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Abstract: Transparent and translucent objects involve both light reflection and transmission at surfaces. This paper 
develops a realistic transmission model of rough surfaces using the statistical ray method, which is a 
physically based approach that has been developed recently. The surface is assumed locally smooth and 
statistical techniques can be applied to calculate light transmission through a local illumination area. We 
have obtained an analytical expression for single scattering. The analytical model has been compared to our 
Monte Carlo simulations as well as to the simulations by others, and good agreements have been achieved. 
The presented model has a potential for realistic rendering of transparent and translucent objects. 

1 INTRODUCTION 

Light scattering by objects is generally characterized 
by a bidirectional scattering distribution function 
(BSDF) (Glassner, 1995) 
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which is the ratio of the scattered radiance odL  in 
the outgoing direction ( , )o oθ ϕ  to the irradiance 

cosi i iL dθ Ω  in the direction ( , )i iθ ϕ  (Figure 1) at 
wavelength λ . When referring to reflection or 
transmission, a BSDF becomes a bidirectional 
reflectance distribution function (BRDF) or a 
bidirectional transmittance distribution function 
(BTDF). This paper studies the case of transmission. 

In computer graphics application, materials may 
be classified into three major types: opaque, 
transparent and translucent. An opaque object only 
involves reflection, a transparent object involves 
both reflection and transmission, and a translucent 
object has volumetric scattering in addition to 
reflection and transmission at the object surface. 
Thus, a transmission model is needed for not only 
transparent but also translucent objects. Such objects 
include glass wares, plastics, ices, biological tissues, 
marbles, waxes, and so on. 

There has been extensive research on modelling 
BRDFs in computer graphics, but studies on BTDFs 
are limited. Different from at an opaque surface, a 
scattering process at a surface of some transparent or 
translucent material is generally a combination of 
reflection and transmission events, and the number 

of the events may be one (single scattering), two or 
more (multiple scattering). Solving the case of single 
scattering is a basis for solving the case of multiple 
scattering. 

 
Figure 1: Light scattering at a surface (transmission case). 

This paper presents a realistic transmission 
model of rough surfaces. The model is derived using 
a physically based approach called the statistical ray 
method that has been developed recently by Sun 
(2007). The key assumption of the surface is that the 
surface is sufficiently smooth locally and statistical 
techniques can be applied to calculate light 
transmission through a local illumination area. We 
have obtained an analytical expression for single 
scattering. The model has been compared to our 
Monte Carlo simulations as well as to the 
simulations by others, and good agreements have 
been achieved. 
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2 BACKGROUND 

Existing BRDF models commonly consist of the 
diffuse and specular terms. The diffuse component is 
typically Lambertian, but the specular term differs in 
various models. A simple approach describes the 
specular component with an empirical function, such 
as the models of Phong (1975), Ward (1992), and 
Lafortune (1997). 

Deriving accurate models needs physically based 
approaches. One approach uses the Kirchhoff theory 
with the tangent plane approximation of the surface 
(Beckmann, 1963; He, 1991). Another approach is 
based on the microfacet assumption of Torrance and 
Sparrow (1967). In this approach, the specular term 
is expressed as a product of the Fresnel coefficient, 
masking and shadowing factor, and surface 
orientation probability (Blinn, 1977; Cook and 
Torrance, 1982). Ashikhmin et al. (2000) developed 
an analytic model to remove the limitation of V-
shaped grooves needed for the traditional microfacet 
model. Recently, Sun (2007) proposed a statistical 
ray method for deriving illumination models of 
rough surfaces. This method will be employed to 
model light transmission in this paper. 

To our best knowledge, two transmission models 
exist in computer graphics. The first was proposed 
by He (1993) based on the Kirchhoff theory, and the 
second by Stam (2001) as an extension from Cook-
Torrance’s reflection model (1982). In practice, the 
rendering of light transmission is rather simple, 
typically based on a formula that extends Phong’s 
reflection model to the case of transmission. 

Beyond computer graphics, some research has 
been conducted to numerically simulate transmission. 
One example is the work of Nieto-Vesperinas et al. 
(1990) where light transmission at rough surfaces 
was computed using a Monte Carlo method. 

