
INVERSE RENDERING FOR ARTISTIC PAINTINGS

Shinya Kitaoka†, Tsukasa Noma‡, Yoshifumi Kitamura† and Kunio Yamamoto‡
†Graduate School of Information Science and Technology, Osaka University

2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
‡Department of Artificial Intelligence, Kyushu Institute of Technology

680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan

Keywords: Non-Photorealistic Rendering, Inverse Rendering, Relighting.

Abstract: It is difficult to apply inverse rendering to artistic paintings than photographs of real scenes because (1)
shapes and shadings in paintings are physically incorrect due to artistic effects and (2) brush strokes disturb
other factors. To overcome this difficulty of non-photorealistic rendering, we make some reasonable
assumptions and then factorize the image into factors of shape, (color- and texture-independent) shading,
object texture, and brush stroke texture. By transforming and combining these factors, we can manipulate
grate paintings, such as relighting them and/or obtaining new views, and render new paintings, e.g., ones
with Cézanne’s shading and Renoir’s brush strokes.

1 INTRODUCTION

One of the goals of Non-Photorealistic Rendering
(NPR) (Gooch, 2001) is to render images in the style
of great painters or find new representations. To do
this, we need to analyze their paintings, resolve their
pixel values into modeling, lighting, and artistic
factors, and then clarify the maestros' secrets. Most
previous work on artistic rendering has focused on
stroke-based rendering and textural features (Drori,
2003; Hertzmann, 2003). However, the textural
features of brush strokes alone cannot reproduce
great painters' work. For example, Paul Cézanne's
shading differs from Pierre-Auguste Renoir's. Sloan
et al. captured NPR shading from paintings (Sloan,
2001), but their method needs manual fitting of
surface patches, and more seriously, lighting
information and texture are not separated in their
model. Kulla et al. extract a shading function from
an actual paint sample which is created by the user
(Kulla, 2003). Sato et al. superimposed synthetic
objects onto oil painting images (Sato, 2003). Their
method, however, relies on 3D shape recovery by
photo-modeling (Debevec, 1996), and scenes with
natural objects and/or irregular shapes are hard to
handle. Other studies on NPR shading did not
capture shading from sample images (Gooch, 1998;
Lake, 2000).

In this paper, we apply inverse rendering
(Ramamoorthi, 2001b) to the estimation of factors in
paintings including shading, object textures, and
brush strokes. For inverse rendering for
photographs, we can model the image generation
process as follows (Marschner, 1997; Ramamoorthi,
2001b) using BRDF (Bidirectional Reflectance
Distribution Function):

Model + Lighting + BRDF
+ Texture + Camera = Image

But a model for generating artistic paintings is more
complex:

Model + Lighting + BRDF
+ Object texture + Brush stroke texture

+ Camera (painter’s eye) = Image

The difficulty in inverse rendering for paintings lies
in 3 problems: (1) Shapes and shadings in paintings
are physically incorrect due to artistic effects, (2) the
brush stroke texture is appended as 2D texture and
disturbs other factors, and (3) we cannot
control/observe the factors (e.g., Cézanne drew his
paintings about 100 years ago.). The factorization is
thus ambiguous as is, and under some assumptions,
we factorize the above from a single painting. Our
approach enables us to render artistic objects with
different lightings, different textures, and different
brush strokes from the original.

293
Kitaoka S., Noma T., Kitamura Y. and Yamamoto K. (2007).
INVERSE RENDERING FOR ARTISTIC PAINTINGS.
In Proceedings of the Second International Conference on Computer Graphics Theory and Applications - GM/R, pages 293-298
DOI: 10.5220/0002079902930298
Copyright c© SciTePress

