: indeed it can not guarantee
that the process converges in the case of simulta-
neous active constraints.

The penalty method adds new external forces, act-
ing like virtual springs, in order to minimize the
square of the constraint equation, considered as a
positive energy function. The main advantage of
this method is its compatibility with any dynamic
engine since it only relies on forces. But this
method leads to inexact constraint fulfillment, al-
lowing interpenetration between the physical ob-
jects. In order to diminish this interpenetration,
the stiffness of the virtual springs must be sig-
nificantly increased, making the numerical system
unstable.

The Lagrange method consists in calculating the
exact amount of strain, denoted as theLagrange
multiplier, needed to fulfill the constraint. This
method guarantees that constraints are always ex-
actly fulfilled. Since the use of Lagrange multipli-
ers introduces a set of new unknowns, the equa-
tion (1) must be completed by a set of new equa-
tions, increasing the size of the initial linear sys-
tem to solve. But we consider that this method
is the only suitable to manage efficiently the geo-
metric constraints.

For all the reasons mentioned above, we choose
the Lagrange method to manage our geometric con-
straints. According to the principle of virtual work,
each constraintgk adds a new force perpendicular to
the tangent space of the surfacegk(x) = 0. The La-
grange multiplierλk corresponds to the intensity of
the force related to the constraintgk. With these new
forces, the equation (1) is modified as follows:

M ẍ = f +
∑

k∈E

λk

∂gk

∂x
(3)

We add new equations to our system by calculat-
ing the second time derivative of equation (2), leading
to equation (4).

n
∑

i=1

∂gk

∂xi

ẍi = −

n
∑

i,j=1

∂2gk

∂xi∂xj

ẋiẋj ∀k ∈ E (4)

In order to correct the numerical deviation due to
round-off errors, Baumgarte proposed in (Baumgarte,
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1972) a constraint stabilization scheme illustrated by
the equation (5). The parameterτ−1 can be seen as
the speed of constraint fulfillment.

n
∑

i=1

∂gk

∂xi

ẍi = −

n
∑

i,j=1

∂2gk

∂xi∂xj

ẋiẋj

−
2

τ

n
∑

i=1

∂gk

∂xi

ẋi −
1

τ2
gk

(5)

When we mix the equations (1) and (5), we obtain
a linear system where the second time derivative of
the state vectorx and the vector of Lagrange multi-
pliersΛ are the unknowns.

[

M −J
T

−J 0

](

ẍ

Λ

)

=

(

f

−d

)

(6)

J is the jacobian matrix of all the geometric con-
straints andd corresponds to the right term of equa-
tion (5).

2.3 Inequality Constraints Management

By convention, an inequality constraint will always be
defined as in equation (7) whereF is the set of indices
of all the inequality constraints.

gk(x) ≥ 0 ∀k ∈ F (7)

For a given state vectorx, we remind the follow-
ing definitions:

• the constraint is said to beviolated by x when
gk(x) < 0. This means that the state vectorx

corresponds to a non allowed configuration.

• the constraint is said to besatisfiedby x when
gk(x) ≥ 0.

• the constraint is said to beactive by x when
gk(x) = 0. In this case, the state vectorx be-
longs to the boundary of the subspace defined by
the inequality constraintgk.

The management of inequality constraints is more
difficult than the management of equality constraints.
An inequality constraint must be handled only if it
is violated or active. In fact, the algorithm is a little
more complicated as we explain in the next sections.

That is why we define two subsets withinF : F+

is the set of indices of all handled inequality con-
straints andF− is the set of indices of ignored in-
equality constraints. Finally, we haveF = F−∪F+.
The jacobian matrix of constraintsJ of the equa-
tion (6) is built from all the constraintsgk where
k ∈ E ∪ F+.

