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Abstract. We present a real time vision system designed for and implemented
on a graphics processing unit (GPU). After an introduction in GPU programming
we describe the architecture of the system and software running on the GPU.
We show the advantages of implementing a vision processor on the GPU rather
than on a CPU as well as the shortcomings of this approach. Our performance
measurements show that the GPU-based vision system including colour segmen-
tation, pattern recognition and edge detection easily meets the requirements for
high resolution (1024 x768) colour image processing at a rate of up to 50 frames
per second. A CPU-based implementation on a mobile PC would under these
constraints achieve only around twelve frames per second. The source code of
this system is available online [1].

1 Introduction

The Robocup competitions of the last few years have shown that efficient image pro-
cessing is on of the essential requirements for a successful team. Although this require-
ment is well known, many teams still suffer from serious performance problems of the
image processing on their mobile computers. At the first glance, this seems somewhat
surprising, because the image processing algorithms required for solving the tasks in the
Robocup middle-size league are well known. However, there is a simple answer. Be-
sides the high speed of the movements on the playground, the rules of the game require
that each robot is autonomous. Therefore each robot needs its own image processing on
the robot, what leads to problems with weight, space, energy consumption, and com-
puting power on the mobile PC of the robot. The requirements on mobile robots for
industrial tasks are often very similar.

In order to perform image processing on a mobile CPU in real time, the algorithms
often have to be strongly simplified. This leads to high noise, inexact localisation and
object classification and often difficult and errorprone manual calibration.

Thus, image processing for middle-size league Robocup robots still is a crucial and
interesting challenge, with yet only partial success.

1.1 Our Approach

High resolution colour image processing in real time on mobile systems not only re-
quires vector-based fast floating point computations on, but also very high storage ac-
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cess bandwidth for reading and writing of image data. State of the art mobile CPUs are
not fast enough to meet these requirements.

Our Approach solves this problem by means of the fragment processor, a coproces-
sor of the GPU which is specialised on simple number crunching tasks.

1.2 State of the Art

Powerful graphics boards with passive cooling are commercially available only recently
and the exploitation of their capabilities for image processing requires advanced knowl-
edge. Hence, comprehensive libraries for image processing on the GPU are still missing.

All available libraries are running completely on the CPU, but they are not fast
enough for a mobile realtime system. There is one exception, the OpenVIDIA library [6].

OpenVIDIA is a research project aiming at the implementation of a complete library
for high-level image processing in real-time on the GPU. The current version of this
library however requires six GPU boards in parallel and thus in the near future it will
not be available for mobile systems.

The only realistic alternative that is applied in the Robocup community is the utili-
sation of FPGAs (field programmable gate arrays) or even special purpose chips. These
programmable logic circuits resemble older GPUs with the difference that they have no
direct connection to the main board via an internal bus. Rather they have to be accessed
via external interfaces. Furthermore, access to the main memory of FPGAs and chips is
relatively slow as compared to modern GPUs with highly parallel memory access with
optimized special caches on board. Finally, FPGAs and special purpose chips are not
commercially available for standard PCs and notebooks.

2 GPU Architecture

The GPU is a special purpose microprocessor on the graphics board which is connected
via an AGP or PCI-express interface with the main board. Being designed for compu-
tationally large vector based floatingpoint operations the GPU with its SIMD (single
instruction multiple data) architecture significantly differs from the CPU architecture
(c.f. figure 1).

After its transfer from the CPU to the GPU, a program is being executed for a large
number of pixels in parallel in between 8 and 24 parallel pixel-pipelines. The so called
fragment program has the limitation that each one of its parallel instances has no access
on data of other instances. This parallel execution without communication results in a
linear speedup between 8 and 24.

In order to avoid a memory access bottleneck, the GPU is mounted without apron di-
rectly on the board and connected via a 128 to 256 bit wide bus to the memory. Depend-
ing on the type of memory used (DDR, DDR2 or even DDR3 with RAMDAC:Ss between
400 and 1000 MHz), transfer rates between 16 and 35 GByte/sec can be achieved.

Because of the parallel execution of one program on many contiguous pixels, mem-
ory access can be accelerated considerably with special purpose caches. This caching
mechanism is optimized for sequential reading and strongly differs from standard algo-
rithms (c.f. figure 2). It is implemented in hardware and thus can not be modified by the
programmer.
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Fig. 1. The hardware architecture.
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Fig. 2. Comparison of GPU and CPU performance (left) and memory bandwidth (right) [3]. Se-
quential reading at a rate of 16 GB/sec. is much faster on the GPU.

As another special feature, the fragment processor is designed to work on four di-
mensional vectors of 32 bit floating point numbers (with appropriate registers).