Since transmission at a surface is a part of the 
problem of object translucency, we briefly review 
some research on translucency models. Hanrahan 
and Krueger (1993) developed a pioneering model 
of subsurface scattering using the linear transport 
theory. Jensen and Christensen (1998) studied light 
transport in participating media using Monte Carlo 
bi-directional ray tracing and volumetric photon 
mapping. Dorsey et al. (1999) simulated subsurface 
scattering of weathered stones using Monte Carlo 
ray tracing. Pharr and Hanrahan (2000) developed a 
Monte Carlo approach to solve generic scattering 
equations. Stam (2001) used the radiative transfer 
equation to model subsurface scattering of human 
skins. Koenderink and van Doorn (2001) studied 
subsurface scattering with a diffusion approximation 
of light transport theory. Jensen et al. (2001) 

proposed an analytic model of BSSRDF, and later 
Jensen et al. (2002) developed a two-pass technique 
to efficiently render translucent objects. Recently, 
Wang et al. (2005) presented a technique based on 
pre-computed light transport to render translucent 
objects, and Mertens et al. (2005) proposed an 
efficient algorithm to render the local effect of 
subsurface scattering. These studies focused on the 
subsurface or volumetric scattering, and light 
transmission at the surface was not considered. 

3 ANALYTICAL MODELING 

Light transmission processes at a rough surface can 
be classified into single and multiple scattering. In 
single scattering (ray 1 in Figure 2), a light ray is 
scattered one time (this is in fact a refraction at the 
local area). In multiple scattering (ray 2 or 3 in 
Figure 2), there are multiple times of reflection and 
transmission. The total BTDF may be expressed as 

 total single multipleρ ρ ρ= + ,  (2) 
where singleρ  and multipleρ  are the contributions from 
single and multiple scattering, respectively. 

 
Figure 2: Light transmission processes of single scattering 
(ray 1) and multiple scattering (rays 2 and 3). 

Now we use the statistical ray method proposed 
by Sun (2007) to calculate light transmission at a 
rough surface. The assumptions and conditions of 
our considered surface are similar to those used by  
Sun (2007) where the focus was on reflection, but 
now the focus is on transmission. For convenience, 
the assumptions are listed below: 
1. Any surface micro-area Aδ  has size much larger 

than wavelength and is sufficiently smooth such 
that it can be replaced with its local tangent plane. 

2. Any local illumination area AΔ  for the definition 
of BTDF (Figure 1) contains many surface micro-
areas Aδ . As a result, it is valid to use the concept 
of probability of micro-areas Aδ  within AΔ . 

3. The surface properties remain the same in AΔ . 
These properties include the material aspect such 
as the optical constants, and the geometric aspect 
such as the statistics of the surface profile. 
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4. The surface profile is a height field. That is, for 
any line parallel with the z-axis, the line will 
intersect with the surface profile exactly one time. 

5. A combined probability can be approximated as a 
product of the individual probabilities (see below). 

6. The correlation between the incident and outgoing 
directions are ignored. 

As additional conditions, we assume that the surface 
is isotropic and has a Gaussian height probability 
density and correlation function. 

Since the surface is a Gaussian height field, the 
probability density function of surface height is 

 2 21( ) exp( 2 )
2

p ζ ζ σ
πσ

= − , (3) 

where ζ  is the surface height, and σ  is the 
standard deviation or RMS. 

To describe surface roughness, we need to 
consider the surface height correlation. A two-point 
correlation function is generally defined as 

2
0 0( ) ( ) ( )C h h σ= < + >r r r r , (4) 

which involves the average of the product of heights 
at points 0r  and 0 +r r  on the 0z =  plane. Since the 
surface is homogeneous (Assumption 3), the 
correlation is independent of 0r . Also, because the 
surface is isotropic, we can write ( ) ( )C C r=r . A 
common form of ( )C r  is Gaussian, i.e. 

 2 2( ) exp( )C r r τ= − , (5) 
where τ  is the correlation length. Now we define 
the surface smoothness as 

 /s τ σ= . (6) 
The smaller is s , the rougher the surface; vice versa. 

