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Abstract: A ubiquitous problem in coregistration of brain images is that individual sulci and gyri vary considerably 
between individuals, both with respect to location and shape as well as for simple existence of particular 
sulci. The underlying assumption of most coregistration processes is that one structure can be smoothly 
morphed to exactly resemble another structure if enough parameters are used. Although in a strict sense this 
may be true for intersubject brain registration, due to differing structures the result may not be as 
meaningful as desired. The proposed approach offers a groundbreaking alternative to the standard approach 
of continuously deformable coregistration algorithms, introducing instead a hierarchical structure of related 
nodes (a "nodetree") to model the brain structure using grey-matter and white-matter masks.  Additionally, a 
proposal is made for using the nodetree structure for coregistration, employing a novel locally discontinuous 
but focused registration to more accurately align and compare corresponding features.  This approach can 
provide a framework for identifying structural differences, with a goal of relating them to functional 
differences. Although this method uses the brain as an example, it is quite general and not limited to the 
brain, or even to medical images. 

1 INTRODUCTION 

Current mainstream coregistration packages for 
medical images use variations of one of two basic 
approaches: a) whole-brain voxelwise or volumetric 
registration which minimizes a cost function 
summarizing the average difference between two 3D 
volumes (Woods et al, 1998), or b) registration of 
discrete points or features, with the transforms for 
nearby unmarked voxels determined by interpolation 
(Pelizzari et al., 1989). A feature common to both of 
these approaches is to treat the structure as a 
continuous 3-dimensional object, so that although 
voxels may get stretched or distorted, neighboring 
voxels remain neighbors. One result of this 
assumption is that missing or extra structures in 
either the target or object volume determines the 
ultimate accuracy of the procedure. To date, 
increases in accuracy have been achieved by using a 
larger number of parameters to improve local fits, 
but the fundamental assumption is that one structure 
can be smoothly morphed to become identical to 
another. In brain imaging, frequently there is not a 1-
to-1 intersubject correspondence of structures, so 

even if an algorithm is able to smoothly morph one 
object to achieve a good pixel-intensity match with 
another, the result is not always desirable (Fig. 1). 

Current approaches to brain coregistration are 
limited to a large extent by the underlying similarity 
of the structures to be registered, in that there is no 
acknowledgment or allowance for missing or extra 
structures. For example, a common but difficult 
problem is to accurately register a brain containing a 
tumor to a standard brain template. A more subtle 
but also more ubiquitous problem is the fact that 
individual gyri and sulci vary considerably between 
individuals, both with respect to location and shape 
as well as for simple existence of particular gyri. 
Current coregistration approaches can reshape a 
gyrus with some success, but do not address the fact 
that a gyrus present in one individual may be 
missing in another. The sensitivity of a multi-subject 
functional activation study [e.g. functional Magnetic 
Resonance Imaging (fMRI) or Positron Emission 
Tomography (PET)] is directly related to the 
accuracy of combining and examining the same 
functional signal from a group of subjects, and 
anatomical variation is emerging as one of the 
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Figure 1: Cartoon showing two different cortical-like structures (1a, 1b) that cannot be meaningfully morphed to achieve a 
similar shape. Cartoons 1c, 1d demonstrate typical results expected from a continuously deformable coregistration model. 
1c: a fit using fewer parameters might result in a single gyrus from the object image (blue) spanning two gyri in the target 
image (orange). 1d: a fit using a large number of parameters could deform the single gyrus to achieve an accurate pixel 
intensity match, but there may not be a physiological justification for splitting a single gyrus into two. 1e: an example of a 
more physiologically plausible scenario, where two gyri should match but there is an “extra” or unassigned gyrus. This 
result is quite difficult to obtain for current smoothly morphing algorithms. 

limiting factors in functional comparisons (Juch et 
al., 2005). This paper seeks to establish a framework 
for applying established skeleton-based, hierarchical 
registration techniques to anatomical medical 
images, and subsequently to related functional data. 

