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Abstract: In this paper, we present new adaptive learning algorithms to extract optimal features from 
multidimensional Gaussian data while preserving class separability. For this purpose, we introduce new 
adaptive algorithms for the computation of the square root of the inverse covariance matrix 21−Σ . We 
prove the convergence of the adaptive algorithms by introducing the related cost function and discussing 
about its properties and initial conditions. Adaptive nature of the new feature extraction method makes it 
appropriate for on-line signal processing and pattern recognition applications. Experimental results using 
two-class multidimensional Gaussian data demonstrated the effectiveness of the new adaptive feature 
extraction method. 

1 INTRODUCTION 

Feature extraction is generally considered as a 
process of mapping the original measurements into a 
more effective feature space. When we have two or 
more classes, feature extraction consists of choosing 
those features which are the most effective for 
preserving class separability in addition to 
dimension reduction (Theodoridis, 2003). One of the 
most used techniques for this purpose is linear 
discriminant analysis (LDA) algorithm. LDA 
algorithm has been widely used in signal processing 
and pattern recognition applications in which feature 
extraction is inevitable, such as face and gesture 
recognition and hyper-spectral image processing 
(Chang and Ren, 2000; Chen et al., 2000; Lu et al. 
2003) Conventional LDA algorithm is used only in 
off-line applications. However, the needs for 
dimensionality reduction in real time applications 
such as on-line face recognition, motivated 
researchers to introduce adaptive versions of LDA. 
Chaterjee and Roychowdhury presented an adaptive 
algorithm and a self-organizing LDA network for 
feature extraction from Gaussian data (Chatterjee 
and Roychowdhury, 1997). They introduced an 
adaptive method for computation of 21−Σ  in which 
Σ  is the symmetric positive definite scattering 
matrix of a random vector sequence. However, they 
didn’t introduce any cost function related to their 

adaptive algorithm. Therefore, they used the 
stochastic approximation theory in order to prove the 
convergence of their adaptive equation and outlined 
networks for feature extraction. On the other hand, 
the approach presented in (Chatterjee and 
Roychowdhury, 1997) suffers from low convergence 
rate. Recently, Abrishami Moghaddam et al. (2003; 
2005) proposed three new adaptive methods based 
on steepest descent, conjugate direction and 
Newton-Raphson optimization techniques to hasten 
convergence of the adaptive algorithm.  

In this study, we present new adaptive algorithms 
for the computation of 21−Σ . Furthermore, we 
introduce a cost function related to these algorithms 
and prove their convergence by discussing about the 
properties and initial conditions of this cost function. 
Existence of the cost function and its 
differentiability facilitate the convergence analysis 
of the new adaptive algorithms without using 
complicated stochastic approximation theory. We 
will show effectiveness of these new adaptive 
algorithms for extracting optimal features from two-
class multi-dimensional Gaussian sequences.  

The organization of the paper is as follows. The 
next section describes the fundamentals of optimal 
feature extraction from Gaussian data. Section 3, 
presents the new adaptive equations and analyzes 
their convergence by introducing the related cost 
function and discussing about initial conditions. 
Section 4, is devoted to simulations and 
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experimental results. Finally, concluding remarks 
are given in section 5. 

2 OPTIMAL FEATURES FOR 
GAUSSIAN DATA 

Let },...,,{ 21 Lωωω  be the L classes in which our 

patterns belong and nℜ∈x  be a pattern vector 
whose mixture distribution is given by )(xp . In a 
sequel, it is assumed that a priori 
probabilities LiP i ,...,1,)( =ω , are known. If they 
are not explicitly known, they can easily be 
estimated from the available training vectors. For 
example, if N is the total number of available 
training patterns and Ni (i=1,…,L) of them belong 
to iω , then NN)(P ii ≈ω . Consider conditional 
probability densities Lip i ,...1,)|( =ωx  and 
posterior probabilities LiP i ,...1,   )( =xω  are known. 
Using Bayes classification rule, we can state that the 
pattern x  is classified to iω  if 

ijandLjiPP ji ≠=> ,...,1,,)|()|( xx ωω  
In other words, the L a posteriori probability 

functions, mentioned above, are sufficient statistics, 
and carry all information for classification in the 
Bayes sense. The Bayes classifier in this feature 
space is a piecewise bisector classifier which is its 
simplest form (Fukunaga, 1990). Gaussian 
distribution in general has a density function in the 
following form  

where the distance function )(2 xd , is defined by: 