Given surface profile ( , )h x yζ = , the orientation 
of a micro-area Aδ  is described by the partial 
derivatives ( , )x yζ ζ′ ′  
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From Sun (2007), the probability for the orientation 
of a micro-area Aδ  in x yd dζ ζ′ ′  is  

2 2 2

2 2 3

tan( , ) exp
4 4 cos
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n

dp d d τ τ θζ ζ ζ ζ
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where ndΩ  is differential solid angle of ( , )n nθ ϕn , 
 sinn n n nd d dθ θ ϕΩ = . (9) 

Given a micro-area Aδ  (Figure 3), the incident 
radiance ( , )i i iL θ ϕ  and the transmitted radiance 

( , )o o oL θ ϕ  are related as, 
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where β  is the transmission angle for the incident 
angle α , odΩ  is the solid angle in the transmission 

direction, idΩ  is the solid angle in the incident 
direction, and ( , )tF α λ  is the Fresnel coefficient of 
transmission averaged over polarizations. ( , , )i oδ n e e  
is a Dirac delta function. That is, when n , ie , and 

oe  are coplanar and sin sinnα β=  ( n  is the relative 
index of refraction), ( , , ) 1i oδ =n e e ; otherwise, 

( , , ) 0i oδ =n e e . The radiant flux ( , )o oδ θ ϕΦ  through a 
micro-area Aδ  is given as 

( , ) ( , )cos
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o o o o o o

t i i i i o i

L Ad

F L Ad
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= Ωn e e
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Figure 3: Ray transmission at a micro-area. 

Since a local illumination area AΔ  over which 
the BTDF is defined (Figure 1) contains many 
micro-areas Aδ , the total radiant flux over AΔ  
contains contributions from all possible micro-areas, 

( , ) ( ) ( , )

( , )cos ( ) ( , ) ( , , )

o o o o
A

i i i i t i o
A

V A

L d V A F A

θ ϕ δ δ θ ϕ
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Δ

Δ
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= Ω

∑

∑ n e e
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where ( )V Aδ  is a visibility function describing the 
probability of a micro-area Aδ  that is visible in both 
directions ( , )i i iθ ϕe  and ( , )o o oθ ϕe . The radiance to 
the transmission direction ( , )o o oθ ϕe  is given as 

( , )( , )
| cos |
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A d
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θ
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θ
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Δ Ω

Ω
=

Ω Δ∑ n e e
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Because oθ  is measured from the positive z-axis 
(see Figure 1) and its value is within [ / 2, ]π π , we 
take the absolute value of its cosine value in Eq. (13). 
Substituting Eq. (13) into Eq. (1), we obtain 

single

(over ) (fixed )

( , )
( , )cos

cos ( , ) ( , , )( )
cos | cos |

o o o

i i i i i

t i o

i o o

L
L d

F AV A
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θ ϕρ
θ ϕ θ

α α λ δ δδ
θ θ

=
Ω

=
Ω Δ∑ ∑ n e e

(14) 

Here the summation over the local illumination area 
AΔ  has been decomposed into the summation over 

all micro-areas with fixed height ζ  and over 
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different heights. Since the visibility function ( )V Aδ  
at a fixed height remains the same for given incident 
and outgoing directions, it has been put outside the 
inner summation for a fixed height. Considering that 
the projected area of Aδ  on the 0z =  plane is 

 ( ) cos nA Aδ δ θ⊥ = , (15) 
where nθ  is the polar angle of the normal ( , )n nθ ϕn  
of Aδ  (see Figure 3), the portion of the total 
projected areas 

(fixed )
( ) ( , , )i oA

ζ

δ δ⊥∑ n e e  in AΔ  is the 

probability of a surface point with height in 
differential interval [ , ]dζ ζ ζ+  and with orientation 
in intervals [ , ]x x xdζ ζ ζ′ ′ ′+  and [ ,yζ ′  ]y ydζ ζ′ ′+ . Thus, 

(fixed )

1 ( ) ( , , ) ( , , )i o x y xA p d d d
A ζ

δ δ ζ ζ ζ ζ ζ ζ⊥ ′ ′ ′ ′=
Δ ∑ n e e

 (16) 
From Assumption 5, the combined probability 
density function can be decomposed as 

 ( , , ) ( ) ( , )x y x yp p pζ ζ ζ ζ ζ ζ′ ′ ′ ′= . (17) 
Applying Eqs. (16,17) into Eq. (14), we obtain 
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This equation may be further expressed as 
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where the function ( , )χ α β  describes n od dΩ Ω  (see 
Appendix), and  

 ( , , ) ( ) ( , , )i o i oV d p V
ζ

ζ ζ ζ ζ= ∫e e e e  (20) 
is the averaged bistatic visibility function. A bistatic 
visibility function simultaneously involves the 
incident direction ie  and the outgoing direction oe . 
For light transmission, since ie  points into the 
original medium and oe  into the new medium, the 
correlation between the two directions can be 
ignored, as stated in Assumption 6. Therefore,  

