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Abstract. Assistive technology is an emerging area where robots can be used
to help individuals with motor disabilities achieve independence in daily living
activities. Mobile robots should be able to autonomously and safely move in the
environment (e.g. the user apartment), by accurately solving the self-localization
problem and planning efficient paths to the target destination specified by the user.
This paper presents a vision-based navigation scheme designed for Sony AIBO,
in ASPICE, an assistive robotics project. The navigation scheme is map-based:
visual landmarks (white lines and coded squares) are placed in the environment,
and the robot utilizes visual data to follow the paths composed by these land-
marks, and travel to the required destinations. Performance of this vision-based
scheme is shown by experiments and comparison with two previously existing
ASPICE navigation modes. Finally, the system is clinically validated, in order to
obtain a definitive assessment through patient feedback.

1 Introduction

The development of service robots for healthcare and assistance to elderly or disabled
persons is an active area of research. A typical use of robots in this context is directed
to partial recovery of the patient mobility. Semi-autonomous navigation systems for
wheelchairs are an example. In these applications, mobile robots must acquire a high
degree of autonomous operation, which calls for accurate and efficient position deter-
mination and verification for safe navigation in the environment. In many recent works,
this has been done by processing information from the robot vision sensors [1].
Implicitly or explicitly, it is imperative for a vision system meant for navigation
to incorporate within it some knowledge of the environment. In particular, map-based
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robot navigation systems can be based on user-created treomedels within the en-
vironment [2]. The vision system will search and identifyreoknown landmarks and
use them, along with a provided map, to estimate the robatipogself-localization)
by matching the observation (image) against the expeat@tmdmark descriptions).
Visual navigation that uses patterns based on an ideniificabde, has been exploited
in [3]. More recent works include a guidance system for treaaily impaired, based
on visual cues on the ceiling [4], and a localisation systenatitonomous wheelchairs
based on light-emitting markers on the floor [5].

In this paper, we present a vision-based path plannemMieliaesigned for an in-
door structured environment. The system enables the roliivel to a target destina-
tion, by extracting, visually tracking, and following, kwa artificial paths. This robot
navigation system has been utilized within the ASPICE (stss System for Patient’s
Increase of Communication, ambient control and mobilitalrsence of muscular Ef-
fort) project [6]. The ASPICE system enables a disabled iosermotely control home-
installed appliances, including the Sony AIBO, a comméraiabile robot.

The paper is organized as follows. In Sect. 2, the main feataf the AIBO robot
are described. Section 3 presents the vision primitivegldped for the robot frame-
work. The vision-based navigation scheme that we designddnaplemented, is out-
lined in Section 4. Experiments are reported in Section HeOissues not covered in
the previous sections are mentioned in the conclusion.

2 The Robot Platform: AIBO

The platform used in this work is a quadruped robot, Sony AIBRS-7, pictured in
Fig. 1. The robotis equipped with 20 actuated joints, a CM@8era, two distance sen-
sors (on the head and on the chest), and other equipmentewiruthis work. A wire-
less card enables remote control. AIBO’s real-time opegaglystem APERIOS runs a
specialized layer called OPEN-R, a cross-development@mvient based on C++. The
robot behavior is programmed by loading executable and gortion files on a mem-
ory stick which is read by the on-board processor. From arkai& viewpoint, AIBO
can be considered as an omnidirectional robot, i.e., thetxities (forwardv,., lateral
vy, and angulap, around the robot center) can be independently specified Zrign
spite of these features, AIBO presents many limitationg flost severe are:

— the closed hardware prevents the addition of sensors aactiators;

— since Sony does not release the code of its driver, we hadliaedrom scratch an
ad hoc driver for this work;

— vibrational and slipping effects during the quadruped ggdle make odometric
reconstruction very inaccurate in the long run;

— the variable attitude of AIBO during its gait precludes tise of an external sensory
system (e.g., based on infrared triangulation with a detgdaced on the robot) for
solving the localization problem.
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Fig. 1. ASPICE features: the robot Sony AIBO ERS-7(left), and thedroap used for vision-
based navigation, with the ID labels of each coded squaghbt]ri

3 Vision Primitives

In order to extract and track the artificial visual landmaiKk) on the navigation path,
specific vision primitives have been developed and integrat the driver framework.
Let us define the three reference frames which will be useal\(slin Fig. 2):

— therobot frame with origin fixed at the robot center projection on the ground
axis in the forward direction; axis pointing left, and axis vertical,

— thecamera framewith origin fixed in the camera center, horizomalaxis pointing
right, “y axis pointing downward, ant: axis pointing forward;

— theimage frame with origin fixed at the top left corner of the image, horizalrit:
axis pointing right, andy axis pointing downward.