3 PREVIOUS WORK

Within the computer graphics community, the main
published method devoted to inequality constraints
management using Lagrange multipliers, known as
“Generalized Dynamic Constraints”, was proposed
by Platt in (Platt, 1992). In his paper, he describes
how to use Lagrange multipliers to assemble and
simulate collisions between numerical models. This
method is an extension of the work of Barzel and
Barr (Barzel and Barr, 1988) that specifies how con-
straints must be satisfied. Moreover, Platt proposes a
method to updateF+ (the set of handled inequality
constraints) during the animation. This algorithm can
be compared to classicalactive set methods(Björck,
1996; Nocedal and Wright, 1999).

We do not focus on collision detection that is a
problem by itself. We are aware that this difficult
problem can be solved in many ways, we encourage
the reader to refer to the survey paper by Teschner
et al. (Teschner et al., 2005). During the collision
detection stage, we assume that the dynamic engine
may rewind time until the first constraint activation
is detected. In any case, this stage ensures that con-
straints are never violated. But, it is possible that
several constraints are activated simultaneously. The
main topic of this paper is to provide a reliable algo-
rithm to handle these multiple active constraints in an
efficient way.

At the beginning of the animation, Platt populates
the setF+ with all the active constraints.

Algorithm 1 – Platt’s algorithm.

Solve equation (6) to geẗx andΛ1

Updatex andẋ (numerical integration)2

for eachk ∈ F do3

if k ∈ F+ then4

if λk ≤ 0 then5

k is moved toF−6

else7

if gk(x) < 0 then8

gk is moved toF+9

For each time step, according to algorithm 1, we
solve equation (6) and update the state vector in order
to retrieve new positions and velocities at the end of
the current time step. We then check the status of each
inequality constraint. If a constraintgk is active, it is
still handled until its Lagrange multiplier is negative
or null, that is to say that the Lagrange multiplier cor-
responds to a force that prevents from deactivation.
According to the new values of the state vectorx, if

THE ART TO KEEP IN TOUCH - The “good use” of Lagrange Multipliers

49



the previously inactive constraintgk is now violated
(gk(x) < 0), the constraint must be added toF+ in
order to prevent the system to entering in such a con-
figuration.
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Figure 1: A simple example with two simultaneous active
constraints.

Even if this algorithm seems to give a reliable so-
lution for inequality constraints handling, some prob-
lems remain. We set up a simple scene as in figure 1
to illustrate the insufficiencies of Platt’s method. A
particle of massm is constrained to slide on a 2D
plane. It starts from an acute-angle corner modeled
by two linear inequality constraintsg1(x) = x − y
andg2(x) = y. Finally, this particle is subject to a
single external forcef = (2,−1). In this particular
case, the state vectorx is composed of the 2D coordi-
nates(x, y) of the particle. According to equation (1),
the generalized mass matrix for this system is defined
by:

M =

[

m 0
0 m

]

(8)

As the geometric constraintsg1(x) andg2(x) are
linear, their first and second time derivative do not
produce any deviation term defined in equation (5):

d =

(

0
0

)

(9)

According to the initial value of the state vector
x = (0, 0), the two constraintsg1(x) andg2(x) are
active, so their indices are inserted inF+ andJ, the
jacobian matrix of constraints, is defined as follows:

J =

[

1 −1
0 1

]

(10)

From equations (6) (8) (9) and (10), we obtain a
linear system whose unknowns are the second time
derivative of the state vectorx and the two Lagrange
multipliersλ1 andλ2 associated withg1 andg2:







m 0 −1 0
0 m 1 −1
−1 1 0 0
0 −1 0 0













ẍ
ÿ

λ1

λ2






=







2
−1
0
0






(11)

The solutions arëx = (0, 0) andΛ = (−2,−1).
Becausëx andÿ are null, the particle does not move
during this time step. But, sinceλ1 andλ2 are both
negative, their corresponding constraints are moved
to F−. This means that, for the next time step, the
system will be free of any constraints. As the force
remains constant, the next value ofẍ will be equal to
(2m−1,−m−1). These values will lead to an illegal
position of the particle, under the liney = 0.

The amount of violation of the constraintg2(x) =
y mainly depends on the ratio between the massm of
the particle and the intensity of the external forcef .
The section 5 offers different results and comparisons.

