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Abstract: It is difficult to apply inverse rendering to artistic paintings than photographs of real scenes because (1) 
shapes and shadings in paintings are physically incorrect due to artistic effects and (2) brush strokes disturb 
other factors. To overcome this difficulty of non-photorealistic rendering, we make some reasonable 
assumptions and then factorize the image into factors of shape, (color- and texture-independent) shading, 
object texture, and brush stroke texture. By transforming and combining these factors, we can manipulate 
grate paintings, such as relighting them and/or obtaining new views, and render new paintings, e.g., ones 
with Cézanne’s shading and Renoir’s brush strokes. 

1 INTRODUCTION 

One of the goals of Non-Photorealistic Rendering 
(NPR) (Gooch, 2001) is to render images in the style 
of great painters or find new representations. To do 
this, we need to analyze their paintings, resolve their 
pixel values into modeling, lighting, and artistic 
factors, and then clarify the maestros' secrets. Most 
previous work on artistic rendering has focused on 
stroke-based rendering and textural features (Drori, 
2003; Hertzmann, 2003). However, the textural 
features of brush strokes alone cannot reproduce 
great painters' work. For example, Paul Cézanne's 
shading differs from Pierre-Auguste Renoir's. Sloan 
et al. captured NPR shading from paintings (Sloan, 
2001), but their method needs manual fitting of 
surface patches, and more seriously, lighting 
information and texture are not separated in their 
model. Kulla et al. extract a shading function from 
an actual paint sample which is created by the user 
(Kulla, 2003). Sato et al. superimposed synthetic 
objects onto oil painting images (Sato, 2003). Their 
method, however, relies on 3D shape recovery by 
photo-modeling (Debevec, 1996), and scenes with 
natural objects and/or irregular shapes are hard to 
handle. Other studies on NPR shading did not 
capture shading from sample images (Gooch, 1998; 
Lake, 2000). 

In this paper, we apply inverse rendering 
(Ramamoorthi, 2001b) to the estimation of factors in 
paintings including shading, object textures, and 
brush strokes. For inverse rendering for 
photographs, we can model the image generation 
process as follows (Marschner, 1997; Ramamoorthi, 
2001b) using BRDF (Bidirectional Reflectance 
Distribution Function): 

Model + Lighting + BRDF 
+ Texture + Camera = Image 

 

But a model for generating artistic paintings is more 
complex: 

Model + Lighting + BRDF 
+ Object texture + Brush stroke texture 

+ Camera (painter’s eye) = Image 

 

The difficulty in inverse rendering for paintings lies 
in 3 problems: (1) Shapes and shadings in paintings 
are physically incorrect due to artistic effects, (2) the 
brush stroke texture is appended as 2D texture and 
disturbs other factors, and (3) we cannot 
control/observe the factors (e.g., Cézanne drew his 
paintings about 100 years ago.). The factorization is 
thus ambiguous as is, and under some assumptions, 
we factorize the above from a single painting. Our 
approach enables us to render artistic objects with 
different lightings, different textures, and different 
brush strokes from the original. 
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2 ASSUMPTIONS FOR INVERSE 
RENDERING 

Factorization, the separation of illumination and 
albedo, has received a lot of attention for many years 
(e.g., (Brainard, 1986)), and such problems are 
ambiguous in general (Ramamoorthi, 2001b). We 
thus make the following assumptions: 
A1: Shape from Contour. Object shape is 
reconstructed by its contour using radial basis 
interpolation. For example, a cube shape cannot be 
represented with its contour because obtaining its 
shading information introduces cracks. 
A2: Normal dependence. The lighting effect 
depends only on a surface normal, and the surface 
reflectance cannot have view-dependent effects. 
This assumption is similar to (Sloan, 2001). 
A3: Chrominance independence of shading. The 
lighting effect called shading in this paper, is 
independent of chrominance channels and can be 
represented in greyscale. It is supposed to be 
sufficiently smooth for the change of normals. Such 
smoothness assumptions are also found in existing 
reports (Kimmel, 2003; Oh, 2001). 
A4: Illuminance independence of object texture. 
Object texture has the same reflection coefficient for 
each chrominance channel. It is expected to be 
smooth compared with brush stroke textures. 
A5: Brush stroke texture. Brush stroke texture is a 
perturbation onto a shaded image and is independent 
of the shape, shading and texture of a rendered 
object. Typically a painting’s shading was created as 
spatial density by brush stroke. In computer graphics, 
this effect is used as dithering which is called the 
pulse-surface-area modulation when reducing the 
number of colors. Dithering is realized by the 
random dither method which is adding/subtracting 
pixel value. So we assume brush stroke texture is 
obtained as a residual term of our inverse rendering 
model. 

