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Abstract. In this paper we present a technique for visual odometry on the ground
plane, based on a single, uncalibrated fixed camera mounted on a mobile robot.
The odometric estimate is based on the observation of features (e.g., salient points)
on the floor by means of the camera mounted on the mobile robot.
The presented odometric technique produces an estimate of the transformation
between the ground plane prior to a displacement and the ground plane after
the displacement. In addition, the technique estimates the homographic transfor-
mation between ground plane and image plane: this allows to determine the 2D
structure of the observed features on the ground. A method to estimate both trans-
formations from the extracted points of two images is presented.
Preliminary experimental activities show the effectiveness and the accuracy of the
proposed method which is able to handle both relatively large and small rotational
displacements.

1 Introduction

Robot localization is a fundamental process in mobile robotics application. One way
to determine the displacements and measure the movement of a mobile robot is dead
reckoning systems. However these systems are not reliable since they provide noisy
measurements, due to the slippage of the wheel. Localization methods based only on
dead reckoning have been proved to diverge after few steps [1]. Visual odometry, i.e.
methods based on visual estimation of the motion through images capture by one or
more cameras, is exploited to obtain more reliable estimates. Cameras are mounted on
the robot and the images are processed in order to recover the structure of the sur-
rounding environment and estimate the motion among images captured from different
viewpoints.

Usually, 3D reconstruction from images taken by a moving uncalibrated camera go
through auto-calibration. Autocalibration from planar scenes requires either nonplanar
motion [2], or several planar motions with different attitudes of the camera wrt the
ground plane [3].

In a mobile robotics framework, however, changing camera attitude requires addi-
tional devices as, e.g., pan-tilt heads, not directly connected to the robot functionality.
In particular, mounting a fixed monocular camera on a mobile robot does not allow to
change the camera attitude wrt to the ground plane, making auto-calibration impossible
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without additional information. A similar scenario is thatof a fixed camera mounted on
a moving vehicle (such as, e.g., a road car).

However, in this paper we will present a technique for visualodometry on the
ground plane, based on a single, uncalibrated fixed camera mounted on a mobile robot.
The mobile robot is supposed to move on a planar floor, called ground plane. No map of
the environment is needed. The odometric estimate is based on the observation of fea-
tures (e.g., salient points) on the floor by means of the camera mounted on the mobile
robot.

The presented odometric technique produces an estimate of the transformation be-
tween the ground plane prior to a displacement and the groundplane after the displace-
ment. In addition, the technique estimates the homographictransformation between
ground plane and image plane: this allows to determine the 2Dstructure of the observed
features on the ground, as a side effect. The presented technique does not determine the
camera calibration parameters.

However, it is argued that any further step towards auto-calibration is not needed in
the context of mobile robot odometry. In fact, auto-calibration would only allow to de-
termine the spatial transformation between ground plane and camera: auto-calibration
alone does not allow to determine the robot-to-camera transformation. Therefore, de-
termining the transformation between the robot and the ground plane should require
further extrinsic calibration steps: these steps could consist in e.g., acquiring visual data
while the robot is executing self-referred displacements (such as, a self-rotation and a
forward translation).

On the other hand, the presented technique for visual odometry estimates the trans-
formation between ground prior to a displacement and groundafter the displacement.
If needed, the robot-to-ground calibration can be accomplished by the same additional
step, namely visual observation of self-referred robot displacements, required when
starting with auto-calibration.

The technique works for generic planar displacements, but it does not work for
translational displacements. However, once the homography between ground plane and
image plane has been determined as a side effect, further displacements, including pure
translations, can be analyzed directly by using the (inverse) homography.

1.1 Related Works

In the last years methods to estimate the robot motion (ego-motion) based on visual
information provided by cameras have gained attention and some approaches have been
presented. Early methods were based on estimation of the optical flow from image
sequence in order to retrieve ego-motion. McCarthy and Barnes [4] presented a review
and a comparison between the most promising methods.

