
A Cognitive Robot Architecture Based on 3D Simulator 
of Robot and Environment  

Antonio Chella1 and Irene Macaluso1 

1 Dipartimento di Ingegneria Informatica Università di Palermo  
viale delle Scienze ed.6, 90128 Palermo, Italy 

Abstract. The paper proposes a robot architecture based on a comparison be-
tween the effective robot sensations and the expected sensations generated by a 
3D robot/environment simulator. The robot perceptions are generated by the 
simulator driven by this comparison process. The architecture is operating in 
“Cicerobot” a museum robot offering guided tours at the Archaeological Mu-
seum of Agrigento, Italy. 

1 Introduction 

An autonomous robot operating in real and unstructured environments has to interact 
with a dynamic world populated with objects, people, and in general, other agents: 
people and agents may change their position and identity during time, while objects 
may be moved or dropped. In order to work properly, the robot should have a 
perception of its environment and it should create links between its sensory inputs 
and motor actions.  

Humphrey [12] makes a clear distinction between sensations and perceptions: 
sensations are active responses generated by the body in reaction to external stimuli. 
They refers to the subject, they are about “what is happening to me”. Perceptions are 
mental representations related to something outside the subject. They are about “what 
is happening out there”. Sensations and perceptions are two separate channels; a 
possible interaction between the two channels is that the perception channel may be 
recoded in terms of sensations, i.e., the mental representation of the vase may be 
recoded in terms of sensations and compared with the effective stimuli from the 
outside, in order to catch and avoid perceptual errors. This process is similar to the 
“echoing back to source” strategy for error detection and correction.  

Gärdenfors [6] discusses the role of  simulators related to sensations and 
perceptions. He claims that sensations are immediate sensory impressions, while 
perceptions are built on simulators of the external world. A simulator receives as 
input the sensations coming from the external world, it fills the gaps and it may also 
add new information in order to generate perceptions. The perception of an object is 
therefore more rich and expressive than the corresponding sensations. In Gärdenfors 
terms, “perceptions are sensations that are reinforced with simulations”. The role of 
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simulators in motor control has been extensively analyzed from the neuroscience 
point of view, see [23] for a review. 

Grush [10,11], proposes several cognitive architectures based on simulators 
(“emulators” in Grush terms). The basic architecture is made up by a feedback loop 
connecting the controller, the plant to be controlled and a simulator of the plant. The 
loop is pseudo-closed in the sense that the feedback signal is not directly generated by 
the plant, but by the simulator of the plant, which parallels the plant and it receives as 
input the efferent copy of the control signal sent to the plant. In this case, the 
sensations are generated by the system as the output of the simulator.  

A more advanced architecture proposed by Grush  and inspired to the work of 
Gerdes and Happee [8] takes into account the basic schema of the Kalman filter. In 
this case, the residual correction generated by the difference between the effective 
plant output and the emulator output (the sensations) are sent to the plant simulator 
via to the Kalman gain. In turns, the simulator send its inner variables as feedback to 
the controller. In this case the sensations are output of the simulator process and they 
are more or less of the same type of sensory inputs, while the perceptions are the 
inner variables of the simulator. The simulator inner variables are therefore more 
expressive that rough sensations and they may contain also information not directly 
perceived by the system, as the occurring forces in the perceived scene, or the object-
centered parameters and in general the variables used in causal reasoning [7].  

Grush [9] discusses the adoption of neural networks to learn the operations of the 
simulators, and Oztop et al. [19] propose sophisticated learning techniques of 
simulators based on inferences of the theory of mind of others. 

An early implementation of a robot architecture based on simulators is due to Mel 
[17]. He proposed a simulated robot moving in an environment populated with simple 
3D objects. The robot is controlled by a neural network that learns the aspects of the 
objects and their relationships with the corresponding motor commands. It becomes 
able to simulate and to generate expectations about the expected object views 
according to the motor commands, i.e., the robot learns to simulate the external 
environment. A successive system proposed by Mel is MURPHY [18] in which a 
neural network controls a robot arm. The system is also able to perform off-line 
planning of the movements by means of the internal simulator of the environment.  

