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Abstract: In this paper we introduce two novel technics that allow for a three dimensional scalar field to be visualized
in the three dimensional spa&®. Many applications are possible especially in medicine imagery. New
multiresolution models can be build based our techniques. Moreover, we show that these two visualization
techniques allow the extraction of morphological features of the space and that may not be captured by classical
methods.

1 INTRODUCTION glas, 1975), (Watson et al., 1985). The watershed
transform introduced by Vincent et al. in (Vincent
o . and Soille, ), for 2D scalar fields considers the graph-
In many applications of computer graphics (e.g., jcal representation of a 2D scalar field as a surface
medicine imaging) the visualization of scalar fields that will be immersed progressively in water. Catch-
is a basic tool to explore and understand the structurement basins, which correspond to stable Smale de-
of the field. Visualization of 3D scalar fields needs Composition in Morse theory, are constructed and sur-
an additional dimension to be achieved. This is im- fgce segmentation is, hence, performed. Very few pa-
possible to do irR® from the Cartesian point of view  pers deal with 3D (and 4D) scalar fields. This is due
since our visual perception is limited to three parame- to difficulty of applying, in the discrete, Morse the-
ters. To overcome this problem, we need to tackle the ory to 3D (and 4D)scalar fields. In (H. Edelsbrunner,
problem from a different point of view. 2003), an algorithm for the construction of Smale-
Smooth Morse theory is the basic tool used to extract decomposition for linear piece-wise linear functions
morphological features of a domain endowed with a on a three dimensional domain is presented. Man-
scalar field (Smale, 1960) The domain is decom- gan et a|‘, gave in (Mangan and Whitaker, 1999) a
posed into stable and unstable components. Stablayatershed algorithm that segments a 3D surface into
components are associated with minima, while un- patches. Their algorithm is based on the total curva-
stable components are associated with maxima. Intyre of the surface approximated at the vertices of the
the discrete case algorithms have been proposed tamesh approximating the surface.
extract morphological features with similar proper-
ties as in Morse theory. A large part of such tech- Here, we present two coupled novel techniques
nigues deal with 2D scalar fields case, see, for in- that allow visualizing 3D scalar fields in the Euclid-
stance, (Bajaj et al., 1998), (Bajaj and Shikore, 1998), ean three-dimensional space. These novel techniques,
(Edelsbrunner et al., 2001), (J.Toriwaki and Fuku- that we callAUBL and PGR are based on some
mura, 1975), (Nackman, 1984), (Peucker and Dou- fundamental geometric properties of surfaces and
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on their embedding the Euclidean three-dimensional a tangent plangpSis defined and thus a normal vec-

space AUBL andPGRuvisualization techniques have

the advantage of representing a 3D scalar field in a

natural and intuitive way and allow extracting mor-

phology features of the field that may not be captured

— . —
tor Np to Sat pointp can be drawn. Vectdd, gener-

ates a 1-dimensional vectorial sparceT,; >. Hence,
the Euclidean 3-dimensional spaed s retrieved in

by classical methods. Hence, we obtain a natural gen-the d'ri(ft SUMM,S® < NP > of vectorial space3pS

eralization, to 3D scalar fields, of theatershed trans-
form. In addition, AUBL and PGR techniques pro-

vide a new approach to study a 3D scalar field us-

ing additional tools like curvature of the surface or of

the field, and dependencies under elementary trans-

formation (e.g., time evolution of a pathology) and
that were not possible with classical methoAslBL

and PGR can be used as a support for data mining
visualization of 4D scalar fields. Study of 4D scalar

fields goes beyond the scope of this paper whose aim

is to present the mathematical foundationsAbfBL
andPGRtechniques. Many applicationsAtBLand
PGR are possible in 3D visualization, especially in
medical imaging New multi-resolution models based
on AUBL technique can be build. We will discuss this
possibility in the paper. Roughly speaking, #igBL
technique represents the scalar field aatamosphere
over the domain anBGRrepresents the depth of the
upper layer of the atmosphere.