4 OUR CONTRIBUTION

4.1 A First Approach

The problem of Platt’s method relies on the fact that it
keeps inequality constraints inF+ abusively. In fact,
the conditiongk(x) < 0 used to populateF+ with in-
equality constraint is not well suited and an other way
must be proposed. A solution would be to replace
the conditiongk(x) < 0 by a violation tendency con-
dition expressed asJkẍ < dk. An active constraint
that does not fulfill the violation tendency condition
will be satisfied during the next time step and does
not have to be handled.

At the beginning of the animation, we solve equa-
tion (1) to geẗx and we then populate the setF+ with
the active constraints that fulfill the violation tendency
condition. It is clear that we handle less constraints
than Platt because our criteria is more restrictive.

Algorithm 2 – Platt’s improved algorithm.

Solve equation (6) to geẗx andΛ1

Updatex andẋ (numerical integration)2

for eachk ∈ F do3

if k ∈ F+ then4

if λk ≤ 0 then5

k is moved toF−6

else7

if Jkẍ < dk then8

k is moved toF+9
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We briefly verify that this algorithm gives a cor-
rect solution to our example illustrated in figure 1.
According to equation (1),̈x = (2m−1,−m−1). The
two constraintsg1 and g2 are active becausex =
(0, 0) but onlyg2 fulfills the violation tendency con-
dition as mentioned in equation (12).

J1ẍ = 3m−1, g1 is moved toF−

J2ẍ = −m−1, g2 is moved toF+ (12)

In this special case, equation (6) becomes:




m 0 0
0 m −1
0 −1 0









ẍ
ÿ
λ2



 =





2
−1
0



 (13)

The solutions of the linear system (13) areẍ =
(2m−1, 0) andλ2 = 1. Finally, the particle will slide
along thex-axis without crossing the liney = 0 be-
cause the constraintg1 that was not handle did not
introduce a false response.

This new algorithm seems to manage multiple in-
equality constraints in a good way, but we could high-
light a problem in this algorithm by using the same ex-
ample illustrated in figure 1 with a new external force
f = (−1,−2).

At the beginning, sincex = (0, 0), the constraints
g1 andg2 are active. From equation (1), we obtain
that ẍ = (−m−1,−2m−1), and from equation (14)
that only the consraintg2 is handled.

J1ẍ = m−1, g1 is moved toF−

J2ẍ = −2m−1, g2 is moved toF+ (14)

According to equation (14), we build the linear
system (15).





m 0 0
0 m −1
0 −1 0









ẍ
ÿ

λ2



 =





−1
−2
0



 (15)

The solutions arëx = (−m−1, 0) andλ2 = 2.
Then, after the update ofx and ẋ, the particle goes
through the plane defined by the constraintg1 and
reaches an illegal state. This is due to the fact that the
Lagrange multiplierλ2 pushes the system in an illegal
state from the constraintg1point of view, which was
not previously inserted in the system 6 as its initial
tendency acceleration tends to disconnect the particle
from thex − y = 0 plane.

At the end of the step, we check inequality con-
straints for the next animation step, asλ2 ≤ 0, g2

stays inF+ andJ1ẍ < d1, theng1 move toF+. So
at the next step, the linear system will be correctly
set, but it is too late since the system is already in an
illegal state.

4.2 The “Right” Algorithm

The use of the violation tendency conditionJkẍ <

dk improves simultaneous active constraints man-
agement, since only the appropriate inequality con-
straints are handled by the equation (6). But we have
seen, from the previous example, that it is insufficient
to reach the accurate configuration. In fact, the con-
straints fromF+ that fulfill the violation tendency
condition will produce a vectorΛ of Lagrange mul-
tipliers that prevent the system from being in an ille-
gal configuration. In the meantime, the acceleration
tendencÿx of the system could lead to another illegal
configuration. The only way to deal with this problem
is to use the new acceleration tendencies to test if the
other active inequality constraintsgk fulfill the viola-
tion tendency condition and have to be handled. We
then need an iterative process that computes the accel-
eration tendencies and test for other active inequality
constraintsgk to insert inF+, until the sytem reaches
the appropriate state.