The VLs that we use are straight white lines (SWL) and codeeduses (CS) placed
on the floor. Thus, araight white line extractor (SWLE) and acoded square extractor
(CSE) have been developed. Moreover, the VLs should bedddatsequential scenes.
This is accomplished bysual landmark tracker (VLT).

3.1 Straight White Line Extractor

Arequirement of the robot driver is straight white line exdtion. In order to be indepen-
dent from color classification, the SWLs are detected bycseanly on the luminance
signall (ix, 1y) Thus, line edges are searched at pixels with a strong iariaf lu-
minance with respect to that of adjacent pixels. For eachl picated inp = ['z ‘|7
the gradient of luminanc¥I(p) is computed, using the Roberts operator [7] as in [8]:

s(p) =I(ix+1 , iy+1) fl(ix,iy) t(p):I(ierl , iy) fl(ix , iy+1)
IVI(p)| = v/s(p)* +t(p)* £VI(p) = ATAN2(s(p), t(p)) @

where|VI(p)| is the magnitude andVI(p) € (—n,n] is the direction of the pixel lu-
minance gradient (with respect to lig= —’x and positive CW, see Fig. 2). Edges are
then detected by applying a threshold tesf\d (p)|. We use a threshold dependent on
the mean value dV1(p)| on the given image to derive the set of image edge piRels
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Fig. 2. Relevant variables utilized in: extraction and trackingwhight white lines (above), and
extraction and tracking of coded squares (below).

(marked in yellow in Fig. 2). Adaptive thresholding makes éuge detection algorithm
more robust to varying light conditions, as compared to Isimiorks implemented in
environments where light conditions had to be controlleflevards, by comparing
(with another threshold test) the luminance gradient times of “near” edge pixels,
pixels belonging to straight lines are identified and gralipesubsets. Indicating with
Nswi, the total number of straight white lines extracted on an iedle line pixel
subsets are note®swr,; (j = 1...Nswr). EachPgsy 1 ; defines a line detected on
the image, and must contain at leagty 1. min pixels.

We tested other edge detection algorithms (Sobel, Susainthé Roberts operator
showed better results, although the aforementioned atgosi are more efficient for
color space based extraction [9]. Besides, due to its lowptdation time, this line
extraction method was preferred to the Hough Transformniigcte, which we also
experimented. In conclusion, the SWLE algorithm returesabordinates of the pixels
belonging to theéVsy 1, lines extracted on the image frame (Fig. 2):

[z, iyr]gwj;j € Pswr,j r=1,...,n; j=1,...,Nswr (2)
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3.2 Coded Square Extractor

Along with the SWLs, we have used as visual landmarks a sehaéwoded squares
laid on the ground. The identity and orientation of each sgisuniquely identified
through a black dots code, as in [2]. The choice of binarymggdie., black and white,
is aimed at using luminance variation, instead of colorsifastion, for extracting the
CS characteristics. We arranged from 1 to 7 black dots ongharss border, in order
to generate configurations which uniquely define the lan#intsntity (defined by its
label: I D) and orientation. The 15 landmarks which we used can be sdeig.il.

In practice, edges of squares are searched within the selpefixelsP, derived
as in the SWLE. The robot frame coordinates of all edge pixedderived from their
image frame coordinates, with the projection which will wegented below. Then, the
projected edges are fitted with a square mask with the samendions as the CS,
in order to detect the pixels belonging to the square peemé&hese define a subset
of P, for each square (see Fig. 2). Indicating withs the total number of coded
squares extracted on the image, the subsets of perimetds ik each squarkare
noted:Pcs; (I = 1...N¢s). EachPcg; defines a coded square detected on the image,
and must contain at least: s i, pixels. Afterwards, the image is scanned along the
segmentsstanlines) leading from the center to the perimeter of the CS, and pizal
such segments are classified by usirgjrery segmentation which uses the mean value
of I on the image as threshold. Corke [10] showed how binary setatien is affected
by noise, threshold selection and edge gradient. Howev#ris application, the choice
of binary coding and the use of binary segmentation only imalsmage window, and
with adaptive thresholding, reduces these problems. ligjtddick dots are extracted by
associating a sufficient number of near black pixels fountherscanlines.