The remainder of this paper is organized as follows.
In the next Section we present some background no-

and< Np >, see Figure 1.
If the surfaceS is described by an equation

/

Figure 1: A surface with its tangent plane and normal vec-
torial space at a point.

f(x,y,2) =0 (e.g., x> +y>+ 22— 1= 0 for the unit
sphere), then coordinates of the normal ved\lgr

tions related to the basic mathematical notions neededto S at a pointp are given by the partial deriva-

of of

in this paper. In Section 3, we present the fundamental tives (g)f( (P): 3y (P): 3z (P)). The tangent plane is de-

geometric property from which we derive tiA& BL
and PGR visualization algorithms. We will discuss
how algorithmsAUBL and PGR can be used to ex-
tract and visualize morphological features of a field

(x=Xp) + S (P)Y—

If surfaceS is described

s),¥(t,s),z(t,s)) :

scribed by the equatio%(p)

Yp) + 5 (P)(z—2) = 0.
by a parametric relatiorS= {(x(t,

that may not be detected through other classical tech-(t,s) € D C Rz} then tangent plane is generated by

nigues. In Section 4, we describe héw BL visual-

ization technique can generalize the watershed trans-

form to extract the morphological feature. In the last &

Section, we draw some concluding remarks and we

discuss our ongoing work.

2 BACKGROUND

In this Section, we present the basic mathematical no-

tions that we need to develop the paper material.

2.1 Geometry and Topology of
2-Manifolds

Two dimensional manifolds (without boundary) are
surfaces that are locally diffeomorphic to discdR3f
Around any pointp of a surfaceS, one can find a
neighborhoodu of p and a diffeormorphisng that
maps a disc ifR? on 1. At each poinip of a surfaces,
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the two vectors/, = (%(to, %),  (to, %), Z(to, %))

d V,,) = (a_s(tO’SO)7 as(t07so)7 aS(t07 )) Wlth p =
(X(t0,%0),¥(to,%0),2(to,%)). Then the normal vec-
tor N_)p is equal to the vectorial produOYE)/\Vl’)
whose coordinates are given bg{(tmso)g—g(tmso) -

% (to, S0) % (to, S0); — % (t0,%0) Z(to, S0) + F(t0, %)

(to, S0); ¥ (to, S0) Z (to. S0) — F (t0,%0) & (t0. 50)). For
more details, we refer to any book of differential
geometry (e.g., (Berger and Gostiaux, 1972), (Spivak,
1979)).

Two surfaces are said be topologically equivalent if
they are homeomorphic. Algebraic topology classi-
fies compact surfaces by their genus and orientabil-
ity, see (Massey, 1977). The gengiss the number

of handles in a surface. A topological sph&ehas
null genus since it has no handle, while a tofdshas
genus 1, since it has exactly one handle. To obtain
surfaces of a higher gengs> 2, we consider the con-
nected sum of tori (T2#T2#...#T2). The connected
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sum is defined by the quotient space of an equivalenceneither a minimum nor a maximum, and, thus, it is
relation that identifies (i.e., glue) the boundary points called an-saddlepoint (a pass).

of two holes created on two consecutive tori. In Fig- The decomposition of the manifold domain as-
ure 2, we give an illustration of such surfaces with sociated withf, introduced by Thom (Thom, 1949)
genus 0, 1, 2 or 3. A compact surface with non empty and followed by Smale (Smale, 1960) is based on the
boundary components can be obtained from the previ- study of the growth of along its integral curves. An
ous described surfaces by cutting along closed curves.ntegral curve is a curve which is every where tan-
In the remainder of this paper we consider only ori- gent to the gradient vector field. Integral curves orig-
entable surfaces. inating from a critical point of index form ai-cell

Cs, called astable manifold In the same way inte-
gral curves converging to a critical point of index
form a dual(n—1)-cell C", called anunstable man-
ifold. Stable manifolds are pairwise disjoint and de-
compose the field domaM into open cells, (see Fig-
ure 3). The cells form a complex, as the boundary
of every stable manifold is the union of lower dimen-
sional cells. Similarly, the unstable manifolds decom-
poseM into a complex dual to the complex of sta-
ble manifolds. Integral curves connecting saddles to
other critical points are calleskparatrices

(C) @ = J ‘
Figure 2: Surfaces of genus 0in (a), 1 in (b), 2iin (c) and 3 V"" ,_r X saddle
in (d), and so on. (&77//
7 ) ® Minimum
2.2 Morse Theory Figure 3: Decmposition of a domain into four stable 2-

manifolds.