Other approaches exploited stereo vision. Nister et al. [5]proposed a method based
on triangulation between stereo pairs and feature trackingin time-sequence of stereo
pairs, without any prior knowledge or assumption about the motion and the environ-
ment. Takaoka et al. [6] developed a visual odometry system for a humanoid robot
based on feature tracking and depth estimate using stereo pairs. Agrawal and Konolige
[7] proposed an integrated, real-time system involving both stereo estimate in the dis-
parity space and a GPS sensor in a Kalman filter framework. GPS-based systems can be
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sufficiently accurate for large areas but it can be not used inindoor environments and
require a support framework, which prevent their use, e.g.,for planetary exploration.
For such application, Mars Exploration Rover [8] employed afeatures detection in a
stereo image pair that are tracked from one frame to the next;using maximum like-
lihood estimation the change in position and attitude for two or more pairs of stereo
images is determined.

Davison [9] proposed a real-time framework for ego-motion estimation for a single
camera moving through general unknown environments. The method was based on a
Bayesian framework that detect and track a set of features (usually corner, points or
lines). Assuming the rigidity in the scene, the feature image motion allows to estimate
the motion of the camera; therefore the complete camera trajectory and a 3D map of all
the observed features can be recovered.

Visual odometry system based on catadioptric cameras have been proposed. Bun-
schoten and Krose [10] used a central catadioptric camera toestimated the relative pose
relationship from corresponding points in two panoramic images via the epipolar geom-
etry; the scale of the movement is subsequently estimated via the homography relating
planar perspective images of the ground plane. Corke et al. [11] developed a visual
odometry system for planetary rover based on a catadioptriccamera; they proposed a
method based on robust optical flow estimate from salient visual features tracked be-
tween pairs of images, by which they retrieve the displacements of the robot.

Our approach is similar in spirit to the work of Wang et al. [12] who measured
translation and rotation by detecting and tracking features in image sequences; assum-
ing that the robot is moving on a plane, they computed the homography between the
image sequences by which the computed the motion. Similarly, Benhimane and Malis
[13] developed a visual servoing framework based on the estimation of the homogra-
phy between image sequences to retrieve robot motion and close the control loop. Both
methods require camera calibration. Our work differ from these approaches in that we
do not assume camera calibration.

The paper is structured as it follows. Section 2 introduces and describes the ad-
dressed problem. Section 3 shows how the robot displacementcan be retrieved by fit-
ting the homography between two images of the ground plane. Section 4 illustrates the
method to estimate the transformation between the ground plane and the image plane.
Section 5 reports and discussed some preliminary experimental activities performed
with a rotating camera. Section 6 concludes the paper.

2 Problem Formulation

A mobile robot moves on the floor. A fixed, uncalibrated camerais mounted on the
mobile robot: this camera is supposed to be a perspective camera (i.e., distortion is
neglected). The pose of the camera relative to the robot is unknown. The environment
map is unknown, as well as the structure of the observable features (associated to floor
texture) on the ground. This allows extremely easy set-up: it is sufficient to mount a
perspective camera on the mobile robot in a fixed but unknown position.

For the rigid body consisting of the robot plus the camera, a “ground” reference
frame is defined as follows: the backprojectionO of a certain image pixel (say, the pixel
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O′ with cartesian coordinates(0,0)) on the ground plane is taken as the origin of the
projected reference frame, while vector connecting the origin to the backprojectionA
of a second image pixel (say, the pixelA′ with cartesian coordinates(100,0)) on the
ground is taken as the unit vector along thex-axis.

As usual within the Robotics and Vision communities, homogeneous coordinates
are used. LetT be the unknown 3×3 matrix representing the projective transformation,
also called “homography”, between the ground plane and the image plane, as realized
by the uncalibrated camera. The coordinates on the ground plane are referred to the
above defined ground reference frame of the robot+camera system. Therefore, the un-
known homographyT does not change with robot motion.

As the robot moves on the ground plane, the robot+camera undergoes a planar mo-
tion consisting of a rotation of an unknown angleθ about an unknown vertical axis. Let
C be the point where this vertical axis crosses the horizontalground plane. LetRbe the
rotation matrix describing the planar displacement. The matrix R is a 3×3 2D rotation
matrix in homogeneous coordinates, whose third column collects the homogeneous co-
ordinates of the center of rotationC relative to the robot+camera ground reference and
whose upper-left 2×2 sub-matrix is orthogonal.