3 ALGORITHM 

Our inverse rendering algorithm is illustrated in 
Figure 1. As input, it takes a contour of an object 
specified by the user in a source painting image 
(Figure 2). The contour is specified as shown in 
Figure 3a and then the masked image (Figure 3b) is 
derived from the contour. The output is its (color- 
and texture-independent) shading in greyscale 
(Figure 1c), object texture (Figure 1d), and brush 
stroke texture (Figure 1e). 

Our algorithm has three steps: the first step is to 
get the object shape and normals from the contour of 
the object. We assume that the shapes of target 
objects in paintings can be approximated by radial 
basis interpolation. The second step is to factorize 
the source image into factors (shading, object 
texture, and brush stroke texture). This is the core of 
our inverse rendering. The third step to render an 
artistic image using evaluated factors such as 3D 
object shapes, 3D shading information, and 2D 
brush strokes. These steps are discussed in sections 
3.2-3.4. 

 

(a) 

 

 
(b) 

 

(c) 

(d) 
 

(e) (f) 

Figure 1: Inverse rendering for artistic paintings: (a) A 
target object in a source painting image is specified and 
then (b) an object shape is reproduced. Our factorization 
method resolves the image into: (c) (color- and texture-
independent) greyscale shading (lighting) information 
(which is tone-mapped), (d) object texture, and (e) brush 
stroke texture. (f) Relighting is achieved by changing the 
direction of (c). 

 
Figure 2: A still life by Paul Cézanne. 

 
(a) 

 
(b) 

Figure 3: Contour and masked image of a target object: (a) 
specifying a contour, and (b) masked image of a target. 
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Figure 4: An object contour (blue points and curve) and an 
anchor outline (red points and curve). 

3.1 Step 1: Shape from Contour 

We generate an object shape from its contour 
(Igarashi, 1999). For this purpose, we use radial 
basis interpolation for scattered data (Powell, 1987). 
Our method is based on (Turk, 2002). 

First, an anchor outline is generated as an 
expanded contour along contour normals. In Figure 
4, blue points (and the curve) represent a contour 
specified by a user, and red points are anchor outline 
points. 

The height (z coordinate) is treated as a real-
valued function on the xy-plane, expressed in the 
form: 

( ) ( ) ( )xcxx Pdz
n

j
jj +−Φ⋅=∑

=1

  

where ( )⋅Φ  is a radial basis function, 
jc  are the 

positions of contour points and anchor outline 
points, 

jd  are the weights, and ( )xP  is a degree-one 
polynomial. We currently use ( ) ( )xxx +=Φ 1log  as 
a basis function which was adjusted so that a 
hemisphere could be constructed from a circle.  

The system is solved for value 
jd  such that ( )xz  

represents the given pose at the maker locations, 
supposing that ( )ii zh c= , the constraint is represented 
as 

( ) ( )i

n

j
jiji Pdh ccc +−Φ⋅=∑

=1

  

where 0=ih  if  ic  is a contour point and zhi δ−=  if 
ic  is an anchor point. 

Since this equation is linear with respect to the 
unknowns, 

jd  and the coefficients of ( )xP , it can be 
formulated as the following linear system: 
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where ( )y
i

x
ii cc=c , ( )jiij cc −Φ=Φ , 

( ) ypxppP 210 ++=x .  

 
Figure 5: An object shape generated from the contour. 

We can obtain the interpolation function ( )xz  by 
solving the above linear system and then obtain 
object normals from the following equation: 

 

( ) ( )( )1yxxxk ∂∂∂∂⋅= zzn ,  
where k  is a normalization term. 

Finally, the system makes the object shape as a 
height map and then normals as a normal map. 
Figure 5 shows an object shape generated from the 
contour. 