A Morse functionon a manifold M is a C?-
differentiable real-valued functioti defined onM
such that itcritical points are non-degenerate (Mil-
nor, 1963). This means that the Hessian matdg
of the second derivatives dfat any pointP € RY on 3 3D SCALARFIELDS
which the gradient of vanishesGradef = 0) is non- VISUALIZATION
degenerateQfet(Hes:f # 0). Morse (Milnor, 1963)
has proven that there exists a local coordinate systemBy 3D scalar fieldwe mean a scalar field defined on
(yl,...7y“) in a neighborhootll of any critical point any smooth surface embeddedRA. Such surfaces
P, with y/(P) =0, for all j = 1,...,n, such that the  may have non-null genus, may contain boundary
identity components, may be compact, open, etc
. 1,2 "2 1+1,2 2 The basic idea underlying our new technique is to use

F=fP) - () = =)+ ) 4 ) a fundamental geometric property of the representa-
holds onU, wherel is the number of negative eigen- tion of 2D scalar fields in the 3D Euclidean space. Let
values ofHes f, and it is called théndexof f atP. us discuss first the graphical representation of a scalar
The above formula implies that the critical points of a field f defined on a domai® of R?. The graphi-
Morse function are isolated. This allows us to study cal representation df overD is a surfac&Sdefined as
the behaviour off around them, and to classify their
nature according to the signs of the eigenvalues of the
Hessian matrix off. If the eigenvalues are all pos-
itives, then the poinP is a strict local minimum(a S={(x,Y,2) : (x,y) € Dandz= f(x,y)} (1)
pit). If the eigenvalues are all negatives, tHeis a .
strict local maximun(a peak). If the index of f at The domainD in R® is embedded onto a s& =
point P is different from 0 and, then the poin® is {(x,y,0) : (x,y) € D} and a pointp(x,y) in D is sent
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to pointp(x,y,0) in D. Also, domainD has a para-  to Sat p and || pf(p) ||=| f(p) | Thus, Property 1
meterization through points @. Hence, functiorf is satisfied. The graphical representation of function
can be seen as a 3D scalar fidldlefined onD by : f defines anatmosphere layeover surfaceS. The

f(p) = f(p). InFigure 4, we illustrate such situation.  thickness of the layer is given by the function values.
As an example, the graphical representation of a
constant function over a sphere is a larger sphere with
the same center and in which the radius is augmented
by the constant value of the function.

Definition 2 When surface S is included in the inte-
rior space bounded by we say that S has a positive
f-atmosphere. When the reverse holds, we say that S
has a negative f-atmosphere.

When the new surfacgis topologically equivalent to

S, we can always inflate or deflate surfagéwithout

losing the perpendicularity property) so tigat S= 0

. ) . . S _ and obtain positive, or negative atmosphere follow-

E:)%ZJ):; 46\/3%&?2|cDgenq;?§gnftl[g|1T[/(a£><ﬁ)//)2}_xf[((;f,%}g}) ~ ing the need of the user to get a best representation

[—1/2,11/2)] % [0,1/3] x {0} = D. scheme.Inflation (resp: deflatior) can be performed
by translatingf (p) in the direction of the normal vec-
tor NT, by a constant positive (resp. negative) value.