The nodetree method is based on a variant of the 
Medial Axis Transform (MAT), which seeks to 
define a skeleton representative of the major features 
of an image. The medial axis (MA) (Blum 1967) is 
described as the locus of the centers of all bi-tangent 
circles contained within a shape. Here, the term 
"MA" is used as shorthand for the MAT skeleton. A 
useful feature of the MA is that the skeletal pixels 
are connected, so shape features such as length are 
easily computed. Pixels in a MA skeleton can be 
ranked post-hoc according to how many branches 
radiate from them, so that node points can be easily 
identified. However, one of the lingering problems 
with the MA and related approaches is a lack of 
robustness (see e.g. Parker 1997). Small changes in 
the overall structure can lead to large changes in the 
final MA structure, which makes it difficult to apply 
this approach to a variety of situations. A number of 
variants have been proposed to address this 
shortcoming, such as a recent method using a 
Bayesian probabalistic approach to estimate a 
skeleton shape (Feldman & Singh, 2006), and which 
seems to be more robust to noise and minor 
perturbations. However, this and similar approaches 
have not yet been widely tested on medical images. 

A major advance in the MA with respect to 
medical imaging was a generalization to 3 
dimensions (Sherbrooke et al. 1996). Further 
refinements were added by Amenta and Kolluri 
(2001) to develop a 3D medial axis from a union of 
overlapping balls. In this case, the medial axis is not 
a series of lines, as in the 2D case, but rather a group 

of vertices that define a closed surface in space. 
Ranjan and Fournier (1996) proposed using a union 
of balls to describe a volume, and furthermore they 
developed a method to coregister two similar 
structures by finding the closest spatial match 
between corresponding pairs of balls.   

One of the major benefits of a hierarchical 
skeletal model is that the various branches may be 
moved independently of one another. This concept 
underlies much of the computer animation field, 
where a skeletal model is wrapped with an outer 
surface so changes in the orientation and shape of 
the skeleton can be propagated to the surface 
structures (see e.g. Gagvani et al. 1998). This 
process has an innate hierarchy, since movements to 
one element of the skeleton (e.g. the forearm) lead to 
predictable changes in subservient elements (e.g. the 
hand). 

The nodetree approach combines many of these 
aspects, including ideas from the MA, the union-of-
balls, and the hierarchical skeleton. Unlike a MA, 
the nodetree does not need to include all pixels 
connecting the nodes. The goal is to produce a 
hierarchical skeleton to which volumetric data can 
be associated in a robust and logical manner. The 
nodetree is a collection of nodes with essential 
properties of location, spatial domain, and lineage. 
All other properties can be derived from these, 
including internode distance, object distance, and 
included pixels. 

The novelty of the nodetree is in the integration 
of the MA and union-of-balls ideas to create a 
skeleton. The particularly innovative aspect is the 
subsequent coregistration approach it will enable 
which is not spatially continuous, but rather which 
recognizes that different structures (e.g. brains) may 
have different spatial structures performing the same 
function. Current alternatives which attempt to 
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match such disparate structures using a continuous 
model reduce the achievable accuracy of 
coregistrations and also reduce the sensitivity of 
related functional activation analysis. This paper 
seeks to develop a framework for addressing and 
facilitating the comparison of objects with 
topologies and/or morphologies which are not 
mutually deformable. 

2 METHODS 

2.1 Nodetree Properties 

Construction of a nodetree for the brain starts with a 
binary image of the White Matter (WM) tissue, 
which can be readily obtained using standard 
neuroimaging software , e.g. BET (Smith 2002). The 
nodetree attempts to model the WM projections 
(gyri) to the cortical Gray Matter (GM) surface. To 
be useful as a medium for identifying specific 
cortical structures and for intersubject registration, 
there are several fundamental properties that each 
nodetree should have: 

1) Each gyrus should be principally 
represented by one major node at the distal 
end (apex); 

2) There should be a node at every gyral 
opening and branch point; 

3) Lines connecting nodes must stay within 
the tissue type; 

4) The size of each node should be relative to 
the volume of surrounding WM; 

5) Node importance is directly related to node 
size; 

6) Each node must have only one parent. 
This semantic description will be used as the 

guiding principal behind the nodetree algorithms. 
Current standard skeletal approaches were unable to 
yield the desired characteristics, leading to the 
development of the current nodetree approach. 

