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Abstract: The projection matrix identification problem is considered with application to calibration of intrinsic camera
parameters. Physical and orthogonal intrinsic camera models in context of 2D and 3D data are discussed. A
novel nonlinear goal function is proposed for homographic calibration method having the fast convergence of
Levenberg-Marquardt optimization procedure. Three models (linear, quadratic, and rational) and four opti-
mization procedures for their identification were compared wrt their time complexity, the projection accuracy,
and the intrinsic parameters accuracy. The analysis has been performed for both, the raw and the calibrated
pixel data, too. The recommended technique with the best performance in all used quality measures is the
Housholder QR decomposition for the linear least square method of the linear form of projection equations.

1 INTRODUCTION of coordinate axis for the camera is not unique khe
is not unique, too. However, the following decompo-
Camera calibration is the fundamental generic prob- sition formula always holds:
lem in computer vision (Y. Ma, 2004). In case of o
pinhole camera model, the problem usually refers to M =KR (I3, —C] 2)
estimation of camera intrinsic parametéfsand to
camera posR and camera locatio@ estimation with
respect to a selected coordinates frame. Both kinds
of parameters define, modulo constant factor, a pro-
jection matrixM which is the algebraic model in ho-
mogenous coordinates of the imaging geometry for
the given view of 3D or 2D scene:

where the pose matriR = [ry,ry,r;] consists of the
camera frame axis defined by unit length vectors with
coordinates wrt the scene frarhe= [e1, e, €3], and
C is the origin of the camera frame.

The matrix equivalence used in (2) is the equality
modulo constant factorM; = My if and only there
existsA # 0 such thaMy = AM;.

¥ X Since any rotation in projection plane can be mod-
p=MP, p=| y p— Y elled by the matrixR, the intrinsic matrixK is the
’ 1 ’ 4 Q) upper triangular matrix with positive elements on the
1 diagonal. In principle there are two approaches to
M = [M3,my], M3 € R®3, my € R® make the matriXK unique. In the most popular case,

the requirement of orthogonaliff R = I3 makes by
QR decomposition olf/lg{ the unique selection df

(O. Faugeras, 2001). We call this case of calibration
asorthogonal calibrationand identify the five free pa-
rameters for the inverse matrix:

where projective relation= makes equivalent all
points collocated in the same projective line. In al-
gebraic notation it means that for aRythere exists
a scaling factoi(P) for which the equation is true:

p=A(P)MP.
The matrixK € R3*3 of intrinsic parameters de- ki ko ks
scribes the transformation from scene to camera pixel Kil=] 0 ki ks 3)
coordinates on the projection plane. Since the choice 0 0 1
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In the less popular case, the requirement of orthog-2 MODELSFOR PROJECTION
onality is replaced by the zero conditigp= 0. The IDENTIFICATION
case is fully compliant with the physical model of pin-

hole camera having directly interpreted parameters: Using Kronecker's operatiom, the generic projec-

fx 0 o tion relation (1) can be transformed into the equation:
Kp=10 T ¢ (4) "
0 0 1 p:A(P)MP:[|3®P‘][ 1 } 9)

where for pixel sizes, x s, and focal length we have
fx = /s, fy = f /sy, and (¢, cy) are pixel coordi- where the matrixM = [myj], with mg4 = 1, has the
nates of the image center, i.e. intersection point of row-wise vectorial form

the projection plane by the camezaaxis. Usually ‘

Cx = Xres/ 2, Cy = Yres/2. Having the first two columns M= [My1,My2,... Mp1, Mo, ..., Ma1, Ma2, Mg

1 . . .
Uy, Uy of M3 ™ we getfy = 1/[[ux([, fy = 1/]|uy[|. It will be convenient to separate the matrix opera-

In case of intrinsic calibration by 2D scene views tor 4(P) = I3 @ P! into three row vector operators
(less expensive and more accurate case) we have tog,, g, 45 :
estimate the 2D version dfl, i.e. the homographic

matrix H which relates planar points in the scene with X A1 (P) 0
image pixels: A(P)=13@P' = | 42(P) 0 (10)
X X 3(P) 1
pP=HP p=|y |,P=]Y (5) It is easy to check that the same separation is true
1 1 for the homographic matri¥l = [hjj] for which the

The relationship of the homographic projectish  Vectorial formh has 8 elements:

with the intrinsic parameters is obtained from (2). B = 11 h1o. iz hor. hos. hoa. Bt heolt
However now, the orthogonal calibration can be only (12,12, M3, P21, P22, Nzg, Nas, ozl
resolved from the homographic equation (5). Since .