Property 1 (The first key Property.) For a given Formal definitions of inflation and deflation are given

point p in B, vectorf)f—(ﬁ; is normal toD and | i!’] §ec.tion 4. To avoid seIf—in'tersect.ions.@fdue to

— . limitation of available space in the interior of even-

pt(p) 1= F(P) |- tual handles of the surfa& we can change the scale

This is due to the fact that the canonical basiRbfs of the normal vectof\_lp: by a multiplicative smaller

orthonormal and0,0, f(x,y)) are the coordinates of  constant value.

vectorf)f—(f))). When the topology equivalence betweBmnd.S is

Generalizing the idea in property 1, we can give a nhot gatisfied, we can only dr(]aﬂa.lgeto inclgde it in
first graphical representation of 3D scalar fields. Let gieamterior space OS. and, ence, obtain a nega-
S be an embedded smooth@uriaceRhand f be a tive atmosphere. In Figure 6, we illustrate the above

scalar field defined os. The graphical represen- situatior_1 for the unit sphere” + y> + 2 = 1 with .
tation of functionf would be a subset 6¥ defined by ? (nega)tlve gtmozsphere corresponding to the function
X,y,2) =xc—y-—1.

G={(xy.zt): (x,y,2) € Sandt = f(x,y,2)} (2)

Since we cannot visualize items R*, Property 1
allow us to visualize boti$ and its image byf in R®
as in Figure 4.

First Visualization principle.

Definition 1 LetN—>p be the unit normal vector of S at
point p. The graphical representation of scalar field
f over Siis the surfacé c R® defined by:

(a) (b)
Figure 5: In (a), a plane section representing the unit spher

_ £ (DN - with a negative atmosphere defined by a functigny,z) =
S={p+ 1 (PNo:pES (3) x2 —y? —1. In (b), the visualization of corresponding to

To represent the image of poim € S, the pre-  f.
vious definition associatesp with the point

o — —
f(p) := p+ f(p)Np. Then, vectopf(p) is normal
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(©) (d)

Figure 6: In (b)and (c): The graphical representatio®gf
height functionf(x,y,z) = x of a torusT< (in (a)) whose
revolution axis isOz In (d), we represent a section of
the height function representation: The torus andfits
atmosphere are Shown.

Definition 3 Under such assumptions, we call the
graphical representatios of f, the atmosphere up-
per bound layefAUBL) of the pair(S, f).

In Figure 6, we illustrate the atmosphere@f-height
function defined on a toruE? whose revolution axis
is Oz(i.e., f(x,y,z) = x for all points(x,y,z) € T?).

Second Visualization Principle.
AUBL visualization can be completed by a second

visualization technique based on a graph represen-

tation of f over flat subseD € R?. This can be
realized by composind with a (local) coordinates
system onS. Of course, this second visualization
does not represent directfyover S, but it has some
advantages:

e This representation provides additional informa-
tion on the morphology of the surface that can
be easily captured by the different existing tech-
niques since it is based on 2D scalar field visual-
ization.

e The AUBL visualization technique described
above depends on the geometry of surf&e
Hence, a negatively (resp. positively) curved
hump onS may produce a negatively (resp. pos-
itively) curved hump ons. Then functionf may

and then representing the resulting function over
D solves this issue.

From an other point of view, the above discussed
humps that appear af represent interesting re-
gions related to the morphology of the surface
and that may correspond smme kind of critical
points of the vector functiorf and/orf. Thus,
additional morphology information is captured by
AUBL visualization that cannot be seen by stan-
dard tools.

Let {@(t,s) = (X(t,s),y(t,s),z(t,s)) : (t,;s) €D} a
local (or a global) parameterization &over a do-
mainD € R,

Definition 4 We call the visualization of 4 over D
by the parametric growth representation (PGR) of f
over S.

Hence, a complete understanding 6éf will be
achieved by coupling together both visualizations
AUBLandPGR

In Figure 7, we provide an illustration oA{U BL,
PGR-visualizations of the(Ox)-height scalar field
defined on torug? parameterized bit,s) wheret is

the angle between ax{©x) andOp wherep' is the
projection a current poing on T2. Parametes is the

angle between axi€®z) andCTf). ThePGRrepresen-
tation shows that setting parametes 5, function
foq(t,s)) increases, reaches a maximum and then
decreases. Similar behaviour happens by fixing first
t.