Two images are taken: the first one is taken before the displacement, while the sec-
ond one is taken after the displacement. The addressed problem is the following: first,
given the transformation between the first and the second image, determine the center
of rotation, and the rotation angle of the observed displacement; second, determine the
transformationT between the ground plane and the image plane, and use the inverse
transformationT−1 to measure further displacements. The inverse transformation T−1

can also be used to determine the shape (i.e., the 2D structure) of the set of the observed
features on the ground.

An interesting problem, which is not addressed in this paper, is that of finding a
transformation between the ground robot+camera referenceframe and a second refer-
ence frame, more significant to the robot kinematics. This transformation can be esti-
mated by applying the presented odometric technique to self-referred robot displace-
ment, as e.g., a “self”-rotation and a “forward” translation.

3 Estimation of Robot Displacement

The transformation relating the two images of the ground plane is still a homography,
and it is represented by the matrixH = TRT−1, whereT is the unknown homography
between ground plane and image plane. (In principle, cameradistortion can be compen-
sated by imposing that the transformation between the two images is a homography.)

The homographyH between the two images (before and after the displacement) can
be computed from a sufficient number of pairs of corresponding features between the
two images [14].

The eigenvectors of the homography matrixH are given byC′ = TC, I ′ = TI and
J′ = TJ, where the rotation centerC, and the circular pointsI andJ are the invariants
under rotationR on the ground plane. In addition, the eigenvalues ofH coincide with
the eigenvalues ofR (modulo a scale factor).
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The eigenvectorC′ is associated to the real eigenvalue ofH, while I ′ andJ′ are asso-
ciated to the complex eigenvalues ofH. By the eigendecomposition of the homography
matrixH, the parameters of the planar displacement are determined.

In particular, the imageC′ of the center of rotationC is determined as the eigenvector
corresponding to the real eigenvalue ofH. The rotation angleθ is determined as the ratio
between imaginary part and real part of the complex eigenvalue, in fact the eigenvalue
corresponding toI ′ = TI is given byµe±iθ, whereµ is a real scale factor.

If the displacement is a pure translation, then the images ofall the points at the
infinity are eigenvectors ofH. Therefore the translation direction can not be determined.
Therefore, displacements with small rotation angles may generate solutions, that are
numerically unstable.

4 Estimation of the Transformation Between the Ground Plane
and the Image Plane

The shape of the observed features is determined by estimating the transformation
matrix T. This matrix can be estimated by four pairs of correspondingpoints: these
can be, e.g., the two circular pointsI = [1, i,0]T , J = [1,−i,0]T with their image
projectionsI ′, J′, plus the two points defining the robot+camera ground reference,
namelyO = [0,0,1]T and A = [1,0,1]T , with their image projectionsO′ = [0,0,1]T

andA′ = [100,0,1]T.
The homogeneous (world) coordinates ofO within the ground reference are[0,0,1]

while the homogeneous coordinates ofA within the ground plane are[1,0,1]. With
these choices, the transformation matrixT between ground plane and image plane is
fully constrained, and it can be determined, imposing that















I ′ = TI
J′ = TJ
O′ = TO
A′ = TA

Once the transformation matrixT has been estimated, the shape of any configuration
of observed features can be determined by their images(P′

i , i = 1..n) by Pi = T−1P′
i . The

knowledge ofT allows to determine the coordinates of the rotation centerC = T−1C′

relative to the (back-projected) robot reference. The estimated motion parameters con-
stitute an odometric estimate of the robot displacement.

Notice that the shape determination requires that the displacement is not purely
translational. However, once the transformationT has been determined by analyzing
a rotational displacement, it can be used also to measure purely translational displace-
ments.

5 Preliminary Experimental Results

In order to validate the proposed method we performed some experimental activities.
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Fig. 1. The distribution of the matching score of the features used to estimateθ5,6 (a) andθ6,7
(b).

Table 1. The first sequence of 7 images taken with relatively large rotational displacements. The
table reports the ground truth references (θre f , in degrees) read on the turntable, the rotational
displacements between two consecutive images (θi,i+1), the estimated rotational angles (θ̂i,i+1)
and the relevant error (eθ̂i,i+1

). The value ofθ6,7 was obtained with a lower number of features
(N = 10) since many outliers were found.