3.2 Step 2: Factorization 

This section describes how to factorize a source 
image into shading, object texture, and brush stroke 
texture. Let ( ) 3RpC ∈  be the R, G, B values at pixel 
p in the source image, and let its normal 

pn on 
restored object be determined as shown in section 
3.2. Now we obtain greyscale shading ( ) RpR ∈ , 
object texture ( ) 3RpT ∈ , and brush stroke texture 
( ) 3RpB ∈  at pixel p . The shading ( )pR  is 

dependent on the normal 
pn . From assumption A2 

in Section 2, if two pixels p  and q  have the same 
normal, then ( ) ( )qRpR = . Therefore, we represent 
shading value ( )nR  as a function of normal n . 

We assume that painters create paintings based 
on a physical model (observed illumination) and 
then add artistic effects with brush strokes. The pixel 
value ( )pC  at pixel p  is thus modelled as 

 

( ) ( ) ( ) ( )pBdL,fpC r +⋅= ∫Ω llnlxlex ,,   

where ( )lex ,,rf  is a BRDF at x  in direction l  to e , 
( )lx,L  be incoming radiance from direction l  at x , 

and let n  be a normal at x . 
Now, assuming that the surface is completely 

diffuse, we have 
 

( ) ( )( ) ( ) ( )pBdLpTpC +⋅⋅= ∫Ω llnlx,π .  

From assumption A3, we assume that 
 

( ) ( ) ( )∫Ω ⋅⋅ llnlxn dLR p ,1~ π  (1) 
and 

( ) ( ) ( ) ( )pBpTRpC p +⋅= n . (2) 
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3.2.1 Shading 

From Equation 1 and (Ramamoorthi, 2001a), 
chrominance-independent shading ( )nR  can be 
represented as a low-frequency signal on a sphere: 
where R~  is the low-frequency-part of spherical 
wavelets from the input image and α  is a constant 
(we discuss how to get it in Section 3.2.2). 

3.2.2 Object Texture 

Without brush strokes, object texture is obtained as 
( ) ( ) ( )pRpCpT n~~ = .  

From assumption A3, we suppose that object 
texture changes as intensity (Y value in YUV color 
space) changes. Then, the object texture at pixel p  
is represented by a linear model: 

( ) ( )
( )

∑
∈

=
pAdjq

pq qTwpT .  

where 
pqw  is a weighting function, whose sum is 1, 

( ) ( )( )261 10~ qYpYwpq −+−− , and ( )pAdj is a set of 
neighbouring pixels of p . 

Now we formulate the problem as a stochastic 
optimization problem with the following evaluation 
function: 

( ) ( ) ( )
( )

∑ ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

∈p pAdjq
pq qTwpTTJ

2

. 
 

We minimize ( )TJ  using the least squares 
method. This ( )TJ minimization is represented by 
the ( )( )TJ−exp  minimization which is the maximum 
likelihood estimation. Then, we set 

pqw  as 

( ) ( )( )261 ~~10~ qTpTw yy
pq −+−− .  

The problem then becomes one of solving a 
linear system: 

( ) ( )
( )

∑
∈

=
pAdjq

pq qTwpT .  

We also apply constraints ( ) ( )pTpT ~=  at 
random points determined by a 2D Halton sequence. 
The obtained value is scaled so that ( ) 1≤pT . The 
result is the texture ( )pT . The scaled value is α  
which introduced above. Finally, we obtain brush 
stroke texture ( )pB  by simple subtraction (Equation 
2). 

3.2.3 Interpolation on Spherical Wavelets 

We use spherical wavelet transform to handle 
shading values. We recursively divide the initial 
polyhedron for spherical wavelets. As the spherical 
wavelet bases, we use a spherical Haar basis, which 
is described by 

( ) ( )j
k

j
k T=φ , ( ) ( )∑

=

+
+=

3

0

1
4,,

i

j
iklm

j
mk q φψ , 

 

where ( )j
kφ  is a scaling function, ( )j

mk ,ψ  is a wavelet 
function, k  is a spherical coordinate, and ( )j

kT  is 1 
(if it is included in the k -th triangular region of level 
j ) or 0  (otherwise). 

If a domain contains no data due to the object 
shape, then we approximate the value by averaging 
the values in adjacent triangles. 

3.3 Step 3: Forward Rendering 

After we have obtained greyscale shading, object 
texture, and brush stroke texture, the system can 
render a new scene by (re)using them. Shading data 
is stored as a texture to accelerate rendering for 
interactivity using paraboloid texture mapping 
(Heidrich, 1990). We need a single shading texture 
because shading data is only on the hemisphere of 
the viewpoint direction. 
The texture coordinates of paraboloid texture 
mapping can be calculated as 

⎟⎟
⎠
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⎝

⎛
+

+= z
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n
nu
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1

2
1 , 
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⎝
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+

+= z

y

n
nv

1
1

2
1 .  

where ( )zyx nnn=n  is an object normal in 
viewing coordinates.  