Due to the great differences between the architectures of CPU and GPU, it is hard
to directly compare them. Therefore, in table 2 we compare the CPU with the fragment
processor, which is only one part of the GPU. The values for the CPU correspond to a
Pentium 4 processor and for the GPU to a NVIDIA GeForce 6800 board.

3 GPU Programming

Unlike the CPU the GPU is not a general purpose processor and thus can not be pro-
grammed with a universal programming language like C or C++. The GPU uses fixed-
function pipelines which can only be configured and two free programmable processors
(starting with GeForce 8 there are three of them):
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— The vertex processor for the manipulation of geometry data by means of vertex-
shaders.
— The fragment processor for pixel operations with pixel-shaders.

For calling functions on the GPU from the CPU, the standardized free and vendor in-
dependent graphics library OpenGL [7] by SGI is being used.

3.1 Fragment Processor Programming

The GL_ARB_fragment_program extension allows for programming the fragment pro-
cessor in assembler. Obviously this way of programming is very time consuming and
does not scale well with improvements of the GPU. Therefore, for most of the pro-
grams in our image processing library we used GLSL (OpenGL Shading Language), a
high level language, similar to C. As a part of the extension GL_ARB _fragment_shader,
GLSL has been developed by 3Dlabs. Later on the ARB (Architecture Review Board)
announced it as a standard. An extensive specification is available online [8].

A special feature of this language is that compilation of programs is performed
during run-time by the driver of the GPU. This makes it possible that existing programs
can benefit from new hardware features or better compilers.

4 Architecture Overview

Our OrontesNG low-level vision module (short ONG vision module) was designed for
low-level image processing in real-time. Tasks such as Canny Edge Detection, Gaussian
Blur, RGB Colour Normalization or even simple conversion from RGB to HSV typi-
cally require little logic, but enormous computing power because they are processed
completely on the pixel level. To optimize performance, these operations have been
implemented on the GPU. Please note that normally the GPU is used to process the
enormous amount of graphics data of modern video games. The data flow there goes
from CPU to GPU only, whereas in our image processing application, the reverse di-
rection from the GPU to the CPU is important as well. The ONG vision module is a
C++ library with an API for image processing tasks like the ones mentioned above (see
Figure 3).

Though the ONG vision library is implemented as singleton, it can process tasks
from an arbitrary number of threads in parallel. During the initialization the maximum
image size must be specified, such that internal buffers can be allocated.

After initialisation of the module jobs can be generated and via Invoke() functions
can be called. These jobs then are executed in a FIFO strategy by the GPU. Once started,
a job can not be cancelled before termination.

There are two different methods to wait for the termination of a job. First, there is
a polling method, where other tasks can be executed while waiting. Between two tasks
the function HasFinished() can be used to query the status in a non-blocking way.
Second, a blocking waiting can be realised with the function WaitUntilFinished().
Compared to the polling method, this function has the advantage of smaller CPU load
and shorter delays. Smart use of these functions enables the programmer to optimally
exploit parallelism of the GPU.
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ONG Vision

+ GetSingletonlnst() : ONG_Vision*
+ Init(MaxWidth : unsigned int, MaxHeight : unsigned int) : bool
+ Destroy()

ONG Visionjob

+ ONG_Visionjobl()

ONG VJobEdgeDetect | -{> . _oNG visionjob()

+ GetJobID() : int

+ Invoke() : bool

+ HasFinished() : bool

+ WaitUntilFinished() : bool

ONG _VJobColorSearch ONG_VJobPostimage

Fig. 3. Class diagram of the ONG library.

5 Samples

As an example for a successful GPU porting of an algorithm we will describe the im-
plementation of the canny edge detection. The major difference for a CPU programmer
is the vector based SIMD architecture.

To multiply a four dimensional vector with a 4 x4 matrix, a high level language on
a CPU consumes around 100 assembly instructions. For the same task the GPU needs
only 4 instructions. The following four dimensional dot product:

C.x = A.x*B.x + A.y*xB.y + A.zxB.z + A.w*xA.w;
can be computed on the GPU in only one instruction:
DP4 C.x, A, B;

Especially for vector based mathematical computations many instructions can be saved.
This advantage pays off in the implementation of low-level image processing algo-
rithms, because colours, gradients and filter kernels can be represented easily with vec-
tors and matrices.

Canny edge detection can easily be programmed in GLSL (see Figure 4). Memory
accesses are realised via textures and, rather than in C/C++ array accesses, here compu-
tation of the two-dimensional indices is done by hardware. These hardware operations
almost come for free, because they are implemented with dedicated transistors on the
GPU. Further improvements can be achieved by utilizing hardware built in functions of
the GPU like length() and normalize().