Which nℜ∈x is a random vector, Σ  is a nn ×  
symmetric covariance matrix and m  is a 1×n  vector 
denoted mean value of the random sequence. 
Considering the feature: 

)(pln)(Pln)|(pln)|(Pln iii xxx −ω+ω=ω  (3)

for class iω ,, i=1,…L, it will appear that, 

)|( ln ip ωx  is the relevant feature for class iω  

(recalling that in feature extraction, additive and 
multiplicative constants do not modify the subspace 
onto which the distributions are mapped). Supposing 
unimodal Gaussian distribution, the feature 

)|( ln ip ωx reduces to a quadratic function )(xif , 
defined as: 

Lif ii
t

ii ,...1 ,  )()()( 1 =−−= − mxΣmxx  (4)

where im  and iΣ  are the class iω ’s mean value 
and covariance matrix, respectively. The 
function )(xif , can be expressed in the form of a 
norm function ( Fukunaga, 1990) : 

Lif iii ,...,1,||)(||)( 22
1

=−=
−

mxΣx  (5)

From the above discussion, it is clear that 
function )(xif  is the sufficient information for 
classification of Gaussian data with minimum Bayes 
error. In other words, after computation of )(xif  for 
i=1 …,L, it is easy to decide about classification of 
the unknown vector x . Generally speaking, in on-
line applications, the values of 21−Σ and im  are 
unknown. Therefore, we should find a rule for 
adaptive estimation of these values and 
compute )(xif . In the next section, a new method for 

adaptive computation of 21−Σ will be presented. 
In addition, we introduce a cost function related to 
this adaptive equation, and use it for proving its 
convergence. 

3 ADAPTIVE COMPUTATION 
OF 21−Σ AND 
CONVERGENCE PROOF 

We define the cost function )(wJ  with 
parameter W  ℜ→ℜ ×nnJ :  as follows:  

)(
3

)()(
3

WxxWW trtrJ
t

−=  (6)

)(wJ , is a continuous function with respect to W . 
The expected value of J (for constant W ) is given 
by: 

)(
3

)())((
3

WΣWW trtrJE −=  (7)
 

where Σ  is the covariance matrix. The first 
derivative of E(J) is computed as follows (assuming 
that W is a symmetric matrix) (Magnus, Neudecker, 
1999): 

IΣWWWΣΣW
W

W
−++=

∂
∂ 3) ())(( 22JE  (8)
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The unique zero solution of (8) is 21−Σ  , the 
second derivative of the expected value of the cost 
function is equal to (Magnus, Neudecker, 1999): 

WΣΣWIΣWΣWI
W

W
⊗+⊗+⊗+⊗=

∂
∂ )(2)(2))((

2

2 JE  (9)

In (9) it is assumed that W is a symmetric matrix 
that it commutes withΣ . If we substitute W  in (9) 
with 21−Σ , the answer will be: 
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where (10) is a positive definite matrix. From the 
above discussion, it can be concluded that the cost 
function )(wJ  has a minimum that occurs at 21−Σ  
(Magnus, Neudecker, 1999). Using the gradient 
descent optimization method (Widrow, Stearns, 
1985; Hagan, Demuth, 2002), we obtain the 
following adaptive equation for the computation 
of 21−Σ : 
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In (11), 

1+kW  is the estimation of 21−Σ in k+1-

th iteration. kη  is the step size and 1+kx  is the input 
vector at iteration k+1. Equation (11) updates the 
estimation of 21−Σ , using the last estimation and 
the present input vector. The only constraint on (11) 
is its initial condition. That means 

0W  must be a 
symmetric and positive definite matrix 
satisfying

00 ΣWΣW = . It is quite easy to prove that if 

0W  is a symmetric and positive definite matrix, then 
all values of 

iW  ( i=2,3,…) will be symmetric and 
positive definite. Therefore, the final estimation also 
will have these properties (which are essential for 
covariance matrix). To avoid confusion for choosing 
the initial value