Other early implementation of robots operating with internal simulators of the 
external environment are MetaToto [21], and the internalized plan architecture [20]. 
In both systems, a robot builds an inner model on the environment to be reactively 
explored by simulated sensorimotor actions to generate action plans. 

An effective robot able to build an internal model of the environment has been 
proposed by Holland and Goodman [13]. The system is based on a neural network 
that controls a Khepera minirobot that  is able to simulate actions and perceptions and 
to anticipate perceptual activities is a simplified table environment. Holland [14] 
speculates on the relationships between embodiment, internal models and 
consciousness. 
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2 Robot Architecture 

The robot architecture proposed in this paper is based on an internal simulator of the 
robot and the environment world that takes into account the previously discussed 
distinction between sensations and perceptions (Fig. 1). The Robot block is the robot 
itself and it is equipped with motors and a video camera. It is modeled as a block that 
receives in input the motor commands M and it sends in output the robot sensations 
S, i.e., the scene acquired by the robot video camera.  The Controller block controls 
the actuators of the robot and it sends the motor commands M to the robot. The robot 
moves according to M and its output is the 2D pixel matrix S corresponding to the 
scene image acquired by the robot video camera.  

 
 

 
Fig. 1. The robot architecture. 

At the same time, an efferent copy of the motor commands is sent to the 3D 
Robot/Environment Simulator. The simulator is a 3D reconstruction of the robot 
environment with the robot itself. It is an object-centered representation of the world 
in the sense of Marr [16]. The simulator receives as input the controller motor 
command M and it simulates the corresponding motion of the robot in the 3D 
simulated environment. The output S’ of the simulator is the 2D image obtained as a 
projection of the simulated scene acquired by the simulated robot. In this sense S is 
the effective image scene acquired by the robot and S’ is the expected image scene 
acquired by the robot according to the simulator. Both images are viewer-centered, in 
Marr’s terms. 

The acquired and the expected image scenes are compared by the comparator 
block c and the resulting error ε is sent back to the simulator to align the simulated 
robot with the real robot. At the same time, the simulator send back all the relevant 
3D information P about the robot position and its environment to the controller, in 
order to adjust the motor plans, as described below 

It should be noted that S and S’ are 2D image scenes; they are modal information 
that may be considered sensations as they refer to “what is happening to the robot”, 
i.e., they are responses to the robot visual stimuli referred to the robot itself. Instead, 
P is amodal information that may be considered the robot perception, as it is a set of 
3D information referred to “what is happening out there”.  
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The image matrix S’ is the 2D recoding of 3D perception used by the simulator 
correct and align the simulated robot, while P is the amodal interpretation of robot 
sensations by means of the 3D simulator. The 2D reconstruction S’ of the scene is 
built by the robot as a projection of the 3D entities in the simulator and from the data 
coming from robot sensors. This reconstruction constitutes the phenomenal 
experience of the robot, i.e., what the robot sees at a given instant. This kind of seeing 
is an active process, since it is a reconstruction of the inner percept in ego 
coordinates, but it is also driven by the external flow of information. It is the place in 
which a global consistency is checked between the internal model and the visual data 
coming from the sensors. The robot acquires evidence for what it perceives, and at 
the same time it interprets visual information according to its internal model. Any 
discrepancy asks for a readjustment of its internal model. Furthermore, through this 
2D image, the robot has an immediate representation of the scene as it appears in 
front of it, very useful for rapid decision and reactive behaviour.  

3 Planning and Imagination 

The proposed framework may be extended to allow the robot to deliberate its own 
sequences of actions. In this perspective, planning may be performed by taking 
advantage from the representations in the 3D Robot/Environment Simulator. Note 
that we are not claiming that all kinds of planning must be performed within a 
simulator, but the forms of planning that are more directly related to perceptual 
information can take great advantage from visual awareness in the described 
architecture.  