In the following example, we consider the case of
a function which is not Morse with two degenerated
points. We will show howPGR visualization tech-
nigue can be applied to extract 6 critical points on a
surface. In Section 4, we will show hofU BL visu-
alization technique can be applied to retrieve the same
critical points with the critical net in addition.
Example. Let us consider functiofi(x,y,z) = x* — y?
defined on the unit sphel®. Gradient vector field
at any pointp = (x,y,2) € R® is given byGradpf =
(2x,—2y,0). The gradient field vanishes on the set
{(0,0,2) :€ R}. The Hessian matritHes,f of f
at point p is generated by column vecto(g,0,0),
(0,—2,0) and(0,0,0). Matrix Hes,f is clearly de-
generate at any poiqte R®. Hencef is not a Morse
function. Thus, we can not apply techniques of Morse
theory to studyf.
Let us parameterize the unit sphere with it spher-
ical coordinatesx = cogt)sin(s), y = sin(t)sin(s)

have a decreasing (resp. increasing) appearanceand z = cogs), wheret € [0,2m] is the angle in

while, in reality, f has the opposite growth. To

(Oxy)-plane attached to théOx)-axis. Parameter

compensate this issue, we consider the growth of s € [0, 11 is the angle attached {®z)-axis. A simple

f over a flat domain oR2. Composingf with ¢

computation gived (t,s) = f(x(t,s),y(t,s),z(t,s)) =
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Figure 7: In (a) thePGR and, in (b), the AUBL
visualizations of Ox-height function f(xy,2z) X
of torus T2 = {(x(t,9),¥(t,s),zt,s)) : X(t,9)
(2 + cogs))codt);y(t,s) = (2 + cogs))sin(t);z(t,s) =
sin(s) : (t,s) € [~ 12}. In (c), an atmosphere section
att = 0 and att = 1 In (d), an atmosphere section at
t=-1m/2 and atry/2 .

cog2t)sir’(s). The gradient vector field of at a
pointu = (t,s) is given by

Grad, f = (—2sin(2t)sir?(s), cog 2t )sin(2s)).

The _ gradient of f vanishes on the set
Crit f {t,0),(t,;) : t € [0,2} U
{(0,0), (1/2,1/2), (M, 1/2), (3M/2,11/2}.  On  the
unit sphere, points in the first set &frit f of type
(t,0) correspond to the north po(,0,1), and to the
south pole(0,0, —1) for points of type(t, ). Points

in the second set @rit f corresponds respectively to
(1,0,0), (0,1,0), (—1,0,0) and(0,—1,0).

The Hessian matrix off is generated by vec-
tors  (—4cog2t)sir?(s), —2sin(2t)sin(2s))  and
(—2sin(2t)sin(2s),2cog2t)cog2s)).  Simple com-
putation implies thatHegf is degenerate for
points of type (t,0) and (t,i)) that corresponds
to north and south poles of the sphere. For the
other four points, the HessiaHes,f is non de-
generate and has determinant equal to >8 Q)
at each point. This implies that each point in
{(0,0),(1/2,1/2), (T, T1/2), (31/2,T/2} IS either a
maximum or a minimum. Thus maxima and minima
of f on the unit sphere correspond (d,0,0),
(0,1,0), (—1,0,0) and(0,—1,0). A simple compu-
tation gives a maximal value 1 dfat points(1,0,0)
and(—1,0,0) and a minimal value-1 of f at points
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Figure 8. In (a), PGR visualization of the function
f(x,y,2) = X2 —yg over the unit sphere. Maxima and min-
ima appear alternatively. There are two minima and one
maximum in the interior of the surface. Two maxima appear
on the boundary segmerits- 0, t = 2rtbut they correspond

to the same point on the unit sphere. Functfang, has a
constant value on segmergs-= 0, s= 1t Points on these
boundary segments are critical, they correspond all to the
north or the south pole. In (b), tHRGRvisualization of the
function f(x,y,z) = X2 —y2 — 1. The shapes of surfaces in
(a) and in (b) are identical. This is not the case wAthBL
visualization technique, see Figure 9(a) and (c).

