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Abstract: The projection matrix identification problem is considered with application to calibration of intrinsic camera
parameters. Physical and orthogonal intrinsic camera models in context of 2D and 3D data are discussed. A
novel nonlinear goal function is proposed for homographic calibration method having the fast convergence of
Levenberg-Marquardt optimization procedure. Three models (linear, quadratic, and rational) and four opti-
mization procedures for their identification were compared wrt their time complexity, the projection accuracy,
and the intrinsic parameters accuracy. The analysis has been performed for both, the raw and the calibrated
pixel data, too. The recommended technique with the best performance in all used quality measures is the
Housholder QR decomposition for the linear least square method of the linear form of projection equations.

1 INTRODUCTION

Camera calibration is the fundamental generic prob-
lem in computer vision (Y. Ma, 2004). In case of
pinhole camera model, the problem usually refers to
estimation of camera intrinsic parametersK and to
camera poseR and camera locationC estimation with
respect to a selected coordinates frame. Both kinds
of parameters define, modulo constant factor, a pro-
jection matrixM which is the algebraic model in ho-
mogenous coordinates of the imaging geometry for
the given view of 3D or 2D scene:

p ≡ MP, p =





x
y
1



 , P =







X
Y
Z
1







M = [M3,m4], M3 ∈ R
3×3, m4 ∈ R

3

(1)

where projective relation≡ makes equivalent all
points collocated in the same projective line. In al-
gebraic notation it means that for anyP there exists
a scaling factorλ(P) for which the equation is true:
p = λ(P)MP.

The matrixK ∈ R
3×3 of intrinsic parameters de-

scribes the transformation from scene to camera pixel
coordinates on the projection plane. Since the choice

of coordinate axis for the camera is not unique theK
is not unique, too. However, the following decompo-
sition formula always holds:

M ≡ KR−1[I3,−C] (2)

where the pose matrixR = [rx,ry,rz] consists of the
camera frame axis defined by unit length vectors with
coordinates wrt the scene frameI3 = [e1,e2,e3], and
C is the origin of the camera frame.

The matrix equivalence used in (2) is the equality
modulo constant factor:M1 ≡ M2 if and only there
existsλ 6= 0 such thatM2 = λM1.

Since any rotation in projection plane can be mod-
elled by the matrixR, the intrinsic matrixK is the
upper triangular matrix with positive elements on the
diagonal. In principle there are two approaches to
make the matrixK unique. In the most popular case,
the requirement of orthogonalityRtR = I3 makes by
QR decomposition ofM−1

3 , the unique selection ofK
(O. Faugeras, 2001). We call this case of calibration
asorthogonal calibration and identify the five free pa-
rameters for the inverse matrix:

K−1
o =





k1 k2 k3
0 k4 k5
0 0 1



 (3)
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In the less popular case, the requirement of orthog-
onality is replaced by the zero conditionk2 = 0. The
case is fully compliant with the physical model of pin-
hole camera having directly interpreted parameters:

Kp =





fx 0 cx
0 fy cy
0 0 1



 (4)

where for pixel sizesx×sy and focal lengthf we have
fx = f/sx, fy = f/sy, and (cx,cy) are pixel coordi-
nates of the image center, i.e. intersection point of
the projection plane by the cameraz axis. Usually
cx ≈ xres/2, cy ≈ yres/2. Having the first two columns
ux, uy of M−1

3 we get fx = 1/‖ux‖, fy = 1/‖uy‖.
In case of intrinsic calibration by 2D scene views

(less expensive and more accurate case) we have to
estimate the 2D version ofM, i.e. the homographic
matrixH which relates planar points in the scene with
image pixels:

p ≡ HP, p =


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 , P =
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1



 (5)

The relationship of the homographic projectionH
with the intrinsic parameters is obtained from (2).
However now, the orthogonal calibration can be only
resolved from the homographic equation (5). Since
thenZ = 0 andR−1 = Rt we have:

H = [h1,h2,h3] ≡ KoRt [e1,e2,−C]

K−1
o h1 ≡ e1, K−1

o h2 ≡ e2
(6)

It implies the following two inherently nonlinear re-
lationships forKo and its vectorial representation~k =
[k1, . . . ,k5]

t :

ht
1K−t

o K−1
o h2 = 0, ht

1K−t
o K−1

o h1 = ht
2K−t

o K−1
o h2

~kt [h◦t
1 h◦2 + h◦t

2 h◦1]~k +2h1(3)h2(3) = 0

~kt [h◦t
1 h◦1−h◦t

2 h◦2]~k + h2
1(3)−h2

2(3) = 0
(7)

where for the vectorh = [h(1),h(2),h(3)]t , a circle
operator assigns the following matrix:

h◦ =

[

h(1) h(2) h(3) 0 0
0 0 0 h(2) h(3)

]

(8)

From the above introduction to camera calibration
problem we see that the accuracy of the projection
matrixM or H determined from 3D or 2D noisy data,
is of utmost importance.