The signal P describes the perception of a situation of the world out there at time t, 
i.e., it describes the perception of the current situation of the world. The simulator, by 
means of its simulation engine (see below), is able to generate expectations of P at 
time t+1, i.e., it is able to simulate the robot action related with motor command M 
generated by the controller and the relationship of the action with the external world.  

In facts, the preconditions of an action can be simply verified by geometric 
inspections in P at time t, while in the STRIPS planner [5] the preconditions are 
verified by means of logical inferences on symbolic assertions. Also the effects of an 
action are not described by adding or deleting symbolic assertions, as in STRIPS, but 
they can be easily described by the situation resulting from the expectations of the 
execution of the action itself in the simulator, i.e., by considering the expected 
perception P at time t+1.  

In the proposed architecture, the recognition in a scene of a certain component of a 
situation described by P may elicit the expectation of the other components of the 
situation itself. The recognition of a certain situation by means of the perception P at 
time t could also elicit the expectation of a subsequent situation and the generation of 
the expected perception P at time t+1. 

We take into account two main sources of expectations. On the one side, 
expectations are generated on the basis of the structural information stored in a 
symbolic knowledge base of the simulator. We call linguistic such expectations. As 
soon as a situation is perceived which is the precondition of a certain action, then the 
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symbolic description elicit the expectation of the effect situation, i.e., it generates the 
expected perception P at time t+1. 

On the other side, expectations could also be generated by a purely Hebbian 
association between situations. Suppose that the robot has learnt that when it sees 
somebody pointing on the right, it must turn in that direction. The system learns to 
associate these situations and to perform the related action. We call associative this 
kind of expectations. 

In order to explain the planning by imagination mechanism, let us suppose that the 
robot has perceived the current situation P0  e.g., it is in a certain position of a room. 
Let us suppose that the robot knows that its goal g is to be in a certain position of 
another room with a certain orientation. A set of expected perceptions  P1, P2 ,K{ } of 
situations is generated by means of the interaction of both the linguistic and the 
associative modalities described above.  Each Pi  in this set can be recognized to be 
the effect of some action related with a motor command M j  in a set of possible 

motor commands   M1, M 2 ,K{ }where each action (and the corresponding motor 

command) in the set is compatible with the perception P0  of the current situation.  
 

 
Fig. 2. The robot “Cicerobot” operating at the Archaeological Museum of Agrigento. 

The robot chooses a motor  command M j  according to some criteria; e.g., is the 

action whose expected effect has the minimum Euclidean distance from the “goal” g, 
or, for example, considering the valuation of the expected effect. Once that the action 
to be performed has been chosen, the robot can imagine to execute it by simulating its 
effects in the 3D simulator then it may update the situation and restart the mechanism 
of generation of expectations until the plan is complete and ready to be executed. 

On the one side, linguistic expectations are the main source of deliberative robot 
plans: the imagination of the effect of an action is driven by the description of the 
action in the simulator KB. This mechanism is similar to the selection of actions in 
deliberative forward planners. On the other side, associative expectations are at the 
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basis of a more reactive form of planning: in this latter case, perceived situations can 
“reactively” recall some expected effect of an action.  

Both modalities contribute to the full plan that is imagined by the robot when it 
simulates the plan by means of the simulator. When the robot becomes fully  aware of 
the plan and of its actions, it can generate judgments about its actions and, if 
necessary, imagine alternative possibilities. 

4 Robot at Work 

The proposed architecture has been implemented in “Cicerobot”, an autonomous 
robot RWI B21 equipped with sonar, laser rangefinder and a video camera mounted 
on a pan tilt. The robot has been employed as a museum tour guide operating at the 
Archaeological Museum of Agrigento, Italy offering guided tours in the “Sala Giove” 
of the museum (Fig. 2). A first session of experimentations, based on a previous 
version of our architecture, has been carried out from January to June 2005 and the 
results are described in [4,15]. The second session, based on the architecture 
described in this paper, started in March and ended in July 2006. 

 

 
Fig. 3. The 3D robot/environment simulator. 