2 ASSUMPTIONS FOR INVERSE
RENDERING

Factorization, the separation of illumination and
albedo, has received a lot of attention for many years
(e.g., (Brainard, 1986)), and such problems are
ambiguous in general (Ramamoorthi, 2001b). We
thus make the following assumptions:
A1: Shape from Contour. Object shape is
reconstructed by its contour using radial basis
interpolation. For example, a cube shape cannot be
represented with its contour because obtaining its
shading information introduces cracks.
A2: Normal dependence. The lighting effect
depends only on a surface normal, and the surface
reflectance cannot have view-dependent effects.
This assumption is similar to (Sloan, 2001).
A3: Chrominance independence of shading. The
lighting effect called shading in this paper, is
independent of chrominance channels and can be
represented in greyscale. It is supposed to be
sufficiently smooth for the change of normals. Such
smoothness assumptions are also found in existing
reports (Kimmel, 2003; Oh, 2001).
A4: Illuminance independence of object texture.
Object texture has the same reflection coefficient for
each chrominance channel. It is expected to be
smooth compared with brush stroke textures.
A5: Brush stroke texture. Brush stroke texture is a
perturbation onto a shaded image and is independent
of the shape, shading and texture of a rendered
object. Typically a painting’s shading was created as
spatial density by brush stroke. In computer graphics,
this effect is used as dithering which is called the
pulse-surface-area modulation when reducing the
number of colors. Dithering is realized by the
random dither method which is adding/subtracting
pixel value. So we assume brush stroke texture is
obtained as a residual term of our inverse rendering
model.

3 ALGORITHM

Our inverse rendering algorithm is illustrated in
Figure 1. As input, it takes a contour of an object
specified by the user in a source painting image
(Figure 2). The contour is specified as shown in
Figure 3a and then the masked image (Figure 3b) is
derived from the contour. The output is its (color-
and texture-independent) shading in greyscale
(Figure 1c), object texture (Figure 1d), and brush
stroke texture (Figure 1e).

Our algorithm has three steps: the first step is to
get the object shape and normals from the contour of
the object. We assume that the shapes of target
objects in paintings can be approximated by radial
basis interpolation. The second step is to factorize
the source image into factors (shading, object
texture, and brush stroke texture). This is the core of
our inverse rendering. The third step to render an
artistic image using evaluated factors such as 3D
object shapes, 3D shading information, and 2D
brush strokes. These steps are discussed in sections
3.2-3.4.

(a)

(b)

(c)

(d)

(e) (f)

Figure 1: Inverse rendering for artistic paintings: (a) A
target object in a source painting image is specified and
then (b) an object shape is reproduced. Our factorization
method resolves the image into: (c) (color- and texture-
independent) greyscale shading (lighting) information
(which is tone-mapped), (d) object texture, and (e) brush
stroke texture. (f) Relighting is achieved by changing the
direction of (c).

Figure 2: A still life by Paul Cézanne.

(a)

(b)

Figure 3: Contour and masked image of a target object: (a)
specifying a contour, and (b) masked image of a target.

GRAPP 2007 - International Conference on Computer Graphics Theory and Applications

294

Y

X

Z

X- Y

Figure 4: An object contour (blue points and curve) and an
anchor outline (red points and curve).

3.1 Step 1: Shape from Contour

We generate an object shape from its contour
(Igarashi, 1999). For this purpose, we use radial
basis interpolation for scattered data (Powell, 1987).
Our method is based on (Turk, 2002).

First, an anchor outline is generated as an
expanded contour along contour normals. In Figure
4, blue points (and the curve) represent a contour
specified by a user, and red points are anchor outline
points.

The height (z coordinate) is treated as a real-
valued function on the xy-plane, expressed in the
form:

() () ()xcxx Pdz
n

j
jj +−Φ⋅=∑

=1

where ()⋅Φ is a radial basis function,
jc are the

positions of contour points and anchor outline
points,

jd are the weights, and ()xP is a degree-one
polynomial. We currently use () ()xxx +=Φ 1log as
a basis function which was adjusted so that a
hemisphere could be constructed from a circle.

The system is solved for value
jd such that ()xz

represents the given pose at the maker locations,
supposing that ()ii zh c= , the constraint is represented
as

() ()i

n

j
jiji Pdh ccc +−Φ⋅=∑

=1

where 0=ih if ic is a contour point and zhi δ−= if
ic is an anchor point.

Since this equation is linear with respect to the
unknowns,

jd and the coefficients of ()xP , it can be
formulated as the following linear system:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ΦΦ

ΦΦ

0
0
0

000
000
00011

1

1 1

2

1

0

1

1

1

11111

nn

y
n

y
n

x
n

x

y
n

x
nnnn

yx
n

h

h

p
p
p
d

d

cc
cc

cc

cc
MM

L

L

L

L

MMMMM

L

where ()y
i

x
ii cc=c , ()jiij cc −Φ=Φ ,

() ypxppP 210 ++=x .