In the presented research three models (linear,
quadratic, and rational) and four optimization proce-
dures for their identification were compared wrt their
time complexity, the projection accuracy, and the in-
trinsic parameters accuracy. The analysis has been
performed for both, the raw and the calibrated pixel
data, too.

2 MODELS FOR PROJECTION
IDENTIFICATION

Using Kronecker’s operation⊗, the generic projec-
tion relation (1) can be transformed into the equation:

p = λ(P)MP = [I3⊗Pt ]

[

~m
1

]

(9)

where the matrixM = [mi j], with m34 = 1, has the
row-wise vectorial form

~m = [m11,m12, . . .m21,m22, . . . ,m31,m32,m33]
t

It will be convenient to separate the matrix opera-
tor A(P) = I3 ⊗ Pt into three row vector operators
A1,A2,A3 :

A(P) = I3⊗Pt =





A1(P) 0
A2(P) 0
A3(P) 1



 (10)

It is easy to check that the same separation is true
for the homographic matrixH = [hi j] for which the
vectorial form~h has 8 elements:

~h = [h11,h12,h13,h21,h22,h23,h31,h32]
t

2.1 Rational Model

The most close model to the projective equation (9)
is the nonlinear model wrt~m having the form of two
rational functions:

Ex(~m;P) =
A1(P)~m

A3(P)~m+1 − x

Ey(~m;P) = A2(P)~m
A3(P)~m+1 − y

(11)

In order to find the projection matrix, for the spa-
tial non-planar pointsPi projected onto image pixels
pi, i = 1, . . . ,np (np ≥ 6) we optimize by Levenberg-
Marquardt method, the following nonlinear goal func-
tion:

N (~m) =
np

∑
i=1

[

E2
x (~m;Pi)+ E2

y (~m;Pi)
]

The Jacobian matrixJ, required by this procedure, has
the compact form:

J(~m;P) =









A1(P)
A3(P)~m+1 −

A1(P)~mA3(P)
(A3(P)~m+1)2

A2(P)
A3(P)~m+1 −

A2(P)~mA3(P)
(A3(P)~m+1)2









(12)

It is interesting that the formulas (11), (12) are also
valid for the homographic matrixH with ~m replaced
by~h andPt = [X ,Y,Z,1] replaced byPt = [X ,Y,1].
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2.2 Linear Model

The roots of rational functions (11) are also the solu-
tions of the following linear system of equations:

A(P, p)~m =

[

A1(P)− xA3(P)
A2(P)− yA3(P)

]

~m =

[

x
y

]

(13)

Consideringnp spatial pointsPi and their images
pi, i = 1, . . . ,np we get 2np linear equationsA~m ≃ b
defined by the matrixA and the right hand side vector:

A =







A(P1, p1)
...

A(Pnp , pnp)






, b =







b(p1)
...

b(pnp)







The same construction is valid for the homographic
matrix H.

There are many techniques finding efficiently the
minimum solution~m∗ of the linear least square prob-
lem A~m ≃ b for the following goal function:

L(~m) = ‖A~m−b‖2 =
np

∑
i=1

‖A(P, p)−b(p)‖2.

The most popular method is the pseudo-inverse ma-
trix A+ method (R. Klette, 1996) which is found using
SVD decomposition forA = UΣV t :

A+ = VΣ+U t

where the diagonal matrixΣ+ is the pseudo-inverse of
the diagonal matrixΣ :

Σ = diag(σ1, . . . ,σr,0, . . . ,0)

Σ+ = diag(1/σ1, . . . ,1/σr,0, . . . ,0)

wherer is the rank ofA. Then the least square solution
is given by the formula

~m∗ = A+b

Let r = 11 for 3D case andr = 8 for 2D case. The
faster algorithm for the case whenr < 2np is R-SVD
algorithm. Using the complexity formulas for SVD
from (G. Golub, 1989) we have the following number
of flops for the pseudo-inverse method:

FLOPSPINV (np,r) = 6npr(8r/3+1)+20r3 (14)

Another technique finding the optimal solution is
based on triangulation of matrixA by Housholder’s
symmetriesHai , i = 1, . . . ,r. The process is part of
QR decomposition. However we need only the tri-
angular formTH and concurrently transformed right
hand sidebH . Then the least square solution is given
by the formula:

~m∗ = T−1
H bH

The exact count of flops for HS-QR approach gives
the formula:

FLOPSHS(np,r)= 6npr(r+1)+r2(−r/2+3+5/(2r))

The difference of the measures shows the computa-
tional advantage of HS-QR approach.