4 RESULTS 

Factorization results are shown in Figure 10a-d 
(From left to right: original image, target object, 
shading (which is tone-mapped by (Reinhard, 
2002)), object texture, brush stroke texture, and 
relighted object). The obtained shading, which is a 
low-frequency signal, cannot handle high-frequency 
highlights, but it can express low-frequency 
shadings of a source object. Extracted object 
textures are missing lighting effects and the 
appearance of shape. The result of brush stroke 
textures represents a reduced term, which is brush 
stroke effects (for instance, that for Renoir is 
different from those of the others.). Relighted results 
are very natural and do not have artefacts. 

The results of changing the object texture are 
shown in Figure 6. The object textures were 
swapped using factorized results (Figure 1 and 
Figure 10a). Those results changed the object texture, 
but kept the shapes, shadings, and brush stroke 
effects. Composed results do not have any visual 
artefacts observed as unnatural noise. 
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(a)  

(b) 

Figure 6: Examples of changing the object texture: (a) The 
object texture of Figure 10a applied to the object in Figure 
1. (b) The object texture of Figure 1 applied to the object 
in Figure 10a. 

 
(a) 

 
(b) 

Figure 7: Examples of changing the brush stroke texture: 
(a) Chardin’s brush stroke (Figure 10b) applied to 
Cézanne. (b) Renoir’s brush stroke (Figure 10c) applied to 
Cézanne. 

Figure 8: Example of a new view. 

  
Figure 9: Example of relighting a still life by Paul 
Cézanne. 

The results of changing brush stroke are shown 
in Figure 7. The effect of the brush stroke peculiar to 
each painter can be added. Comparing Figure 7 with 
Figure 1, we can observe Chardin’s brush stroke 
features of Figure 10b in Figure 7a and Renoir's 
brush stroke features of Figure 10c in Figure 7b. 
Composed results do not have any visual artefacts 
observed as unnatural noise. 

The results of a new view are shown in Figure 8. 
The brush stroke effects were fixed to the image-
plane and the viewpoint was changed, because the 
effects are independent of the viewpoint. Comparing 
Figure 8 with Figure 5, whose brush stroke effect is 
not fixed, we can observe the brush stroke effects on 
the image plane. The results of relighting a painting 
are shown in Figure 9. 

5 CONCLUSIONS 

We have developed an approach to inverse rendering 
for artistic paintings. Compared with a previous 
work (Sloan, 2001), we have achieved great 
improvements: (1) contour-based object 
specification liberates users from manual surface 
sampling in (Sloan, 2001) and (2) our method 
factorizes the pixels of the image of a painting into 
reusable artistic factors: (color- and texture-
independent) greyscale shading, object texture, and 
brush stroke texture.  We reconstruct an object shape 
to obtain its normals by its contour. You can use any 
other existing approach to obtain an object's normals, 
however, you note that the normals which can 
represent the shading can usually not be obtained 
from a shape which is not reconstructed by spherical 
approximation. 

Our approach, however, has some limitations and 
problems: The first problem is that if object texture 
is too biased, its greyscale shading cannot be 
obtained correctly. We are now investigating more 
sophisticated optimization. The second problem is 
that relighting animation is not so smooth because 
shading for an artistic/static painting is not 
necessarily appropriate for animation. Currently, we 
avoid smoothing so as not to decrease artistic effects. 
In the future, we should develop another approach so 
that artistic shading is compatible with animation. 
The third problem is that we treat brush strokes as 
2D texture independent of shape and shading. For 
natural animation of painting-like images, inter-
frame continuity with shape and shading should be 
considered (Meier, 1996). And as suggested in 
(Haeberli, 1990), the independence assumption of 
brush stroke texture should be reconsidered. The 
fourth problem is that we ignored global 
illumination effects like shadows. In our relighted 
results, shadows were not moved. For actual 
relighting of paintings, we must consider these 
effects in future. 
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Figure 10: Factorization results and relighting: (a) Paul Cézanne, (b) Jean-Baptiste-Sim’eon Chardin, (c) Pierre-Auguste 
Renoir, (d) real photo. 
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