Figure 5: An object shape generated from the contour.

We can obtain the interpolation function ()xz by
solving the above linear system and then obtain
object normals from the following equation:

() ()()1yxxxk ∂∂∂∂⋅= zzn ,
where k is a normalization term.

Finally, the system makes the object shape as a
height map and then normals as a normal map.
Figure 5 shows an object shape generated from the
contour.

3.2 Step 2: Factorization

This section describes how to factorize a source
image into shading, object texture, and brush stroke
texture. Let () 3RpC ∈ be the R, G, B values at pixel
p in the source image, and let its normal

pn on
restored object be determined as shown in section
3.2. Now we obtain greyscale shading () RpR ∈ ,
object texture () 3RpT ∈ , and brush stroke texture
() 3RpB ∈ at pixel p . The shading ()pR is

dependent on the normal
pn . From assumption A2

in Section 2, if two pixels p and q have the same
normal, then () ()qRpR = . Therefore, we represent
shading value ()nR as a function of normal n .

We assume that painters create paintings based
on a physical model (observed illumination) and
then add artistic effects with brush strokes. The pixel
value ()pC at pixel p is thus modelled as

() () () ()pBdL,fpC r +⋅= ∫Ω llnlxlex ,,

where ()lex ,,rf is a BRDF at x in direction l to e ,
()lx,L be incoming radiance from direction l at x ,

and let n be a normal at x .
Now, assuming that the surface is completely

diffuse, we have

() ()() () ()pBdLpTpC +⋅⋅= ∫Ω llnlx,π .

From assumption A3, we assume that

() () ()∫Ω ⋅⋅ llnlxn dLR p ,1~ π (1)
and

() () () ()pBpTRpC p +⋅= n . (2)

INVERSE RENDERING FOR ARTISTIC PAINTINGS

295

3.2.1 Shading

From Equation 1 and (Ramamoorthi, 2001a),
chrominance-independent shading ()nR can be
represented as a low-frequency signal on a sphere:
where R~ is the low-frequency-part of spherical
wavelets from the input image and α is a constant
(we discuss how to get it in Section 3.2.2).

3.2.2 Object Texture

Without brush strokes, object texture is obtained as
() () ()pRpCpT n~~ = .

From assumption A3, we suppose that object
texture changes as intensity (Y value in YUV color
space) changes. Then, the object texture at pixel p
is represented by a linear model:

() ()
()

∑
∈

=
pAdjq

pq qTwpT .

where
pqw is a weighting function, whose sum is 1,

() ()()261 10~ qYpYwpq −+−− , and ()pAdj is a set of
neighbouring pixels of p .

Now we formulate the problem as a stochastic
optimization problem with the following evaluation
function:

() () ()
()

∑ ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

∈p pAdjq
pq qTwpTTJ

2

.

We minimize ()TJ using the least squares
method. This ()TJ minimization is represented by
the ()()TJ−exp minimization which is the maximum
likelihood estimation. Then, we set

pqw as

() ()()261 ~~10~ qTpTw yy
pq −+−− .

The problem then becomes one of solving a
linear system:

() ()
()

∑
∈

=
pAdjq

pq qTwpT .

We also apply constraints () ()pTpT ~= at
random points determined by a 2D Halton sequence.
The obtained value is scaled so that () 1≤pT . The
result is the texture ()pT . The scaled value is α
which introduced above. Finally, we obtain brush
stroke texture ()pB by simple subtraction (Equation
2).

3.2.3 Interpolation on Spherical Wavelets

We use spherical wavelet transform to handle
shading values. We recursively divide the initial
polyhedron for spherical wavelets. As the spherical
wavelet bases, we use a spherical Haar basis, which
is described by

() ()j
k

j
k T=φ , () ()∑

=

+
+=

3

0

1
4,,

i

j
iklm

j
mk q φψ ,

where ()j
kφ is a scaling function, ()j

mk ,ψ is a wavelet
function, k is a spherical coordinate, and ()j

kT is 1
(if it is included in the k -th triangular region of level
j) or 0 (otherwise).

If a domain contains no data due to the object
shape, then we approximate the value by averaging
the values in adjacent triangles.