thenZ = 0 andR™! = R we have: 21 Rational Model

H = [y, ha, ] = KoR [ey, €2, —C] (6)  The most close model to the projective equation (9)

Kolthi=er, Kithy = e is the nonlinear model wri having the form of two
It implies the following two inherently nonlinear re-  ational functions:
lationships forK, and its vectorial representatién= p) = AP)m
K, ... ksp])t o y BMP) = e~ (11)
hy KKy thy = 0, K5 tKg thy = hoK Ko thy Ey(MiP) = 20 —y
Rt[hithg + hgth(ﬂR‘F 2hy(3)h(3) =0 In order to find the projection matrix, for the spa-
R’t[hithi_ hgthg]RJr h2(3) — h3(3) = 0 tial non-planar point$, projected onto image pixels

@) pi,i=1,...,np (np > 6) we optimize by Levenberg-
where for the vectoh = [h(1),h(2),h(3)]!, a circle Marquardt method, the following nonlinear goal func-

operator assigns the following matrix: tion:
Np
e I T L S A ) A = 3 [EmR) + EmR)

From the above introduction to camera calibration
problem we see that the accuracy of the projection
matrix M or H determined from 3D or 2D noisy data,

The Jacobian matri¥ required by this procedure, has
the compact form:

is of utmost importance. 4((P) A (P)ma(P)

In the presented research three models (linear, AP)MHL  (A3(P)m+1)?
guadratic, and rational) and four optimization proce- J(m;P) = B(P)  Ap(P)mag(P (12)
dures for their identification were compared wrt their A(P)M+1  (A3(P)M-1)2

time complexity, the projection accuracy, and the in-

trinsic parameters accuracy. The analysis has beenlt is interesting that the formulas (11), (12) are also
performed for both, the raw and the calibrated pixel valid for the homographic matrikd with m replaced
data, too. by handP' = [X,Y,Z,1] replaced byP* = [X,Y,1].
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2.2 Linear Modd

The roots of rational functions (11) are also the solu-
tions of the following linear system of equations:
X

= | 2(P) -yas(P) | 69
Consideringny, spatial points?; and their images

pi, i =1,...,np we get Dy, linear equation®\m~ b
defined by the matriR and the right hand side vector:
A(P1, p1) b(p1)
A= ! b=
’q(Pnpa pnp) b(pnp)

The same construction is valid for the homographic
matrixH.

There are many techniques finding efficiently the
minimum solution™™* of the linear least square prob-
lem Am ~ b for the following goal function:

£(m) = [AM-bI?= 5 |4(P.p) ~b(p)|2

The exact count of flops for HS-QR approach gives
the formula:
FLOPSys(Np, ) = 6npr (r +1) +-r%(—r/2+3+5/(2r))
The difference of the measures shows the computa-
tional advantage of HS-QR approach.
FLOPSD|N\/(np7I’) — FLOPqu(an) =
=10npr2 +41r3/2—-3r2—5r/2
For 3D caser = 11 and then
FLOPSpiny (Np, 11) — FLOPSys(np, 11) >
121+ 25000
While in 2D casey = 8 and the flops difference has
the formula:
FLOPSpiny (Np, 8) — FLOPSys(Nnp, 8) >
> 640np+ 10000

2.3 Quadratic Model

In the literature referring to camera calibration prob-
lems the quadratic model is frequently recommended
(Y. Ma, 2004). Itis obtained from (13) by aggregation
of quadratic errors produced by each [Rimp;.

LetnY extendsn by ms 4. Then, the error of repro-

The most popular method is the pseudo-inverse ma-ducingp from P is described by the following matrix

trix AT method (R. Klette, 1996) which is found using
SVD decomposition foA =U3>V!:

AT =v3tUt

where the diagonal matrix* is the pseudo-inverse of
the diagonal matrix :

> =diag(oy,...,0r,0,...,0)
s+ =diagl1/01,...,1/0¢,0,...,0)

wherer is the rank ofA. Then the least square solution
is given by the formula

m* =A"b

Letr = 11 for 3D case and = 8 for 2D case. The
faster algorithm for the case when< 2np is R-SVD
algorithm. Using the complexity formulas for SVD
from (G. Golub, 1989) we have the following number
of flops for the pseudo-inverse method:

FLOPSpiny (Np, T) = BNpr (8r/3+1) +20r3  (14)

