Davide Moroni, Sara Colantonio, Ovidio Salvetti, Mario Salvetti



Accurate reconstruction of deformable structures in image sequences is a fundamental task in many applications ranging from forecasting by remote sensing to sophisticated medical imaging applications. In this paper we report a novel automatic two-stage method for deformable structure reconstruction from 3D image sequences. The first stage of the proposed method is focused on the automatic identification and localization of the deformable structures of interest, by means of fuzzy clustering and temporal regions tracking. The final segmentation is accomplished by a second processing stage, devoted to identify finer details using a Multilevel Artificial Neural Network. Application to the segmentation of heart left ventricle from MRI sequences are discussed.


  1. ACC\AHA Task Force (2005). ACC\AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult. Technical report, American College of Cardiology Foundation and the American Heart Association.
  2. Bezdek, L. (1981). Pattern Recognition with Fuzzy Objective Function Algorithm. Plenum Press, New York.
  3. Bregler, C. and Konig, Y. (1994). “Eigenlip” for robust speech recognition. In Acoustics, Speech, and Signal Processing ICASSP-94., volume II, pages 669-672.
  4. Colantonio, S., Moroni, D., and Salvetti, O. (2005). MRI left ventricle segmentation and reconstruction for the study of the heart dynamics. In IEEE ISSPIT, pages 213-218, Athens, Greece.
  5. Colantonio, S., Moroni, D., and Salvetti, O. (2006). Shape comparison and deformation analysis in biomedical applications. In Eurographics Italian Chapter Conference, pages 37-43.
  6. Coppini, G., Poli, R., and Valli, G. (1995). Recovery of the 3-D shape of the left ventricle from echocardiographic images. IEEE TMI, 14(2):301-317.
  7. de Bruijne, M. and Nielsen, M. (2004). Image segmentation by shape particle filtering. ICPR, 03:722-725.
  8. Declerck, J., Feldmar, J., Goris, M., and Betting, F. (1997). Automatic registration and alignment on a template of cardiac stress and rest reoriented SPECT images. IEEE Trans. Med. Imag., 16:727-737.
  9. Di Bona, S., Niemann, H., Pieri, G., and Salvetti, O. (2003). Brain volumes characterisation using hierarchical neural networks. Artificial Intelligence in Medicine, 28(3):307-322.
  10. Di Bono, M., Pieri, G., and Salvetti, O. (2004). A tool for system monitoring based on artificial neural networks. WSEAS Transactions on Systems, 3(2):746-751.
  11. Faber, T., Stokely, E., Peshock, R., and Corbett, J. (1991). A model-based four-dimensional left ventricular surface detector. IEEE Tran. Med. Imag., 10:321-329.
  12. Grenander, U. and Miller, M. I. (1998). Computational anatomy: an emerging discipline. Q. Appl. Math., LVI(4):617-694.
  13. Huang, X., Metaxas, D., and Chen, T. (2004). MetaMorphs: Deformable shape and texture models. CVPR, 01:496-503.
  14. Jolly, M., Duta, N., and Funka-Lea, G. (2001). Segmentation of the left ventricle in cardiac MR images. In ICCV, pages 501-508.
  15. Kass, M., Witkin, A., and Terzopulos, D. (1988). Snakes: Active contour models. IJCV, 1:321-331.
  16. Kohonen, T. (1997). Self-Organizing Maps, volume 30 of Springer Series in Information Sciences. 2nd edition.
  17. Mitchell, S., Bosch, J., Lelieveldt, B., van der Geest, R., Reiber, J., and Sonka, M. (2002). 3D active appearance models: Segmentation of cardiac MR and ultrasound images. IEEE TMI, 21(9):11671178.
  18. Moroni, D., Perner, P., and Salvetti, O. (2006). A general approach to shape characterization for biomedical problems. In Perner, P., editor, Industrial Conference on Data Mining ICDM - Workshop on Mass-Data Analysis of Images and Signals, IBAI CD-Report, pages 56-65, Leipzig.
  19. Papin, C., Bouthemy, P., Mèmin, E., and Rochard, G. (2000). Tracking and characterization of highly deformable cloud structures. In Computer Vision - ECCV 2000, volume 1843 of LNCS, pages 428-442. Springer Verlag.
  20. Paragios, N. (2002). A variational approach for the segmantation of left ventricle in cardiac image analysis. IJCV, 50(3):345-362.
  21. Paragios, N., Rousson, M., and Ramesh, V. (2002). Knowledge-based registration segmentation of the left ventricle: A level set approach. In Proc. Sixth IEEE Workshop on Application of Computer Vision, pages 37-42.
  22. Riedmiller, M. and Braun, H. (1993). A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In Proc. of the IEEE Intl. Conf. on Neural Networks, pages 586-591, San Francisco, CA.
  23. Stalidis, G., Maglaveras, N., Dimitriadis, A., and Pappas, C. (1999). Using learning classification and fourdimensional parametric modeling for the analysis of myocardial thickening. In Computers in Cardiology.
  24. Ü zümcü, M., Frangi, A., Sonka, M., Reiber, J., and Lelieveldt, B. (2003). ICA vs. PCA active appearance models: Application to cardiac MR segmentation. In LNCS, volume 2878, pages 451-458.

Paper Citation

in Harvard Style

Moroni D., Colantonio S., Salvetti O. and Salvetti M. (2007). DEFORMABLE STRUCTURES LOCALIZATION AND RECONSTRUCTION IN 3D IMAGES . In Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 3: Mathematical and Linguistic Techniques for Image Mining, (VISAPP 2007) ISBN 978-972-8865-75-7, pages 215-222. DOI: 10.5220/0002071202150222

in Bibtex Style

@conference{mathematical and linguistic techniques for image mining07,
author={Davide Moroni and Sara Colantonio and Ovidio Salvetti and Mario Salvetti},
booktitle={Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 3: Mathematical and Linguistic Techniques for Image Mining, (VISAPP 2007)},

in EndNote Style

JO - Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 3: Mathematical and Linguistic Techniques for Image Mining, (VISAPP 2007)
SN - 978-972-8865-75-7
AU - Moroni D.
AU - Colantonio S.
AU - Salvetti O.
AU - Salvetti M.
PY - 2007
SP - 215
EP - 222
DO - 10.5220/0002071202150222