2.2 Nodetree Algorithm 

A prototype software program has been developed to 
create and prune a 2D nodetree. Ultimately, a fully 
3D implementation is desired, but the software and 
examples presented in this paper are for the 2D case, 
in order to simplify initial algorithm development 
and display of results. 

The algorithm starts with a seed-point that all 
subjects can be expected to have, such as the center 
of the largest WM region. The largest possible circle 
is drawn within this region (Fig. 2a) and assigned a 
rank of 1. This circle defines a "node" whose 
properties include the location, radius, rank, and a 
unique identification number. In the second step, the 
edge pixels of this circle are used as seed-points for 

Figure 2: Creation of a nodetree in the left hemisphere of a coronal section. (2a): The initial node is created by filling the 
region near a seed point with the largest possible circle. (2b): Children nodes are added to each node until the structure is 
filled. The brown color shows pixels that are included inside a node. The color of each node indicates its rank or generation
number, repeating in order over red, orange, yellow, light green, green, light blue, blue, purple, and magenta. (2c): The 
nodetree is pruned to remove small and/or redundant nodes, leaving behind only nodes needed to define the WM structure.
(2d): Six additional nodes (green and dark green) have been added manually using a semiautomated GUI in order to define
the structure more accurately. 
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a new set of circles or "child nodes". For each node, 
the goal is to create a family of children nodes 
centered on the parent’s edge pixels, and to retain 
only children nodes which are large and do not 
overlap other sibling nodes. Proceeding from the 
largest child to the smallest, siblings within each 
child node are eliminated, leaving a few larger 
children surrounding the parent. The children nodes 
are assigned a parent node as an additional innate 
property, and several convenience properties, such 
as an "arm length" or distance to the parent node. 
This process proceeds iteratively until the entire 
object is filled with nodes (Fig. 2b). The full node-
set can be saved for later use. 

An important property of nodetree growth is that 
at each iteration, growth only occurs for nodes 
created in the previous iteration, and this growth is 
limited to previously unclaimed regions. We 
hypothesize that this will produce a natural growth 
pattern that is reproducible across similar branching 
structures. This property also helps to ensure that the 
initial full nodetree has a closed surface.  

2.3 Nodetree Pruning 

To emphasize its basic shape, the nodetree must be 
pruned so that only the important nodes remain. In 
principle, it is desirable for the nodetree algorithm to 
yield a description of the object which needs little 
post-processing; however in practice, some level of 
post-processing (pruning) is required to better 
emphasize the overall WM structure. Pruning is not 
a single step, but rather is a series of algorithms 
which can be varied ad infinitum to emphasize 
various characteristics of the underlying structure.  

In the current MRI example, the goal is to 
represent the overall shape of the WM structures 
with the fewest number of nodes. It is not necessary 
(and unlikely) that all WM pixels be contained 
within a node after this step. An "important" node 
meets one of the following criteria: it is a) large and 
in the center of a WM space; b) at the end of a WM 
gyri; c) at a fulcrum (bend) in a gyral projection or 
d) at the mouth (opening) of the gyrus into a larger 
WM region. Specific parameters for each of these 
criteria can be varied for different effects; for 
instance, decreasing the minimal acceptable size for 
a terminal node [criteria b) above] can more 
accurately model the full extent of a WM gyrus, but 
perhaps at the expense of indicating the importance 
of the node terminus based on its size.   