We propose a simple and efficient solution to the
inequality constraints handling problem, based on the
way physicists work. At the beginning of each time
step, all active inequality constraintsgk are detected,
andF+ is emptied. We then begin an iterative pro-
cess that runs until there is no new insertion inF+.
The acceleration tendencies̈x are computed from
the equation (6) and the violation tendency condition
Jkẍ < dk is tested on each active inequality con-
straint. For any inequality constraintgk that fulfills
the condition, we insert its indexk in F+ and start
another iterative step.

Algorithm 3 – The right algorithm.

repeat1

Solve equation (6) to geẗx andΛ2

for eachactive constraintgk do3

if Jkẍ < dk then4

k is moved toF+5

until F+ has not been updated;6

Updatex andẋ (numerical integration)7

Since we begin with no constraints and that only
appropriate inequality constraints are inserted toF+

during the iterative process, the last computation ofẍ

andΛ from equation (6) will lead to an accurate con-
figuration of the system. Moreover, this process guar-
antees the convergence towards an appropriate solu-
tion as we begin from an emptyF+ and only insert
constraints inF+.

In a recent communication (Raghupathi and
Faure, 2006), Raghupathi presented a method also
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Figure 2: Comparison of Platt’s algorithm and our method using the example illustrated in figure 1 with a massm = 2. The
numerical values correspond respectively to position and acceleration along they-axis.
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Figure 3: Comparison of Platt’s algorithm and our method using the example illustrated in figure 1 with a massm = 3. The
numerical values correspond respectively to position and acceleration along they-axis.

based on Lagrange multipliers. For realtime consid-
erations, they do not allow the dynamic engine to
rewind time to get back to the first constraint acti-
vation. They have to manage constraints at the end
of the time step, trying to find the right accelerations
to ensure constraints fulfillement. They also confess
that this process is not guaranteed to converge in any
situation.

5 RESULTS AND COMPARISONS

We will now compare the results obtained with Platt’s
algorithm and our method, using the example illus-
trated in figure 1. Figure 2 and 3 illustrate a compari-
son of the positions and accelerations alongy-axis of
a particle of massm = 2 andm = 3. We recall that
the inequality constraintg2 forbids negative values for
y and that the constant forcef applied to the particle

is equal(2,−1).
As shown on figure 2, Platt’s algorithm holds the

particle abusively on the corner at the first time step,
and releases it at the next time step. As a conse-
quence, the particle evolves in an illegal state during
the following steps. With a massm = 2, the error
related to the position is less than10−5 with an os-
cillating acceleration (right column). But if we set
the massm to 3, as shown in the figure 3, errors are
much more important, and the particle crosses the line
y = 0 modeled by the constraintg2.

As illustated, our algorithm keeps the particle
along thex-axis within a controlled numerical error
value, that is less than10−8 in these examples.

To illustrate multiple contact constraints, we have
set a billiard scene with 10 balls placed in triangle in a
corner and an other ball that comes to them. For each
ball, we define two inequality constraints for each side
of the corner and one inequality constraint related to
the distance between each ball. This example is fi-
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nally composed of 11 balls and 77 inequality con-
straints (figure 4).

6 CONCLUSION

In this paper, we presented a novel algorithm to man-
age simultaneous inequality constraints. Among all
the existing methods to handle constraints within a
physically-based animation, we focused on the La-
grange method which provides a reliable way to en-
sure that constraints are always exactly fulfilled. But,
in the special case of several active inequality con-
straints, we have to take care on how to handle these
simultaneous constraints. Platt proposed an algorithm
based on Lagrange multipliers but we showed that this
method is unable to solve even simple examples. We
then explained how to improve this algorithm in or-
der to propose a new reliable and efficient method for
inequality constraints handling. Beyond the example
illustrated in figure 1, we produced a short movie sim-
ulating a billiard game. Some snapshots are gathered
in figure 4.
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Figure 4: A billiard game session illustrating our algorithm for constraints management (11 balls and 77 inequality con-
straints).
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