The task of museum guide is considered a significant case study [3] because it 
concerns perception, self perception, planning and human-robot interactions. The task 
it is relevant as a test bed for phenomenal consciousness. It can be divided in many 
subtasks operating in parallel, and at the same time at the best of the robot 
capabilities. Moreover, the museum is a dynamic and unpredictable environment.  

Referring to the architecture in Fig. 1, the controller includes a standard behavior-
based architecture (see, e.g., [1]) equipped with all the standard reactive behaviors as 
the static and dynamic obstacle avoidance, the search of free space, the path 
following and so on. 

 Fig. 3 shows the 3D robot/environment simulator. As previously described, the 
task of the block is to generate the expectations of the interactions between the robot 
and the environment; it should be noted that the robot also simulates itself in its 
environment.  
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In order to keep aligned the simulator with the external environment, the simulator 
engine is equipped with a stochastic algorithm known as particle filter (see, e.g.,  
[22]). In brief, the simulator hypothesize a cloud of expected possible positions of the 
robot. For each expected position, the corresponding expected image scene S’ is 
generated, as in Fig. 4 (right). The comparator then generates the error measure ε 
between the expected and the effective image scene S (Fig. 4 left).  The error ε 
weights the expected position under consideration; in a subsequent step, only the 
winning expected positions that received the higher weigh are taken, while the other 
ones are dropped. Fig. 5 (left) shows the initial distribution of expected robot position 
and Fig. 5 (right) shows the small cluster of winning positions.  

Now the simulator receives the new motor command M related with the chosen 
action as described before, and, starting from the winning hypotheses, it generates a 
new set of hypothesized robot positions. The filter iterates between these two steps 
until convergence, i.e., until the winning positions converge to a single moving point. 

 

 
Fig. 4. The 2D image output of the robot video camera (left) and the corresponding image 
generated by the simulator (right).  

Fig. 4 shows the 2D image S as output of the robot video camera (left) and the 
corresponding image S’ generated by the simulator (right) by re-projecting in 2D the 
3D information from the current point of view of the robot. 

The comparator block c compares the two images of Fig. 4 by using elastic 
templates matching [2]. In the current implementation, features are long vertical 
edges extracted from the camera image. Spatial relations between edges’ midpoints 
are used to locate each edge in the simulated image and compute the relative 
distortion between the expected and the effective scene. The relative distortion is a 
measure of the error ε related to the differences between the expected image scene 
and the effective scene. As previously stated, this error is sent back to the simulator in 
order to correct the robot position in the 3D simulator. 
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Fig. 5. The operation of the particle filter. The initial distribution of expected robot positions 
(left), and the cluster of winning expected positions (right).  

5 Experimental Results 

In order to test the proposed architecture we compared the operations of the robot 
equipped with the described system with the operations of the robot driven by the 
odometric information only.  

 

 
Fig. 6. The operation of the robot equipped with the described architecture (left) and with the 
reactive controller and the odometric feedback only (right). 

Fig. 6 (left) shows the operation of the robot during the tour guide. To compare the 
operation of the robot, we tested the robot by considering the operation of a reactive 
robot equipped with the odometric sensor data; results are shown in Fig 6 (right).  

Fig. 7 shows the difference of the two trajectories versus time. It should be noticed 
that at the very beginning the two tours are quite the same, while early in the robot 
operations, the trajectory related with the odometric data only tends to diverge. 
During the second part of the tour, when the two robots turn right in order to follow 
the corridor and to come back to base home, the two trajectories became again quite 
similar (the valley at nearly 1200) and then they diverge again. 
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Fig. 7. The figure shows the difference during the tour guide between the two trajectories 
versus time. 

It should be noted that the proposed architecture based on the described account let 
the robot to operate more precisely and in a more satisfactory way. In facts, the 
described sensations and perceptions mechanism let the robot to be aware of its 
position and of its perceived scene. The robot is therefore able to eventually adjust 
and correct its own subsequent motion actions. Moreover, the robot is able to imagine 
its future actions and it is therefore able to choose the best motion actions according 
to the current perceived situation. 
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