 ( , , ) ( , ) ( , )i o i oV V Vζ ζ θ ζ θ≈e e , (21) 
where ( , )V ζ θ  is an individual visibility function that 
describes the probability of being visible for a ray 
starting at height ζ  and with angle θ  (Figure 4), 
and accordingly, 

( , , ) ( , ) ( , )

( ) ( , ) ( , )

i o i o

i o

V V V

d p V V
ζ ζ

ζ ζ θ ζ θ

ζ ζ ζ θ ζ θ

≈

= ∫

e e
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We further approximate Eq. (22) as 
 ( , , ) (0, ) (0, )i o i oV V V

ζ
ζ θ θ≈e e . (23) 

where (0, )iV θ  and (0, )oV θ  are the individual 
visibility functions for the incident and outgoing 
directions when the ray starts from 0ζ = . From the 
previous study (Sun, 2007), 

 ( )2 20 tan(0, ) exp exp 4tankV s
s
θθ θ⎡ ⎤≈ − −⎢ ⎥⎣ ⎦

,(24) 

where 0 0.7k = . Thus, we finally obtain 
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where ( , )χ α β  is given in the Appendix. 
 

 
Figure 4: A ray starts at height ζ  and with polar angle θ . 

 

 
Figure 5: BTDF for different n  and s . Parameters are 

30iθ = ° , 1/1.4n =  for the first row, and 1.4n =  for the 
second row. From the left to right, the values of s  are 6, 3, 
and 1, respectively. 

Figure 5 shows singleρ  for different values of 
relative index of refraction (IOR) n  and smoothness 
s . The solid straight lines (in green) in the upper 
hemisphere indicate the incident direction, and the 
solid straight lines (in blue) in the lower hemisphere 
indicate the transmission direction. singleρ  has a sharp 
lobe and shows the off-specular effect. When 1n <  
(the first row), as the outgoing direction changes 
from 90θ = − °  to 180θ = ° , singleρ  increases gradually 
and reaches a maximum, then decreases rapidly. 
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Also, the direction that singleρ  has the maximum 
shifts toward 180θ = °  with the decrease of s . In 
contrast, for 1n >  (the second row), when the 
outgoing direction changes from 90θ = − °  to 

180θ = ° , singleρ  increases rapidly and reaches the 
maximum, then decreases gradually. Moreover, the 
direction for the maximum singleρ  shifts toward 

90θ = − °  with the decrease of s .  
The plots in Figure 5 can be explained as below. 

First, when the surface is smooth, most micro-areas 
distribute around 0nθ = °  and they contribute to 

singleρ  with iα θ→ . Second, Fresnel’s transmission 
coefficient has the maximum for incident angle 

0α = ° , and decreases with the increase of α .  
Therefore, those micro-areas with orientation around 
the incident direction have large Fresnel’s 
transmission coefficients. These two factors compete 
with each other. And also, for 1n < , the refraction 
angle β  is larger than the incident angle α , and 
vice versa. These result in the plot shapes in Figure 
5. With the decrease of s , the maximum distribution 
of orientations of micro-areas tends to shift from 

0nθ = °  toward 90nθ = ° , which results in a shift of 
the direction for the maximum singleρ . 

 

 
Figure 6: BTDF for different n  and s . Here 0iθ = ° , and 
other parameters and notations are the same as Figure 5. 

For the normal incidence, singleρ  for different 
values of n  and s  is shown in Figure 6. For 1n < , 
the sharp lobe becomes wider with the decrease of 
s , as same as Figure 5. However, for the case 1n >  
in both Figures 5 and 6, although the sharp lobes for 

3s =  are all wider than those for 6s = , the sharp 
lobes for 1s =  have different shapes. Consider the 
rotational geometry, singleρ  for 1s =  in Figure 6 is 
actually a lobe with an indented peak. We can 
understand this by the micro-area model. For rough 
surfaces ( 1s = ), most micro-areas distribute with 

orientations 0nθ ° , and therefore the transmitted 
light by single scattering tends to travel along the 
direction with 90 180oθ° ° . This results in the 
indentation of the lobe in Figure 6. However, the 
probability of ray blocking is higher for the rays 
propagating along this direction. This results in the 
sharper shape for 1s =  in Figure 5. 