Step θre f θi,i+1 θ̂i,i+1 eθ̂i,i+1

1 107 9 9.37 -0.37
2 116 8.5 8.09 0.41
3 124.5 10.5 10.35 0.15
4 135 8 7.91 0.09
5 143 11 10.97 0.03
6 154 10.5 9.70 0.8

In our experimentations we use a standard perspective camera provided with a very
low distortion optics. The camera was placed on a turntable by which we manually
measured the ground truth rotation with an accuracy of about0.5◦. The camera view-
point was placed in a generic position relative to the rotation axis: therefore the camera
underwent a general planar motion. The camera was pointed towards the ground floor,
such that the extraction of salient points exploits the floortexture. Then we took some
images with different rotational displacement and appliedthe proposed method in order
to estimate the rotation angle between two images.

We tested the method on two sequences of images. The first sequence was obtained
considering larger rotational displacements, with a mean angle of about 10◦. The second
sequence is characterized by relatively small rotational displacements between images.
The mean rotational displacement of this set is about 5◦. As discussed in Section 3,
small rotation angles may lead to numerical instability. Onthe other hand if the robot
rotates slowly, images with small rotational displacements have to be taken into account.

Table 1 collects the ground truth values, the estimated values and the relevant errors
for the first sequence. For this sequence we employed the following estimation proce-
dure. Given two consecutive images, sayIi andIi+1, we extracted a number of salient
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Table 2. The second sequence of 25 images taken with relatively smallrotational displacements.
For each step, the table reports the ground truth references(θre f , in degrees) read on the turntable,
the relative rotational displacements among the three consecutive images (θi,i+1 andθi,i+2), the
estimated rotational angles (θ̂i,i+1) and the relevant error (eθ̂i,i+1

).

Step θre f θi,i+2 θi,i+1 θi+1,i+2 θ̂i,i+2 eθ̂i,i+2

1 321 12 7 5 11.83 0.17
2 314 12 5 7 12.16 -0.16
3 309 8.5 7 1.5 7.83 0.67
4 302 10 1.5 8.5 10.81 -0.81
5 300.5 14 8.5 5.5 7.97 6.03
6 292 10 5.5 4.5 9.25 0.75
7 286.5 7.5 4.5 3 7.03 0.47
8 282 10 3 7 9.36 0.64
9 279 12 7 5 11.58 0.42
10 272 10.5 5 5.5 9.93 0.57
11 267 9.5 5.5 4 8.70 0.80
12 261.5 10.5 4 6.5 9.96 0.54
13 257.5 10.5 6.5 4 10.02 0.48
14 251 9 4 5 8.71 0.29
15 247 7 5 2 7.50 -0.50
16 242 8 2 6 7.01 0.99
17 240 10 6 4 9.03 0.97
18 234 10.5 4 6.5 10.78 -0.28
19 230 10 6.5 3.5 9.52 0.48
20 223.5 10 3.5 6.5 10.91 -0.91
21 220 10 6.5 3.5 10.72 -0.72
22 213.5 7.5 3.5 4 7.21 0.29
23 210 8.5 4 4.5 8.96 -0.46

points from each image using the Harris features extractor [15]. Then we found the
correspondences among these points using the normalized cross correlation and we se-
lected a set of points (usually,N = 20) having the best matching score [16]. We used
this set of points to fit the homographyHi,i+1 using the RANSAC technique [17] pro-
vided by [18]. OnceHi,i+1 was computed, we estimated the rotation angles from the
complex eigenvalues ofHi,i+1, as explained in Section 3.

As Table 1 shows, the estimates are very accurate and the errors are less than 1◦. The
value ofθ6,7 was obtained considering a lower number of salient point,N = 10. Because
of the large rotational displacement (about 10.5◦) the matching among features was in
most cases incorrect and the resulting matching score was (on the average) higher with
respect to the other images of the sequence. Figure 1 compares the distributions of the
matching score values of the first 50 best matches for image pairs used to compute c
andθ6,7 respectively: the estimation process ofθ5,6 can rely on many reliable match-
ing features (e.g. at least 20 matches have a matching score less than 800) while for the
estimation process ofθ6,7 there are only few matches under the same threshold. This in-
troduced many outliers that affected the estimate. Decreasing the number of considered
points allowed to discard many outliers, thus obtaining a more reliable estimate.