3.3 Step 3: Forward Rendering

After we have obtained greyscale shading, object
texture, and brush stroke texture, the system can
render a new scene by (re)using them. Shading data
is stored as a texture to accelerate rendering for
interactivity using paraboloid texture mapping
(Heidrich, 1990). We need a single shading texture
because shading data is only on the hemisphere of
the viewpoint direction.
The texture coordinates of paraboloid texture
mapping can be calculated as

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+= z

x

n
nu

1
1

2
1 ,

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+= z

y

n
nv

1
1

2
1 .

where ()zyx nnn=n is an object normal in
viewing coordinates.

4 RESULTS

Factorization results are shown in Figure 10a-d
(From left to right: original image, target object,
shading (which is tone-mapped by (Reinhard,
2002)), object texture, brush stroke texture, and
relighted object). The obtained shading, which is a
low-frequency signal, cannot handle high-frequency
highlights, but it can express low-frequency
shadings of a source object. Extracted object
textures are missing lighting effects and the
appearance of shape. The result of brush stroke
textures represents a reduced term, which is brush
stroke effects (for instance, that for Renoir is
different from those of the others.). Relighted results
are very natural and do not have artefacts.

The results of changing the object texture are
shown in Figure 6. The object textures were
swapped using factorized results (Figure 1 and
Figure 10a). Those results changed the object texture,
but kept the shapes, shadings, and brush stroke
effects. Composed results do not have any visual
artefacts observed as unnatural noise.

GRAPP 2007 - International Conference on Computer Graphics Theory and Applications

296

(a)

(b)

Figure 6: Examples of changing the object texture: (a) The
object texture of Figure 10a applied to the object in Figure
1. (b) The object texture of Figure 1 applied to the object
in Figure 10a.

(a)

(b)

Figure 7: Examples of changing the brush stroke texture:
(a) Chardin’s brush stroke (Figure 10b) applied to
Cézanne. (b) Renoir’s brush stroke (Figure 10c) applied to
Cézanne.

Figure 8: Example of a new view.

Figure 9: Example of relighting a still life by Paul
Cézanne.

The results of changing brush stroke are shown
in Figure 7. The effect of the brush stroke peculiar to
each painter can be added. Comparing Figure 7 with
Figure 1, we can observe Chardin’s brush stroke
features of Figure 10b in Figure 7a and Renoir's
brush stroke features of Figure 10c in Figure 7b.
Composed results do not have any visual artefacts
observed as unnatural noise.

The results of a new view are shown in Figure 8.
The brush stroke effects were fixed to the image-
plane and the viewpoint was changed, because the
effects are independent of the viewpoint. Comparing
Figure 8 with Figure 5, whose brush stroke effect is
not fixed, we can observe the brush stroke effects on
the image plane. The results of relighting a painting
are shown in Figure 9.

5 CONCLUSIONS

We have developed an approach to inverse rendering
for artistic paintings. Compared with a previous
work (Sloan, 2001), we have achieved great
improvements: (1) contour-based object
specification liberates users from manual surface
sampling in (Sloan, 2001) and (2) our method
factorizes the pixels of the image of a painting into
reusable artistic factors: (color- and texture-
independent) greyscale shading, object texture, and
brush stroke texture. We reconstruct an object shape
to obtain its normals by its contour. You can use any
other existing approach to obtain an object's normals,
however, you note that the normals which can
represent the shading can usually not be obtained
from a shape which is not reconstructed by spherical
approximation.

Our approach, however, has some limitations and
problems: The first problem is that if object texture
is too biased, its greyscale shading cannot be
obtained correctly. We are now investigating more
sophisticated optimization. The second problem is
that relighting animation is not so smooth because
shading for an artistic/static painting is not
necessarily appropriate for animation. Currently, we
avoid smoothing so as not to decrease artistic effects.
In the future, we should develop another approach so
that artistic shading is compatible with animation.
The third problem is that we treat brush strokes as
2D texture independent of shape and shading. For
natural animation of painting-like images, inter-
frame continuity with shape and shading should be
considered (Meier, 1996). And as suggested in
(Haeberli, 1990), the independence assumption of
brush stroke texture should be reconsidered. The
fourth problem is that we ignored global
illumination effects like shadows. In our relighted
results, shadows were not moved. For actual
relighting of paintings, we must consider these
effects in future.

REFERENCES

Brainard, D.H., Wandell, B.A., 1986. Analysis of the
retinex theory of color vision. J. Opt. Soc. Am. A,
3(10):1651-1661.