A series of automated pruning algorithms were 
developed to remove small nodes, similar 
neighboring nodes, and redundant nodes along a 

straight path (Fig. 2c). Some pruning steps may 
result in a node changing position and/or radius. 
Although the goal is for full automation, the 
nodetree can be adjusted manually to make sure that 
all arms are filled in and that the nodes are located 
properly (Fig. 2d). Either manual or automated 
adjustment of individual nodes is simple, due to the 
hierarchical compostion of the nodetree. After 
pruning, the arm-lengths are recalculated and ranks 
are re-assigned to minimize the number of ranks. A 
variety of algorithms were developed for the pruning 
stages, including functions such as: remove dead-
end nodes; remove nodes below a specified size; 
consolidate long runs of nodes by removing nodes 
that have only a single child; consolidate ranks to 
remove gaps; remove nodes that are too close to 
their parents. 

3 RESULTS 

A nodetree was created for each of 7 normal subjects 
using a coronal slice of the left hemisphere from the 
same location after the image data were coregistered 
to the MNI T1 template (Evans et al., 1993) using  
registration software from SPM2 
(http://www.fil.ion.ucl.ac.uk/spm/) and skull-
stripped with BET (Smith 2002). Tissue segment 
maps were produced using FAST (Zhang et al., 
2001). An 8th nodetree was created using the sum-
image of the segment maps. Similarity of the 
nodetrees in Fig. 3 indicates the robustness of this 
technique across individuals. The differences help to 
highlight the variation in anatomic structure between 
individuals. 

While there is clearly room for improvement, all 
of the nodetrees show similarities, and all are able to 
define the overall shape of the WM, including most 
of the larger arms.  

The nodetree represents a significant data 
reduction technique. Figure 2a shows a typical 2D 
image of WM with 1018 WM pixels. The full 
nodetree (Fig. 2b) contains ~92% of the WM pixels 
yet is represented by only 126 nodes. The final 
pruned nodetree (Fig. 2d) contains only 21 nodes, 
but still captures the shape of the WM structure. 
This savings is expected to be proportionally even 
greater for 3D data using a nodetree comprised of 
spheres. Furthermore, since the pruned structure is 
represented by so few points, it is very efficient to 
manipulate the structure. 
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Figure 4: Cartoon showing a 2D scheme for arranging 
Gray Matter (GM) nodes within cortical GM and for 
associating them to the White Matter (WM) nodetree. The 
color of the line connecting each GM node indicates the 
line segment of the WM it belongs to. The GM nodes have 
a radius designed to span the cortex at each node's 
location. Although the GM nodes are depicted as disks in 
this cartoon, they could be irregularly shaped in order to 
cover all of the GM yet prevent overlap of node interiors. 

 

Figure 3: Comparison of nodetrees from 7 different 
subjects. The nodetree at the upper left was derived from 
the thresholded WM segment from a sum-image of the 
individual segment maps, and can be considered as a basis 
for comparison. 

Although a nodetree can model a fairly complete 
representation of an object, it should be emphasized 
that the nodetree is not required to exist in isolation. 
For detailed analysis of a shape, the original object 
and its underlying data values may be interrogated 
as long as nodetree-related spatial transforms are 
recorded. 

Figs. 2b-d illustrate a potential problem for the 
nodetree: one of the terminal gyri remains unfilled 
Fig. 2b-c) and has been manually filled in (Fig. 2d). 
This is a result of the minimal acceptable node size, 
which in this example is a 5-pixel cross-shape. 
Using a smaller node (single pixel) or permitting the 
search to proceed via diagonal pixels (i.e. pixels 
touching at only a corner) solves this problem, but 
must be balanced against the increased complexity 
of the nodetree shape. The non-minimal node size is 
used in Fig. 2 to highlight this tradeoff, in which a 
more complex initial nodetree would require 
additional pruning. In the current implementation, 
the pruning is insufficiently developed to yield 
robust results for a very complex nodetree. 

Initial attempts to characterize the robustness of 
the nodetree indicate that it can be quite sensitive to 
noise in the binary WM representation. For example, 
a single non-WM pixel in the center of a large WM 
space will yield a number of small nodes 
surrounding the non-WM island, rather than the 
expected single large node. This is really more of a 
problem related to creation of the initial binary 
image, and isolated non-WM pixels can easily be 
removed by standard filtering techniques.   