Table 2 collects the ground truth values, the estimated values and the relevant errors
for the second sequence. In order to overcome possible numerical instability issues we
used three images to robustly estimate the angle. We employed the following estimation
procedure. Given three consecutive images, sayIi , Ii+1 andIi+2, we extracted a number
of salient points from each image, sayci , ci+1 and ci+2 respectively. We found the
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(a) Image 1 (b) Image 2 (c) Image 3

Fig. 2. An example of tracked features between three images. The first two images (a,b) are
compared in order to find the best matches (depicted in green and red, respectively). The best
features of (b) are matched with (c) in order to find the best matches (depicted in blue in (c)).
Hence the chain of matches between the images are used to computed the homographyHi,i+2.

(a) Image 5 (b) Image 6 (c) Image 7

Fig. 3. The images (from 5 to 7) of the second sequence for which the estimated rotation angle
was incorrect. The found corresponding features among images are depicted: most of the matches
are false matches, which led to an incorrect estimation of the homographyH5,7.

correspondences among the featuresci andci+1, selecting only those matches having
the best matching score, sayc′i and c′i+1. Then we tracked these matches inIi+2 by
matchingc′i+1 with the featuresci+2, selecting the best matches and obtainingc′′i+1 and
c′′i+2 (wherec′′i+1 ⊆ c′i+1).

Exploiting c′′i+1, we also obtainedc′′i , which are features ofIi that have a matching
feature both inIi+1 andIi+2. By fitting a homography withc′′i andc′′i+2, we computed
the 3x3 matrixHi,i+2 with the RANSAC technique, obtaining the relevant rotationangle
θi,i+2. Figure 2 shows an example of the tracked features among the three images.

The reported results proved the effectiveness and the accuracy of the proposed
method. The estimation errors are less than 1◦, except for images 5, 6 and 7. In this
case the errors is greater since the method was not able to finda correct rotational
angle. This is due to the large displacements among images: the overall displacement
between image 5 and 7 is about 14◦, with partial displacements of 8.5◦ and 5.5◦ respec-
tively. Figure 3 shows the matching feature that are used to determine the rotational
displacements: there are many false matching that affectedthe estimate ofθ5,7.

Large displacements may cause such errors since we used the normalized cross cor-
relation to find the correspondences. Normalized cross correlation is not rotationally
invariant, hence large rotation can corrupt the matching process. Moreover, large rota-
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tion angles between images reduce the overlapping region ofthe images, thus reducing
the number of corresponding features. In order to overcome these issues, rotationally
invariant matching function can be employed such as, e.g., SIFT features extractor [19].
On the other hand, in a real application a proper visual sampling rate during robot move-
ment would avoid large displacements between two poses.

6 Conclusions and Ongoing Activity

In this paper we presented a novel method to estimate the odometry of a mobile robot
through a single uncalibrated fixed camera. Assuming that the robot is moving on a
planar floor, images of the floor texture is taken. Salient points are extracted from the
image and are used to estimate the transformation between the ground plane before
a displacement and the ground plane after the displacement.The proposed technique
also estimate the homography between the ground plane and the image plane, which
allows to determine the 2D structure of the observed features. An estimation method
of both transformations was described. Preliminary experimental activities that vali-
date the method for small and large rotational displacements are also presented and
discussed.

Ongoing works are aimed at improving the estimate method in order to provide
reliable estimate in presence of large rotational displacements. Other experimental ac-
tivities will be conducted in order to better stress the method in different situations. We
are also planning to implement a real time version of the proposed method on a real ap-
plication in order to use the odometric estimate for localization tasks in a mobile robots.
Other possible future research direction are the employment of catadioptric cameras in
order to exploit their large field; however, using catadioptric cameras the transforma-
tions are not homography, unless central catadioptric cameras are used, which are, on
the other hand, difficult to set up.
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