4 NUMERICAL SIMULATION 

In our Monte Carlo simulation, given a Gaussian 
rough surface with its mean equal to zero and 
standard deviation σ , totally N  light rays are shot 
from the incident direction ie , each ray carrying a 
weight lW  ( 1,2,...,l N= ) that represents its radiance 
flux intensity. Once a shot ray hits the surface 
profile, it typically splits into a reflected and a 
transmitted ray. When the total internal reflection 
occurs, only a reflected ray is generated.  

The surface height at which a shot ray intercepts 
with the profile is determined by the probability 
density function of surface height and a generated 
random number (all the generated random numbers 
in this paper are uniformly distributed between 0 and 
1). The normal direction of this intersection point is 
obtained by the orientation probability density 
function with two generated random numbers. 

We set the incident flux density to 1. Then the 
weight of the lth shot ray is given as 

 1( , )cos / cosl i nW V ζ θ α θ= , (26) 
where 1ζ  is the surface height that the shot ray first 
intercepts with, α  is the incident angle in the local 
area, and cos nθ  is involved because Eq. (16) just 
describes the probability distribution of Aδ ⊥  at a 
fixed height. 

When a ray with weight W  hits the surface 
profile, it splits into a reflected and transmitted ray, 
and the weight of the reflected ray is ( , )rF Wα λ  and 
that of the transmitted ray is ( , )tF Wα λ . Therefore, 
after each ray splitting, the generated rays will 
decrease in intensities. Once the weight of a newly 
generated ray is lower than the threshold, the 
tracking process terminates. Otherwise, it will be 
tracked continuously; whether it is blocked or not 
depends on its propagation direction, visibility 
function, and a generated random number.   

The radiance to the transmission direction 
( , )o o oθ ϕe  is obtained as 

| cos |
o

l
l

o
o o

W
L

N θ
∈ΔΩ=

ΔΩ

∑
,                  (27) 
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where oΔΩ  is the solid angle along ( , )o o oθ ϕe , and 

o

l
l

W
∈ΔΩ
∑  calculates the sum of the weights of those 

rays transmitted into oΔΩ . Consider that the incident 
irradiance is cos iθ  (since incident flux density is set 
to 1), the BTDF can be calculated by 

 
| cos | cos

o

l

o o i

W

N
ρ

θ θ
ΔΩ=

ΔΩ

∑
. (28) 

In discussion below we may replace ρ  with 
| cos |oρ θ  based on two considerations. First, the 

previous simulations by Nieto-Vesperinas et al. 
(1990) calculated the transmitted light intensity, 
which is proportional to | cos |oρ θ . For convenience 
of comparing the results, we need to use | cos |oρ θ  
instead of ρ . Second, Eq. (28) contains 1/ | cos |oθ  
and 

o

l
l

W
∈ΔΩ
∑ . When oθ π→ , | cos | 0oθ → . However, 

we cannot take 0oΔΩ →  for the calculation of Eq. 
(28). Therefore, ρ  might diverge at 90oθ → ° . 

 

 
 

Figure 7: Comparison between our analytical model and 
simulations. The curves with x marks are from the 
analytical model, the dot curves from the simulations of 
Nieto-Vesperinas et al. (1990), and the solid curves from 
our simulations. Here, 1.411n = , 2.522s = , (a) 0iθ = ° , (b) 

20iθ = ° , (c) 40iθ = ° , and (d) 60iθ = ° . 

Figure 7 compares our analytical model and 
simulations. Nieto-Vesperinas et al. (1990) 
considered perpendicular and parallel polarizations 
separately. For comparison, we calculate the average 
of the two polarizations. In our analytical model and 
simulation, light intensity can be calculated by 

| cos |o Aρ θ Δ . Since we do not know the value of 
AΔ  used for the simulation of Nieto-Vesperinas et 

al., we find it by matching our analytical model with 

their results for 0iθ = ° . In Figure 7, the comparison 
shows a very good match. 
 

 

 
Figure 8: Comparison between simulation and analytical 
model. The solid curves are from our simulation, and the 
curves with x marks from analytical model. Here, 

30iθ = ° , 1/1.4n = , (a) 6s = , (b) 3s = , (c) 1s = , and (d) 
0.5s = . 

 

 
Figure 9: Comparison between simulation and analytical 
model. The solid curves are from our simulation, and the 
curves with x marks from analytical model. Here, 30iθ = ° , 

1.4n = , (a) 6s = , (b) 3s = , (c) 1s = , and (d) 0.5s = . 