Debevec, P., Taylor, C., Malik, J., 1996. Modeling and
rendering architecture from photographs: A hybrid
geometry- and image-based approach. In Proceedings
of SIGGRAPH '96, pages 11-20.

Drori, I., Cohen-Or, D., Yeshurun, H., 2003. Example-
based style synthesis. In Proceedings of CVPR 2003,
pages 143-150.

Gooch, A., Gooch, B., Shirley, P., Cohen, E., 1998. A
nonphotorealistic lighting model for automatic

INVERSE RENDERING FOR ARTISTIC PAINTINGS

297

technical illustration. In Proceedings of SIGGRAPH
1998, pages 447-452.

Gooch, B., Gooch, A., 2001. Non-Photorealistic
Rendering. A. K. Peters.

Haeberli, P., 1990. Paint by numbers: Abstract image
representation. In Proceedings of SIGGRAPH 1990,
pages 207-214.

Heidrich, W., Seidel, H.-P., 1998. View-independent
environment maps. In Proceedings of ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics
hardware, pages 39-45.

Hertzmann, A., 2003. A survey of stroke-based rendering.
IEEE Computer Graphics and Applications,
23(4):117-128.

Igarashi, T., Matsuoka, S., Tanaka, H., 1999. Teddy: A
sketching interface for 3D freeform design. In
Proceedings of SIGGRAPH 1999, pages 409-416.

Kimmel, F., Elad, M., Shaked, D., Keshet, R., Sobel, I.,
2003. A variational framework for retinex. Int'l J.
Comput. Vision, 52(1):7-23.

 Kulla, C.D., Tucek, J.D., Bailey, R.J., Grimm, C.M., 2003,
Using texture synthesis for Non-Photorealistic shading
from paint samples. In Proceedings of 11th Pacific
Conference on Computer Graphics and Application
2003, pages 477-481.

Lake, A., Marshall, C., Harris, M., Blackstein, M., 2000.
Stylized rendering techniques for scalable real-time
3D animation. In Proceedings of NPAR 2000, pages
13-20.

Marschner, S.R., Greenberg, D.P., 1997. Inverse lighting
for photography. In Proceedings of IS&T/SID 5th
Color Imaging Conference.

Meier, B.J., 1996. Painterly rendering for animation. In
Proceedings of SIGGRAPH 1996, pages 477-484.

Oh, B.M., Chen, M., Dorsey, J., and Durand, F., 2001.
Image-based modeling and photo editing. In
Proceedings of SIGGRAPH 2001, pages 433-442.

Powell, M. J. D., 1987. Radial basis functions for
multivariable interpolation: A review. pages 143-167
Oxford Clarendon Press.

Ramamoorthi, R., Hanrahan, P., 2001a. On the
relationship between radiance and irradiance:
Determining the illumination from images of a convex
lambertian object. J. Opt. Soc. Am. A, 18(10):2448-
2459.

Ramamoorthi, R., Hanrahan, P., 2001b. A signal-
processing framework for inverse rendering. In
Proceedings of SIGGRAPH 2001, pages 117-128.

Reinhard, E., Stark, M., Shirley, P., Ferwerda, J., 2002.
Photographic tone reproduction for digital images, In
Proceedings of SIGGRAPH 2002, pages 267-276.

Sato, I., Sato, Y., Ikeuchi, K., 2003. Superimposing
synthetic objects into oil paintings with artistic
shadings. IPSJ Transactions on Computer Vision and
Image Media, 44(SIG 9(CVIM 7)):132-142. (In
Japanese)

Sloan, P.-P. J., Martin, W., Gooch, A., Gooch, B., 2001.
The lit sphere: A model for capturing NPR shading
from art. In Proceedings of Graphics Interface 2001,
pages 143-150.

Turk, G., O'Brien, J.F., 2002. Modelling with implicit
surfaces that interpolate. ACM Transactions on
Graphics, 21(4):855-873.

 Original Images Source Objects Shadings Object Textures Brush Stroke
Textures

Relighted
Objects

 (a)

(b)

(c)

(d)

Figure 10: Factorization results and relighting: (a) Paul Cézanne, (b) Jean-Baptiste-Sim’eon Chardin, (c) Pierre-Auguste
Renoir, (d) real photo.

GRAPP 2007 - International Conference on Computer Graphics Theory and Applications

298