(0,1,0) and(0,—1,0). Hence, north and south poles
of the sphere are degenerate saddles famdnishes
on them €(0,0,1) = f(0,0,—1) = 0). The PGR
visualization of functionf is illustrated in Figure
8(a).

4 MORPHOLOGY EXTRACTION
BASED ON AUBL
INFLATION/DEFLATION

The distance between a poiptand its image (on
AUBL, PGRor in the standard cartesian case) is given
by | f(p) |. Poaints for which this distance is mini-
mal correspond to minima and points for which this
distance is maximal correspond to maxima. In this
section we will give a method that extracts those crit-
ical points with saddle and the critical net on surface
Sassociated with functiofi. To begin, let us give a
formal definition of inflation and deflation.

Definition 5 Suppose that normal vectoﬁ are di-
rected towards the exterior of S. Inflation process is a
dynamical system Inflats x [0, +-e[— R® that asso-
ciates a pair(f(p),t) with Inflat(f(p),t) = f(p) +
tNp.

Deflation process is a dynamical system Deflat
Sx]—,0] — R that associates a paiff (p),t) with
Deflat(f(p),t) = f(p) —tNp.

For each instartp, Inflat(S,to) (resp.Deflat(S,to))

is a surface$;, obtained fromS by translating all

. ~ —
points f(p) along vectorsNp by constant value
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to. In Section 3, we have seen that inflation and
deflation of the atmosphere permit to get positive
and negative atmospheres over the surfaceThis
inflation/deflation process has an important property
in capturing the morphology of surfacg This is
given by

Property 2 (The second key Property).While per-
forming an inflation/deflation, imprints of crossing
surface S at a given timg tefines level setsrss$
of f over S at momeng.t

Proof. At instanttp, intersection of surfacg, with S
is given by the set of pointsp € S: (p) FtoNp = p}.
Substitutingf( p) by its value, we havg,, NS={pe
S:p+ f(p)N_>p q:toN_>p = p} which gives$, NS =
{p€ S: f(p) = £to}. This is equivalent to say
S, NS= f~1(+tg). Thus level sets at instant are

This property generalizes theatershed transforrfor

(©)

(d)

Figure 9: Inflation/Deflation process of functidiix,y,z) =
simply S, N'S. x2 —y2 defined over the unit sphe@: In (a), surfaces

alone is depicted while in (PAUBL visualization ofS and

2D scalar fields. The watershed transform extractsf i?dsihown. In(c), tt:‘e c_omptl1eter defllatéldsdreffresdentehd.

. n , a section s owing the comp etey eflated scheme
morphology features of 2D scalar fields by Cros§mg inside the unit sphere. The two intersection points of the
parallel planez = constants In the 3D scalar field

o ; . unit sphere with the deflated surface are critical points of
case, minima and maxima df are obtained when

the same nature (minima or maxima).
S and ., intersect tangentially. In case of non de-
generate points, we obtain, at momemt isolated
points. And in case, of degenerate points we obtain
sub-surface patches. After the detection moment of
local minima (or maxima), circles are created and cor-

points. We retrieve here this result plus the critical
net. Four Regions (stable and unstable components)
representing Morse complex on the unit sphere are,

respond to level sets of the function. When the infla- /s optained.

tion/deflation process continue in time, circles grow
up onSuntil a moment in which an intersection be-
tween circles holds. At this moment, saddle points are
obtained. When pursuing inflation/deflation process
small time after, obtained saddle points split out and
the previous circles merge together. Level circles
propagate with time o and the splitted points fol-
low integral lines an describe the critical netfobver
S(i.e., integral lines that are separatrices). Hence, the
morphology ofS is captured naturally by the infla-
tion/deflation process.

In Figures 9 and 10, we represent the infla-
tion/deflation process, at different moments, of func-
tion f(x,y,z) = x? — y? defined over the unit sphere
S. Critical points off and the critical net o$? ap-
pear naturally by the inflation/deflation process here.
Critical net is formed by two orthogonal big circles
on S obtained from the intersection betweghwith
planesx = 0 andy = 0), see Figure 1@n).