Figures 8 and 9 compare our simulation and the 
analytical model for different values of n  and s . 
For smooth and moderately smooth surfaces ( s  is 3 
or 6), the analytical model agrees well with the 
simulation. With small s , the difference between 
the analytical model and simulation increases. This 
is because our analytical model only considers single 
scattering. For smooth surfaces, light transmission is 
dominated by single scattering. Overall, the model 
has a good match with the simulation. For rough 
surfaces ( s  is small), multiple scattering plays an 
important role and should be considered. 
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5 CONCLUSIONS 

This paper presents a realistic transmission model of 
rough surfaces. The model is derived based on the 
statistical ray method. We have obtained an 
analytical expression for single scattering. The 
model has been compared to our Monte Carlo 
simulations as well as to the simulations by others, 
and good agreements have been achieved.  

In future work, the model can be applied to 
render realistic transmission effects. The model 
could be taken into consideration to study object 
translucency. On simulation to verify the analytical 
model, we may generate 2D surfaces for given σ  
and τ , and compute the average of transmission 
through the surfaces. The current model has not 
considered multiple scattering, and both the model 
and simulation have not considered polarization 
effects. We will consider them in our further work. 
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APPENDIX 

Here we derive the relationship between the 
differential solid angles odΩ  and ndΩ . Given an 
unit sphere (Figure 10), the area ABCD  corresponds 
to ndΩ  and the area A B C D′ ′ ′ ′  to odΩ . The points 
A , B , A′ , and B′  are coplanar, and similarly the 

points C , D , C′ , and D′ . The planes ABA B′ ′  and 
DCD C′ ′  intersects at the line POQ , and the angle 
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between them is dγ . Therefore, the length of the 
curve segment AD  is 

 | | | | sinAD AE d dγ α γ= ⋅ = ⋅ .  (A1) 
Since | |AB dα= , so we obtain 

 | | | | sind AD AB d dα γ αΩ = ⋅ = ⋅ . (A2) 
 

 
                                           (a) 

 
                                           (b) 

Figure 10: Relationship between ndΩ  and odΩ  ( 1n > ). 

The Snell’s law gives the following relations: 
 sin sinnα β= ⋅  (A3) 

and  
sin sin( ) sin sin( )d n n dα α α β β β′ ′= + = ⋅ = ⋅ + , (A4) 
where n  is the relative index of refraction ( 1n > ) 
and dβ  is defined as 

 dβ β β′= − . (A5) 
From Eq. (A4), we can obtain 

 
sin cos( ) cos sin( )

[sin cos( ) cos sin( )]
d d

n d d
α α α α

β β β β
⋅ + ⋅

= ⋅ ⋅ + ⋅
 (A6) 

We make the following approximations: 

 
cos( ) 1, sin( ) ,
cos( ) 1, sin( ) .

d d d
d d d
α α α
β β β

≈ ≈
≈ ≈

  (A7) 

Substituting Eqs. (A3) and (A7) into Eq. (A6), we 
obtain 

 cos
cos

d d
n

αβ α
β

=
⋅

. (A8) 

From Figure 10(b), we obtain 
 A OB dβ β α′ ′ ′= −∠ + . (A9) 

Therefore, we obtain 

 cos1
cos

A OB d
n

α α
β

⎛ ⎞
′ ′∠ = −⎜ ⎟⋅⎝ ⎠

. (A10) 

The length of the curve segment A B′ ′  is 
cos| | 1

cos
A B A OB d

n
α α
β

⎛ ⎞
′ ′ ′ ′= ∠ = −⎜ ⎟⋅⎝ ⎠

. (A11) 

The length of the curve segment A D′ ′  is 

 
| | | |

sin( ) sin( )
A D A E d

A OQ d d
γ
γ α β γ

′ ′ ′ ′= ⋅
′= ∠ = −

 (A12) 

Therefore, we obtain 

 
0 | | | |

cos1 sin( )
cos

d A B A D

d d
n

α α β γ α
β

′ ′ ′ ′Ω = ⋅

⎛ ⎞
= − −⎜ ⎟
⎝ ⎠

 (A13) 

Finally, we obtain 
1

sin cos( , ) 1
sin( ) cos

n

o

d
d n

α αχ α β
α β β

−
⎛ ⎞Ω

≡ = −⎜ ⎟Ω − ⋅⎝ ⎠
 (A14) 

Although Eq. (A14) is derived for 1n > , it is easy to 
prove that this expression also holds for 1n < . 
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