The pixel-shader shown in figure 4 will automatically be applied on all pixels in
an area of the input texture by rendering a filled polygon over the screen. To render a
polygon we use the immediate OpenGL render functions like glBegin(), glEnd() and
glVertex3f ().

We read the result of our computation back by glReadPizels() which can be very
slow on older hardware (without PCI-express) and driver releases but is usually fast on
newer machines.
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uniform sampler2DRect img;

void main ()

{
const vec2 offset = {1.0, 0.0};
vec2 gradient;

gradient.x = texture2DRect (img, gl_TexCoord][
- texture2DRect (img, gl_TexCoord]
gradient.y = texture2DRect (img, gl_TexCoord]
- texture2DRect (img, gl_TexCoord][ .xy — offset.yx)
gl_FragColor.xyz = vec3(length(gradient.xy) 0.707107,
gradient.xy « 0.5 + 0.5);

]
].xy - offset.xy)
]
]

Fig. 4. The canny GLSL shader program.

Due to limitations of the architecture, edge-detection and the following non-maxi-
mum suppression can not be performed in one pass. First the edge detection has to
be executed and then non-maximum suppression on the stored gradients (see figures 5
and 6).

Fig. 5. Camera snapshot.

Since the GPU is optimized for floating point operations, filter kernels which are
converted for CPU processing to integer arithmetic, can be executed without loss of
performance in high precision on the GPU.

However, on the other hand there are some disadvantages of the SIMD architecture.
Programming is more complex and control structures are strongly limited. For example,
it is hardly possible to implement simple recursive algorithms or algorithms with nested
loops.

.xy + offset.xy).
'
.xy + offset.yx).
<Y
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Fig. 6. Canny results. The right picture shows a closeup of the left picture.

6 Performance Results

In figure 7 the performance of our mobile system with GPU is compared to the same
system without GPU. Including all the data transfers between CPU and GPU the GPU
still is about a factor of 4 faster than the CPU. Thus, the edge detection alone can be
done on the GPU with up to 50 frames per second, whereas on the CPU only about 12
frames per second are possible.

For the conversion of the Bayer pattern to a full RGB image (see [11]) we have to
interpolate the missing colour channels from neighbour pixels. Because of the Bayer
pattern, nearby pixels always require different treatment which makes cache area pre-
diction difficult. Therefore the GPU gets problems using its full memory bandwidth. To-
gether with the fact that the linear interpolations don’t take enough time to hide memory
latency, this explains why the GPU isn’t even twice as fast as the CPU.

For Canny Edge Detection with non-maximum suppression it looks different. The
calculations can be vectorised and so the GPU is about 5 times faster than the CPU
which suffers from limited memory access bandwidth and too few registers.

Because of architecture limits requiring multiple passes, on the GPU the gradients
computed by the Canny edge detection have to be saved for later reuse. Here, if the CPU
with its limited memory bandwidth needs to store the gradients, the GPU is about 11
times faster. In our Robocup application Canny edge detection is followed by a corner
detection, for which the gradients have to be stored. Thus, for the combined edge- and
corner detection the GPU yields an overall speedup of about 4.

Optimization methods like region of interest can also be applied on the GPU as
well as on the CPU. This can be achieved by rendering the polygon on which the pixel-
shader will be executed only over a specific erea. The speedup for rectangular areas
will be the same on both architectures. On the GPU it is also possible to render non
rectangular areas without practical performance loss due to the shape complexity.
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resolution: 1024x768 to 768 x 768

frame rate: 30 fps Task GPU(in ms)| CPU(in ms)
colour depth: 24bit image transfer to GPU 1.82 -
GPU: nVidia GeForce 6600 | |image transfer to CPU 3.81 -
VRAM: 128MB Bayer — RGB 6.84 12.9
CPU: Pentium M x86 RGB — HSV 2.63 14.91
CPU clock rate: 1600MHz Canny edge detection 4.52 21.04/53.42
main memory: 512MB total 19.62  [48.85/81.23
operating system:| Linux Fedora Core 4 | |speedup GPU vs. CPU 2.5/4.1
XServer: 7.1

Fig.7. Our mobile system (left) and performance measurements on it (right). The times on the
CPU for the Canny edge detection are given without (left) and with (right) storing the gradients.

Figure 7 also shows that data transfer from the GPU to the CPU still is much slower
than in the other direction although the PCI-express bus is symmetric. This has histori-
cal reasons and should be fixed soon by newer drivers and upcoming GPUs.

7 Conclusion

Due to its special design the GPU is very well suited for many low level image pro-
cessing tasks. Measurements proof this. Depending on the task, the GPU allows much
higher frame rates than the CPU. In realtime applications with fast moving scenes, this
performance gain is crucial.
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