An additional observation is that, while the 
nodetree is not overly sensitive to minor changes in 
the edge of a structure, the position of nodes at the 
end of a gyrus can be sensitive to the width of the 
gyrus in relation to the minimal acceptable node 
size. Currently, a dedicated pruning step is needed to 
minimize this, but further investigation of the 
growth pattern with respect to this bias is needed. 
In order to be useful for anatomical coregistration, a 
systematic identification of important nodes is 
required. For example, a template based on a large 
number of individuals could label those nodes which 
occur most frequently. Once a WM nodetree has 
been created, the gray matter cortex could be 
modeled as an additional layer, as represented in 
Fig.4. 

 

4 CONCLUSION 

The nodetree algorithm can yield a reasonably 
similar model of the brain white matter structure 
across individuals. Further advances, particularly 
with respect to pruning, are expected to yield 
improved similarity. The hierarchical structure is 
well suited as a framework for investigating non-
continuous spatial registration approaches.  

HIERARCHICAL BRAIN MODEL FOR COREGISTRATION - A Physical Model for Analysis of Brain MRI Data

107



 

REFERENCES 

Amenta N and Kolluri RK, 2001. The medial axis of a 
union of balls, Computational Geometry (20):25-37. 

Blum H, 1967. A Transformation for Extracting New 
Descriptors of Shape, Symposium Models for Speech 
and Visual Form, Weiant Whaten-Dunn (Ed). 
Cambridge, MA: MIT Press. 

Evans AC, Collins DL, Mills SR, Brown ED, Kelly RL, 
Peters TM, 1993. 3-D statistical neuroanatomical 
models from 305 MRI volumes, Proc IEEE Nucl Sci 
Symp Med Imaging, 95:1813-1817. 

Feldman J and Singh M, 2006. Bayesian estimation of the 
shape skeleton, PNAS, 103(47):18014-18019. 

Gagvani N, Kenchammana-Hosekote D, Silver D, 1998. 
Volume Animation Using the Skeleton Tree, Proc. 
IEEE Symposium on Volume Visualization. 

Juch H, Zimine I, Seghier ML, Lazeyras F, Fasel JHD, 
2005. Anatomical variability of the lateral frontal lobe 
surface: implication for intersubject variability in 
language neuroimaging, NeuroImage, 24:504-514. 

Parker JR, 1997. Algorithms for Image Processing and 
Computer Vision, John Wiley & Sons. 

Pelizzari CA, Chen GTY, Spelbring DR, Weichselbaum 
RR, Chen CT, 1989. Accurate three-dimensional 
registration of CT, PET, and/or MR images of the 
brain, J. Comput. Assist. Tomogr., 13(1):20-26. 

Ranjan V and Fournier A, 1996. Matching and 
Interpolation of Shapes using Unions of Circles, 
Computer Graphics Forum, 15(3):129-142. 

Sherbrooke EC, Patrikalakis NM, Brisson E, March 1996. 
An Algorithm for the Medial Axis Transform of 3D 
Polyhedral Solids, IEEE Trans. on Visualization and 
Computer Graphics, v.2 n.1, p.44-61. 

Smith SM, 2002. Fast robust automated brain extraction. 
Human Brain Mapping, 17(3):143-155. 

Woods RP, Grafton ST, Watson JDG, Sicotte NL, 
Mazziotta JC, 1998. Automated image registration I: 
Intersubject validation of linear and nonlinear models, 
J. Comput. Assist. Tomogr., 22(1):153-165. 

Zhang Y, Brady M, Smith S, 2001. Segmentation of brain 
MR images through a hidden Markov random field 
model and the expectation maximization algorithm, 
IEEE Trans. on Medical Imaging, 20(1):45-57. 

 

GRAPP 2007 - International Conference on Computer Graphics Theory and Applications

108