In conclusion, the CSE returns, for each of iNge s detected coded squares: the
image coordinates of the square certeand of the centers of the,,.s black dots
(respectively marked in red, and in cyan in Fig. 2):

[z, iyO](TJS,l [z iym]gsvl 3)
l=1,...,N¢cs m=1,...,0dots Ndots = 1,...,7

3.3 Visual Landmark Tracker

The SWLE and CSE only take into account information from tbherent image, and
give no long-term knowledge. Thus, consistent landmarkstrha obtained by com-
paring the extracted landmarks over consecutive images. i¥ldone by projecting
the characteristic points of each extracted visual lanérvarfrom the image frame
[‘z ‘y]¥, to the robot frameéx y 2], . Such mapping is not one-to-one, and can only
determine the projecting ray of the point. However, in ouyplagation, since all the VLs
are on the ground plane, the problem can be solved in closed fo

In fact, given the intrinsic parameters of the camera, tlogegting ray in camera
frame coordinates corresponding to edich ‘y]?,, can be derived [10]. Besides, the
homogeneous transformation matrix representing the @freane pose with respect to
the robot frame can be computed through the robot joint jpositoy using the Denavit
and Hartenberg method as in [8]. This matrix can be usedgaidth the projecting ray
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expression in camera frame coordinates, and with the grplam& geometric constraint
zyr =0, to derive[z y O]$L in the robot frame.
The robot frame coordinates of SWL poiifts v ]SWL jare then processed with

aleast square error algorithm to identify the paramébem@SWL of eachlineb is the
signed distance between the nearest line pbind the robot (posmve fay, > 0),and

a € (—%, 3] denotes the orientation offset. The CS characteristictpin y, 0%,
and[z,, ym 0]05,1 are processed to obtain the identlt}; = 1...15 and orientationy,

of each square. VLs extracted and projected at previousfsare displaced according
to the robot measured motion and compared with the curredttarks for checking
consistency and filtering out false positives. The algarmiteturns the characteristics of
the VLs, validated in a sufficient number of consecutive fearfFig. 2):

[b Oé]ngJ- J=1,...,Nswr @)
ID, 8l [0 Yo 0]Es; I=1,...,Ncs

4 The Vision-based Navigation Scheme

The vision-based navigation (VBN) scheme that we develapéds on a physical
roadmap (Fig. 1) connecting all relevant destinations éekperimental arena, and on
avisual servoing scheme. In practice, the robot plans diehfethe path to destination
according to visual data. Since the VLT returns the posititthe visual landmarks rel-
ative to the robotposition-based visual servo control turns out to offer a better solution
thanimage-based servoing [10]. The roadmap is formed by streets and crossizly
realized in white adesive tape and laid on the ground. THervigrimitives are used to
identify streets (i.e., straight white lines) and crossifice., coded squares). The robot
autonomous behavior is represented by a Petri Nets basedvirark which has been
successfully deployed on the AIBO Platform in the Roboculd fi#l]. The VBN Plan
uses the following actionSeek nearest landmark, Approach nearest landmark, Follow
street, Plan path to destination. Note that at all times during the actions, the vision prim-
itives are also executed for searching and updating pexdelata, and the robot keeps
the nearest seen landmark centered in the image plane,\nggtie inverse kinemat-
ics problem for the head joints. The VBN Plan repeats theastuntil the destination
is reached. Transitions that start or terminate the actiepeesent events (e.@reet
seen, or Crossing near) which are triggered by conditions on sensed informatiog. (e
distance from a line). In the rest of this section, the fouivexs are briefly described.

Seek nearest landmark AIBO seeks VLs by exploring the environment, while avoiding
collisions. The robot alternates predefined forward anatiant steps.

Approach nearest landmark When it perceives a landmark (preferably a crossing) with
the SWLE or CSE, and tracks it with the VLT, the robot appraech, in order to
get a better perception, which can be useful for localiraiarposes. It is @osture
stabilization task with reference configuration defined by the position amehtation

of the landmark. The walk that drives the robot implementsogeprtional closed-loop
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control strategy for reducing the robot relative distanceé arientation with respect to
the landmark. This is done by setting:

Vg = KT TVL
Uy = KT YVL %)
vg = —KR OvL

In the case of SWL approaching,y ], = [bsinabcosa — a]T. Similarly, for CS,
[zy0)T, =[royo —7]T. In both cases; andxy are positive given gains.

Follow street When the robot is sufficiently near to a street but has not gtaded a
crossing, it should solve thgath following problem for the SWLs, until at least one
crossing is detected. The task can be achieved by using onlyat variablevy and
setting constant, = vy > 0 and nullv, = 0. Linear feedback control can be realized
by tangent linearization df and¢;, in the neighborhood ofb = 0, = 0). This gives

a second order linear system which is controllable, andasymptotically stabilizable
by linear feedback ony with an appropriate choice of positive gaiisandks:

Vy = (k?gb - ]C30é) vf (6)

Plan path to destination When a crossing is detected with the CSE, and tracked with
the VLT, the robot has univocally identified ifS) and orientation. This information,
along with the CS position in the robot frame, and with the mdentifies the robot
pose (position and orientation). The robot then utilizesjkdira-based graph search to
find the shortest path to the destination. Depending on thdtref the graph search,
the robot will approach and follow another street (repeatdbrresponding actions in
the plan), or stop if the crossing corresponds to the desdiestination.