FLOPSPINV (np,r)−FLOPSHS(np,r) =
= 10npr2 +41r3/2−3r2−5r/2

For 3D case,r = 11 and then
FLOPSPINV (np,11)−FLOPSHS(np,11) >
1210np +25000.

While in 2D case,r = 8 and the flops difference has
the formula:

FLOPSPINV (np,8)−FLOPSHS(np,8) >
> 640np +10000.

2.3 Quadratic Model

In the literature referring to camera calibration prob-
lems the quadratic model is frequently recommended
(Y. Ma, 2004). It is obtained from (13) by aggregation
of quadratic errors produced by each pairPi, pi.

Let ~m′ extends~m by m3,4. Then, the error of repro-
ducingp from P is described by the following matrix
B(P, p) :

B(P, p)~m′ =

[

A1(P)− xA3(P) −x
A2(P)− yA3(P) −y

]

~m′ ≃

[

0
0

]

The same form of error matrix we obtain for 2D case
extending~h by h3,3.

The total squared error leads to the quadratic form
defined by the matrixB :

L ′(~m′) = ∑np
i=1‖B(Pi, pi)~m′‖2 =

= ∑
np
i=1

~m′
t
Bt(Pi, pi)B(Pi, pi)~m′ =

= ~m′
t [

∑
np
i=1 Bt(Pi, pi)B(Pi, pi)

]

~m′ = ~m′
t
B~m′

The minimization of L ′(~m′) is obtained from
SVD: B = UΣV t . Namely, from the singular base
Ur = [u1, . . . ,ur+1], we take the vectorur+1 and con-
vert to matrix form.

The computational complexity for the quadratic
method has the formula:

FLOPSSVD(np,r) = 4n2
p(r +1)2 +17(r +1)3.

Since the above formula is quadratic innp, the com-
putational advantage of HS-QR method over SVD is
also quadratic. It follows from computational over-
head to get the matrixB . We could avoid this by ap-
plying SVD to the global error matrix:

[

B(P1, pn), . . . ,B(Pnp , pnp)
]t

.

However, then we get a procedure equivalent to
pseudo-inverse method with complexity linearly in-
ferior in np to HS-QR approach.
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3 INTRINSIC CALIBRATION

We have investigated this problem for both, the or-
thogonal and physical calibration cases, detailed in
the introduction.

3.1 3D Calibration Scene

In 3D case when pixel data is obtained from images of
calibration cube we start from identification of physi-
cal model.

The image center is roughly estimated from the
camera image resolution and its location is accurately
estimated during the lens distortion modelling. It
is interesting that the remaining physical parameters
fx, fy have simple formulas ifM3 is already estimated.
Namely, ifM−1

3 = [ux,uy,uz] then

M−1
3 = [ux,uy,uz] = RK−1

p =

= [rx,ry,rz]





1/ fx 0 −cx/ fx
0 1/ fy −cy/ fy
0 0 1





(15)

Hence

fx = 1
‖ux‖

, fy = 1
‖uy‖

, rx = fxux, ry = fyuy

rz =
uz+cxux+cyuy
‖uz+cxux+cyuy‖

(16)

Having parametersfx, fy,cx,cy, the calibration
matrix Kp is identified according (4). The matrixKo
can be found from the matrixKp by closed form for-
mulas. However, we have found that QR procedure
applied toM3 :

M−1
3

QR
= RK−1

o

givesKo entries more accurate when data is noisy.

3.2 2D Calibration Scene

In 2D case when calibration is performed from homo-
graphic matrices obtained on the basis of chessboard
images the error function is based on relationships (7)
applied toj-th view, j = 1, . . . ,nv :

E( j)
1 (~k) =~ktA j~k +2h( j)

1 (3)h( j)
2 (3)

E( j)
2 (~k) =~ktB j~k +(h( j)

1 )2(3)− (h( j)
2 )2(3)

(17)

where the symmetric matricesA j, B j are defined as
follows

A j = (h( j)
1 )◦t(h( j)

2 )◦ +(h( j)
2 )◦t(h( j)

1 )◦

B j = (h( j)
1 )◦t(h( j)

1 )◦− (h( j)
2 )◦t(h( j)

2 )◦

In order to find the calibration matrixKo repre-
sented by the vector~k, we optimize by Levenberg-
Marquardt method, the following nonlinear goal func-
tion:

NK(~m) =
nv

∑
j=1

[

(E( j)
1 )2(~k)+ (E( j)

2 )2(~k)
]

The Jacobian matrixJ, required by this procedure, has
a simple form forj = 1, . . . ,nv :

J( j)(~k) = 2

[

~ktA j

~ktB j

]

(18)

Having intrinsics in orthogonal model~k we can
get easily the missing parameters for the physical
model:

fx =
1
k1

, fy =
1

√

k2
2 + k2

4
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Figure 1: The average projection error for matrix identi-
fied from noisy pixels. The noise is uniform in the interval
[−σ,+σ], σ ∈ [0,3] is measured in pixels.