We have seen in Section 3 that this function is not
Morse and the study oPGR visualization implies
four non degenerate points (2 maxima and 2 minima),
and two degenerate points at north and south poles of

the sphere. These poles are two (degenerate) saddle

Remarks.

e Under the inflation/deflation process, the scalar
field is simply translated. Thus, the shape of
the surface obtained from tHRGR visualization
of the field is the same. The surfaces is simply
translated positively (inflation) or negatively (de-
flation), see Figure 8.

e In AUBL visualization, the shape of surface
depends continuously on the inflation/def-lation
process, see Figure 10. This is due to the fact
that the original surfac& is curved. From an-
other point of view, this is a remarkable fact, since
it will give more flexibility to the user to work
with the field under translations or homotheties.
This will open other perspectives to study the
fields with other approaches (constraint on field
(i.e.,S) curvature, ...). In medicine applications,
the shape evolution, with time, of a pathological
organ can be predicted with the inflation/deflation
process (i.e, by translating the field by constants
(time)). And hence consequences can be pre-
dicted, see Figure 11.
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e The curvature of the field (i.e., of surfaggtends

to 0 with inflation ( positive translations). The

classical methods do not approach fields from

this point of view, since translations and homo-
= o theties do not have a significant importance from
H s el the Cartesian point of view. From our point of

: view this fact gives a coarse vision of the original

HHH field, see Figure 11. An application 8JBL to
SiEE multi-resolution is conceivable from this point of
view. Each resolution level corresponds to a trans-
lation valuec. Coarse levels are obtained when
c increases (inflation), and refined level appear
whenc decreases towards zero (deflation). The
original surface is obtained far= 0. Moreover,
this multi-resolution process can be applied to the
original surfac&swith function f = 0 (in this case
we haveS = ) to produce multi-resolution mod-
els of surfaces. We can also apply it to any func-
tion f to get multi-resolution models of surface
S. We can find a correspondence between infla-
tion and the reduction process of the mesh, since
the simplification process reduces the number of
triangles and curvature tends to zero on larger re-
gions. We can also find correspondence between
deflation and refinement process, since this later
increases the number of triangles and the curva-
ture takes more precise values.

5 CONCLUDING REMARKS

We have presented two novel techniqué$BL and
PGRthat allow visualization of B-scalar fields in the
Euclidean spac&. AUBL andPGRtechniques are
coupled together to give a complete comprehensive
representation of 3D scalar fields. We have pointed
out other advantages oAU BLLPGR that allow the

Figure 10: In(e), the beginning of the inflation process of ; e ;
S. Unit sphere intersects the inflated surface at two created extraction of additional morphological features of the

circles representing levels sets bf In (g), the growing domain that may not be captureq by classical tools. A
process of level sets (circles) appear clearly. In (h), taem ~ Method, based 0AUBL, generalizing th? Watgrshed
imal growing of the two circles. Their intersection points transform has been presented and detailed with an ex-
are a saddles (north and south poles). In (i), each saddleample. In our ongoing work, we will adagtUBL
point is splitted into 2 points to allow the previous circles technique for meshes and we will develop a visual-
to merge together in one curve that appear clearly. In (j), jzing tool that allow the user to interact with both
the splitted points follow the plane= 0 and describe a big AUBL andPGRtechniques at the same time. More-

circle on the unit sphere. In (k), the ultimate intersectien i d | lgorith for th lized
tweenS? and the inflated surface. In (I), pursuing inflation, ©Ver, We will develop algorithms for the generalize

we obtain a positive atmosphere around the unit sphere. InWatershed transform to extract morphology features
(m), the critical net corresponds to big circles obtained by of 3D scalar fields. We plan also to investigate the
the intersection of? with planesx=0,y = 0. Planey = 0 possibility of applying our approach in the visual data
corresponds to section in (d). Four Regions representing mining field. The idea is to enhance the segmental
stable and unstable Smale-decomposition components are,is,alization technique (Ankerst, 2000) over a sphere
thus, obtained. divided into sectors.
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)
Sl
R

o

(h)

Figure 11: Evolution of surfacg with inflation process.
Size of$ grows up and its curvature tends to 0 with time.
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