Another technique finding the optimal solution is
based on triangulation of matri& by Housholder’s
symmetries#,, i = 1,...,r. The process is part of
QR decomposition. However we need only the tri-
angular formTy and concurrently transformed right
hand sideby. Then the least square solution is given
by the formula:

m‘ = TH_le

94

B(Pp):
b ﬂl(P) — Xﬂg(P) =X | = 0
PEPIM =] (P -yas(P) -y } = { 0 }
The same form of error matrix we obtain for 2D case
extendingh by hg 3.
The total squared error leads to the quadratic form
defined by the matrisB :

') =y IB(R, pi)nt[|2 =
= 5™ 'R, p)B(R, pi)Y =
— ' [5°, B'(R, pi)B(R, pi)] ¥ = ¥ Bt

The minimization of £/(n) is obtained from
SVD: B = U3V'. Namely, from the singular base
Ur = [u1,...,Ur41], We take the vectown, 1 and con-
vert to matrix form.

The computational complexity for the quadratic
method has the formula:

FLOPSs,p(Np, 1) = 4nj(r + 1)+ 17(r + 1),

Since the above formula is quadraticrip, the com-
putational advantage of HS-QR method over SVD is
also quadratic. It follows from computational over-
head to get the matris8. We could avoid this by ap-
plying SVD to the global error matrix:

t
[g(Pla pn)7 ceey g(Prlpa pnp)} .
However, then we get a procedure equivalent to

pseudo-inverse method with complexity linearly in-
ferior in np to HS-QR approach.
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3 INTRINSIC CALIBRATION

We have investigated this problem for both, the or-
thogonal and physical calibration cases, detailed in
the introduction.

3.1 3D Calibration Scene

In 3D case when pixel data is obtained from images of
calibration cube we start from identification of physi-
cal model.

The image center is roughly estimated from the

camera image resolution and its location is accurately

estimated during the lens distortion modelling. It
is interesting that the remaining physical parameters
fx, fy have simple formulas if13 is already estimated.

Namely, ifM3? = [uy, uy, U] then

Mgl = [UX, Uy, UZ] = RKal —

1/ fx 0 —CX/ fX (15)
=[reryr | 0 1/f, —cy/fy
0 0 1
Hence
= HUXH’ V= Top = fxUx, Ty = fyly

(16)

[, — Uz OOty

Z ™ Tzt CxtxtCyly]

Having parametersfy, fy,cx,Cy, the calibration
matrix Kp is identified according (4). The matrk,
can be found from the matri, by closed form for-
mulas. However, we have found that QR procedure
applied toMs :

M5! L RK,

givesK, entries more accurate when data is noisy.
3.2 2D Calibration Scene

In 2D case when calibration is performed from homo-
graphic matrices obtained on the basis of chessboar
images the error function is based on relationships (7)
applied toj-th view, j =1,...,ny

EV (k) = KAKk+2n{(3)h{)(3)
EsV (k) = KBjk+ (h)2(3) — (h§))2(3)

where the symmetric matrices;, B; are defined as
follows

17)

=
~—

-))Ot(hg_. o
_ (h(zl))ot(h(zl))o

Aj = (W)t (h)° + (hY

= (h)*

aand the synthetic data.

In order to find the calibration matrik, repre-
sented by the vectdk, we optimize by Levenberg-
Marquardt method, the following nonlinear goal func-
tion:

Ny

A =y | (E

=

The Jacobian matri¥ required by this procedure, has
a simple formforj =1,...,ny:

KA,
KB,

Having intrinsics in orthogonal modé we can
get easily the missing parameters for the physical
model: 1

Projection Error for Uniform Noise

ID(K) = (18)

:k—]" fy:

Average Error of Projection in Pixels

T
15

Average Noise for Input Pixels

Figure 1: The average projection error for matrix identi-
fied from noisy pixels. The noise is uniform in the interval
[—0,+0], 0 € [0,3] is measured in pixels.

4 EXPERIMENTS

We have conducted our experiments on both, the real
Real pixel data has been
mainly located manually. In case of optical distortion
modelling, where thousands of corners in calibration
grid are required, their coordinates were detected au-
tomatically by our computer program.

For the identification of the projection matrit
and the homographic matri four models were
compared: linear by PINV, quadratic by SVD, non-
linear by LM, and linear by HS-QR.

The accuracy of matrix identification was mea-
sured directly by Frobenius distance to the ground-
truth matrix and indirectly by the average displace-
ment of pixels projected by the identified matrix from
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noisy data wrt to pixels projected by the ground truth Projection Matrix Error on Pixel Noise
matrix. =
. . 4 physical calibration model for intrinsics
In Figures 1, 2 we present comparative results || © ontogonsi catbraton modet or mnsics

of projection accuracy for the four analyzed models
under uniform and normal input noise and with and
without pixel normalization operation. The pixel nor-

malization is guided by the physical intrinsic parame-
ters

P=K,'p, X = (x—cx)/fx, ¥ = (Y= )/ fy.