0W , we considered 
0W  equal to 

identity matrix multiplied by a positive constant 
(

0W =αI).   
According to the result reported by (Kushner, 

Clarck, 1978; Benveniste, Metivier, 1990), the 
stochastic gradient algorithm in the form of: 

),( 11 ++ −= kkkkk Yf θηWW  (12) 

where f(θ,y)=gradθ F(θ,y) and (Yk)k>0 are 
independent identically distributed nℜ -valued 
random variables, converges almost surely towards a 

solution of the minimization problem: minθ E (F 
(θ,Y)). As indicated in (12), in order to minimize E 
(F (θ,Y)), the stochastic gradient algorithm uses the 
random variable f(θ,Y) instead of its expectation in 
the ordinary gradient method. The above argument 
is another approach for proving the convergence of 
(11) towards 21−Σ . 

It is easy to show that if 
0W considered a 

symmetric and positive definite matrix which satisfy 
00 ΣWΣW = then expected value of (11) will be equal 

to the following equations: 

Therefore (11) is simplified to three more 
efficient forms as follows: 

 )( 11
2

1
t
kkkkkk +++ −+= xxWIWW η  (14)
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 )( 111 k
t
kkkkkk WxxWIWW +++ −+= η   (16)

Existence of the cost function for the new 
adaptive 21−Σ algorithms has the following 
advantages compared to the former one (Chatterjee 
and Roychowdhury, 1997): i) it simplifies the task 
for proving the convergence; ii) it helps to evaluate 
the accuracy of the current solutions. For example, 
in the cases of different initial conditions and 
various learning rates, one is enable to evaluate 
which initial condition and learning rate outperform 
others. Furthermore, the former adaptive equation in 
(Chatterjee and Roychowdhury, 1997) uses a fix or 
monotonically decreasing learning rate which results 
in low convergence speed, but introducing a cost 
function related to the adaptive algorithm make it 
possible to determine the learning rate efficiently in 
every stage in order to increase the convergence rate. 

There are different methods for adaptive 
estimation of the mean vector. The following 
equation was used in (Chatterjee and 
Roychowdhury, 1997; Abrishami Moghaddam et al., 
2003; 2005): 

)( 11 kkkkk mxmm −+= ++ η  (17)

where ηk satisfies Ljung assumptions ( Ljung , 
1977) for the step size. Alternatively, one may use 
the following equation (Ozawa et al., 2005; Pang et 
al., 2005): 

)(               
) (               

)()(E

kk

kkkk

kk1k

2
k

2
k

ΣWIW
WΣWIW

ΣWIWW

−η+=

−η+=
−η+=+

 (13) 

VISAPP 2007 - International Conference on Computer Vision Theory and Applications

184



 

11
1

1 +
+

+
= +

+ kk
k k

kk
x

mm  (18) 

For the experiments reported in the next section, 
we used (17) in order to estimate the mean value in 
each iteration. 

4 SIMULATION RESULTS 

In this section, we used on of the (14-16) described 
in the previous section to estimate 21−Σ and 
extracted features from Gaussian data for 
classification. 

4.1 Experiments on 21−Σ Algorithm 

In the first experiment, we compared the 
convergence of the new adaptive 21−Σ  algorithm 
with the algorithm proposed in (Chatterjee and 
Roychowdhury, 1997). We used the first covariance 
matrix in (Okada and Tomita, 1985), which is a 

1010× covariance matrix and multiplied it, by 20 
(Figure 1). The ten eigenvalues of this matrix in 
descending order are 117.996, 55.644, 34.175, 
7.873, 5.878, 1.743, 1.423, 1.213 and 1.007. Figure 
2 compares the error of each algorithm as a function 
of sample number. As illustrated, the new algorithm 
can converges with an accelerated rate than the 
previous algorithm. We also compared the 
convergence rate of the new adaptive 21−Σ  
algorithm in 4, 6, 8 and 10 dimensional spaces. 
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Figure 1: Sample covariance matrix used in 21−Σ  
experiments. 