5 Experiments

In this section, we will outline the main characteristicsted ASPICE system, and show
the results of two experiments: the first is a comparison eetvBN and the two exist-
ing ASPICE navigation modes, while the second achievesiaatous battery charging
(clips are available at: http://www.dis.uniromaXkitabrob/research/ASPICE.html).
The ASPICE system enables users to drive several outputete{the domotic ap-
pliances or AIBO). The video feedback from the robot camethé user is fundamental
for increasing his/her sense of presence within the enmiet. Several input devices
(including a Brain Computer Interface) can be used to saleatmands, for driving
AIBO, through a Graphic User Interface (GUI). Since an ofdyecof the project is
compatibility with a variety of users and their level of difléty, three navigation modes
have been developed for AIB@ingle step, Semi-autonomous andAutonomous mode.
Each navigation mode is associated to a ASPICE GUI (see Fitn 8ingle step mode,
the robot can be driven, with a fixed step size, in any six tiwas (forward, back-
ward, lateral left/right, CW and CCW rotations). Beforefpeming the command, the
robot verifies with the distance sensors if the step can biemeed without colliding.
In semi-autonomous mode, the user specifies the main direafimotion: the robot



84

N

/

Hwl=l=]® Je]

Fig. 3. Comparing navigation modes: AIBO is driven from S to G withgle step (above), semi-
autonomous (center) and autonomous (below) modes. The@ESRhvigation GUIs for each
mode are also shown; in each GUI, the home button brings loeitletASPICE main GUI.

walks continuously in that direction until it receives a nemmmand (either a new di-
rection or a stop) and concurrently uses artificial potéfigals, based on the distance
sensors, to avoid obstacles. Finally, in the autonomouseardy a target point in the
environment is assigned by the user, and the robot travelettarget (e.g., the living
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Fig. 4. The battery charging experiment.

Table 1. Comparison between the three ASPICE navigation modes.

execution time (sec) user intervention (clicks)

single step 107 11
semi-autonomous 83 5
autonomous 90 1

room, the bathroom, or the kitchen). This mode is useful faickjy reaching some
important locations; it is particularly useful for sever@inpaired patients, which are
unable to send frequent commands. The practical implertientaf the autonomous
mode is the vision-based path planner/follower presemtéis paper.

In a first experiment (Fig. 3), the user is expected to driverthbot, by selecting
commands on the ASPICE GUIs, from a start point to a goal peiahoted respec-
tively by “S™ and “G” on the image). The task is repeated 5 tnfier each navigation
mode (single step, semi-autonomous, and autonomous) anlisrare averaged. Com-
parison between the three modes is based on execution tiungsanintervention (i.e.,
number of times the user had to intervene by clicking on thé f@kupdating the com-
mands). As expected, results (indicated in Table 1) confiequalitative properties of
the autonomous mode. Note, however, that the best choi@ndsmot only on user’s
preference and ability but also on the specific task (e.gitipo of the start and goal
points in the environment, presence and position of obesty.cl

In a second experiment, autonomous battery charging isde$his experiment
provides an additional testbed for VBN. In fact, the AIBO @jiag Station is placed
near a marked crossing on the roadmap, and as soon as thg keattis low, the robot
autonomously moves to the station. The experiment is ifitist! in Fig. 4. The robot
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position at consecutive time frames is shown while it apphea the roadmap, follows
the street up to the battery charger crossing, detectddtyekes a turn in order to reach
the charging station on the basis of the plan.

6 Conclusions and Future Work

A vision-based navigation system for AIBO has been devalophis system has been
integrated in the ASPICE system, compared with the two presly designed ASPICE
navigation modes, and tested by patients in a neuroretstafi program. For two
weekly sessions over 4 weeks, patients suffering from $pecular Atrophy type
Il and Duchenne Muscular Dystrophy have been practising thie ASPICE system.
All of the patients were able to master the system and coAIRO within 5 sessions.
The average grade given by the patients to their ‘persotiafaetion in utilizing the
robot’ was 3.04 on a 5-point scale [12]. This is a very prongsiesult, considering that
the users were originally more accustomed to using and @king the ‘traditional’
ASPICE appliances rather than the mobile robot.
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