The similar normalization operation is used before the I

°
2
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P R
N
N

°
2
T

Average Projection Matrix Error

. . R . 0.0 05 10 15 20 25 30 35
calibration of extrinsic parameters (Hartley, 1997). Average Noise for Input Pixels
Figure 3: Average projection matrix absolute error identi-
Projection Error for Uniform Noise and Normalized Pixels fied from noisy pixels.
7 y=x //‘ Intrinsics Matrix Error on Pixel Noise
1|+ tinear pinv '// "
257| X quadratic: SVD . i 4| + physical calibration model for intrinsics
1 z "‘”“"”9:’5 ”;L:M 7 35| O orthogonal calibration model for intrinsics
1| 0 tinear: Hs- -

Average Error of Projection in Pixels
&
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\
Average Intrinsics Matrix Error
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Figure 2: The average projection error for matrix identified Average Noise for Input Pixels

from noisy pixels. The noise is uniform ir-0,+a] and

o € [0,3] is measured in pixels. The pixel normalization is Figure 4: Average intrinsic matrix absolute error identlfie

from noisy pixels.

used.
We see from Figure 1 that PlNV, HS-QR, and ML » Physical Intrinsics Matrix Error on Pixel Noise
(initialized by PINV) have comparable accuracy (with m;

slight advantage of nonlinear model) while SVD has
significantly higher projection error. When pixel nor-
malization is applied (in practice not always possi-
ble!) then all the methods transform input pixel noise
into output noise in the same way scaling it down (cf.
Figure 2) by a factor of two. The similar behavior has
been observed for normal noise.

Figures 3, 4 illustrate the dependence of absolute <o e
projection matrix and intrinsic matrix (3D case) er- P B e S —
rors (per matrix element) on input pixel noise. While T e s
the relationship for projection matrix is exactly the
same (the graphs were slightly shifted to distinguish
them) for independently whether we use in calibra-
tion physical or orthogonal model, the accuracy of el-
ement identification for the physical intrinsic model is
higher than for the orthogonal intrinsic model.

Calibration of intrinsic parameters from homogra-
phies wrt the selected computational model is ana-
lyzed in Figures 5, 6, and 7.

The advantage of linear over quadratic model is
observed on all these graphs.

0.035-

0.030

°
S
S
b

0.020

0.015-

Average Physical Intrinsics Matrix Error
g
5
i .
\

Figure 5: Average physical intrinsics matrix error for gixe
noise.

In the screen shot below we have the results of in-

trinsic calibration for real data extracted from 16 im-
ages of chessboard.
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Orthogonal Intrinsics Matrix Error on Pixel Noise

° ° o ° °
g 2 2 2
T e T b

Average Orthogonal Intrinsics Matrix Error
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7|+ tinear model
4| © quadratic model
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0.0 05 10 15 20 25

Average Noise for Input Pixels

Figure 6: Average orthogonal intrinsics matrix
pixel noise.

Focus by Pixel Width Error on Pixel Noise
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o. 035:
o. 030:
0.025+
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0.015-

Average Focus by Pixel Width Error

0.010-

0.005

q| + linear model
< quadratic model

T T T L L B R T T T
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Average Noise for Input Pixels

error for

Figure 7: Average focus to pixel width error for pixel noise.

- ->[ Kp, Ko] =r eal KpKoByHonogr aphi es(3073/ 2, 2305/ 2)

Ko =
2463. 0976 3. 2421405 1535. 4054
0. 2473. 6315 1142. 4508
0. 0. 1.

Kp =
2463. 0976 0. 1536.5
0. 2473. 6294 1152.5
0. 0. 1.

5 CONCLUSION

The projection matrix identification problem is con-
sidered with application to calibration of intrinsic
camera parameters.

Physical and orthogonal intrinsic camera models
in context of 2D and 3D data are discussed.

A novel nonlinear goal function is proposed for
homographic calibration method having the fast con-
vergence of Levenberg-Marquardt optimization pro-

cedure.

Three models (linear, quadratic, and rational) and
four optimization procedures for their identification
were compared wrt their time complexity, the projec-
tion accuracy, and the intrinsic parameters accuracy.

The analysis has been performed for both, the raw
and the calibrated pixel data, too.

The recommended technique with the best perfor-
mance in all used quality measures is the Housholder
QR decomposition for the linear least square method
of the linear form of projection equations.
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