We used the same covariance matrix as in the 
first experiment for generating 10 dimensional data 
and three other matrices were selected as the 
principal minors of that matrix.  

In all experiments, we chose the initial value 
0W  

equal to identity matrix multiplied by 0.6, and then 
using a sequence of Gaussian input data (training 
data) estimated 21−Σ . For each covariance matrix, 

we generated 500 samples of zero-mean Gaussian 
data and estimated the 21−Σ  matrix using (14).  

 
Figure 2: Comparison of convergence rate between new 
algorithm and previous algorithm. 

For each experiment, at k-th iteration, we 
computed the error e(k) between the estimated and 
actual 21−Σ  matrices by: 

∑∑
= =

−−=
n

i

n

j
actualij kke

1 1

221 ))(()( ΣW  (19) 

For each covariance matrix, we computed the 
norm of error in every iteration. Figure 3 shows 
values of the error during iterations for each 
covariance matrix. The final values of error after 500 
samples are error=0.169 for d=10, error=0.118 for 
d=8, error=0.102 for d=6 and error=0.0705 for d=4. 
As expected, the simulation results confirmed the 
convergence of (14) toward the 21−Σ . We repeated 
the same experiment using (15) and (16) and 
obtained similar results. 

 
Figure 3: Convergence of the 21−Σ algorithm for 
different covariance matrices.  
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4.2 Extracting Optimal Features from 
Two Class Gaussian Data 

As discussed in section 2, it is apparent that for 
Gaussian data, the feature )(xif  is equal 
to 221 ||)(|| ii mxΣ −− , using (14-16), (17) and the 
training sample sequence, we estimated 21−Σ and 

im . 
For each training data belong to iω , we updated 

first 21−Σ using (14-16) and then refreshed im  by 
applying (17), finally, we computed the norm 
of )(21

i
k
ii mxΣ −− . After computation of the mean 

value and 21−Σ according to (5), it is possible to 
classify the next coming Gaussian data. At the end 
of this process, we compute the number of 
misclassifications. For testing the effectiveness of 
(14-16) in the case of two class Gaussian data, we 
generated 500 samples of 2 dimensional Gaussian 
data; each sample belonged to one of two classes 
with different covariance matrices and mean vectors. 
For each pattern x , we extracted features 

)(1 xf and )(2 xf . According to these optimal 
features, we transformed incoming Gaussian data 
into optimal feature space. Figures 4 and 5 show the 
comparison between samples in the original space 
and transformed samples in the optimal feature 
space. Two Gaussian classes 1ω  and 2ω  had the 
following parameters: 
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Figure 4 shows the distribution of samples from 

two classes. It is obvious that two classes are not 
linearly distinguishable. After estimation of 21−Σ  
by (14-16) and estimation of im  by (17), we are 
able to extract f1 and f2 from the training data.  
 

Figure 5 shows the transformed data in optimal 
feature space. It is apparent from Figure 5 that two 
Gaussian classes are linearly separable in the 
optimal feature space. In other words, in the optimal 
feature space, we can draw a straight line to separate 
two classes However, in their original space; two 
classes are overlapped and are not linearly separable. 
By extracting optimal features, only 9 sample data 
among 1000 total sample, were misclassified by a 
linear classifier. 
 

 
Figure 4: Distribution of two class Gaussian data in the 
original space. 

 

 

Figure 5: Distribution of two class Gaussian data in the 
optimal feature space. 

5 CONCLUSIONS 

In this paper, we presented new adaptive algorithms 
for computation of 21−Σ  and introduced a cost 
function related to them. We proved the 
convergence of the proposed algorithms using the 
continuity and initial conditions of the cost function. 
Simulation results on two class Gaussian data 
demonstrated the performance of the proposed 
algorithms for extracting optimal class separability 
features. The experimental results show that these 
new adaptive algorithms can be used in many fields 
of on-line application such as feature extraction for 
face and gesture recognition. Existence of the cost 
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function and adaptive nature of the proposed 
algorithm, make it appropriate to implement related 
neural networks for different real time application. 
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