4 EXPERIMENTS

We have conducted our experiments on both, the real
and the synthetic data. Real pixel data has been
mainly located manually. In case of optical distortion
modelling, where thousands of corners in calibration
grid are required, their coordinates were detected au-
tomatically by our computer program.

For the identification of the projection matrixM
and the homographic matrixH four models were
compared: linear by PINV, quadratic by SVD, non-
linear by LM, and linear by HS-QR.

The accuracy of matrix identification was mea-
sured directly by Frobenius distance to the ground-
truth matrix and indirectly by the average displace-
ment of pixels projected by the identified matrix from
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noisy data wrt to pixels projected by the ground truth
matrix.

In Figures 1, 2 we present comparative results
of projection accuracy for the four analyzed models
under uniform and normal input noise and with and
without pixel normalization operation. The pixel nor-
malization is guided by the physical intrinsic parame-
ters

p′ = K−1
p p, x′ = (x− cx)/ fx, y′ = (y− cy)/ fy.

The similar normalization operation is used before the
calibration of extrinsic parameters (Hartley, 1997).
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Figure 2: The average projection error for matrix identified
from noisy pixels. The noise is uniform in[−σ,+σ] and
σ ∈ [0,3] is measured in pixels. The pixel normalization is
used.

We see from Figure 1 that PINV, HS-QR, and ML
(initialized by PINV) have comparable accuracy (with
slight advantage of nonlinear model) while SVD has
significantly higher projection error. When pixel nor-
malization is applied (in practice not always possi-
ble!) then all the methods transform input pixel noise
into output noise in the same way scaling it down (cf.
Figure 2) by a factor of two. The similar behavior has
been observed for normal noise.

Figures 3, 4 illustrate the dependence of absolute
projection matrix and intrinsic matrix (3D case) er-
rors (per matrix element) on input pixel noise. While
the relationship for projection matrix is exactly the
same (the graphs were slightly shifted to distinguish
them) for independently whether we use in calibra-
tion physical or orthogonal model, the accuracy of el-
ement identification for the physical intrinsic model is
higher than for the orthogonal intrinsic model.

Calibration of intrinsic parameters from homogra-
phies wrt the selected computational model is ana-
lyzed in Figures 5, 6, and 7.

The advantage of linear over quadratic model is
observed on all these graphs.
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Figure 3: Average projection matrix absolute error identi-
fied from noisy pixels.
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Figure 4: Average intrinsic matrix absolute error identified
from noisy pixels.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Physical Intrinsics Matrix Error on Pixel Noise

Average Noise for Input Pixels

A
ve

ra
ge

 P
hy

si
ca

l I
nt

rin
si

cs
 M

at
rix

 E
rr

or

linear model

quadratic model

Figure 5: Average physical intrinsics matrix error for pixel
noise.

In the screen shot below we have the results of in-
trinsic calibration for real data extracted from 16 im-
ages of chessboard.
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Figure 6: Average orthogonal intrinsics matrix error for
pixel noise.
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Figure 7: Average focus to pixel width error for pixel noise.

-->[Kp,Ko]=realKpKoByHomographies(3073/2,2305/2)

Ko =

2463.0976 3.2421405 1535.4054
0. 2473.6315 1142.4508
0. 0. 1.

Kp =

2463.0976 0. 1536.5
0. 2473.6294 1152.5
0. 0. 1.

5 CONCLUSION

The projection matrix identification problem is con-
sidered with application to calibration of intrinsic
camera parameters.

Physical and orthogonal intrinsic camera models
in context of 2D and 3D data are discussed.

A novel nonlinear goal function is proposed for
homographic calibration method having the fast con-
vergence of Levenberg-Marquardt optimization pro-

cedure.
Three models (linear, quadratic, and rational) and

four optimization procedures for their identification
were compared wrt their time complexity, the projec-
tion accuracy, and the intrinsic parameters accuracy.

The analysis has been performed for both, the raw
and the calibrated pixel data, too.

The recommended technique with the best perfor-
mance in all used quality measures is the Housholder
QR decomposition for the linear least square method
of the linear form of projection equations.
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