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Abstract: In this paper we introduce two novel technics that allow for a three dimensional scalar field to be visualized
in the three dimensional spaceR3. Many applications are possible especially in medicine imagery. New
multiresolution models can be build based our techniques. Moreover, we show that these two visualization
techniques allow the extraction of morphological features of the space and that may not be captured by classical
methods.

1 INTRODUCTION

In many applications of computer graphics (e.g.,
medicine imaging) the visualization of scalar fields
is a basic tool to explore and understand the structure
of the field. Visualization of 3D scalar fields needs
an additional dimension to be achieved. This is im-
possible to do inR3 from the Cartesian point of view
since our visual perception is limited to three parame-
ters. To overcome this problem, we need to tackle the
problem from a different point of view.
Smooth Morse theory is the basic tool used to extract
morphological features of a domain endowed with a
scalar field (Smale, 1960). The domain is decom-
posed into stable and unstable components. Stable
components are associated with minima, while un-
stable components are associated with maxima. In
the discrete case algorithms have been proposed to
extract morphological features with similar proper-
ties as in Morse theory. A large part of such tech-
niques deal with 2D scalar fields case, see, for in-
stance, (Bajaj et al., 1998), (Bajaj and Shikore, 1998),
(Edelsbrunner et al., 2001), (J.Toriwaki and Fuku-
mura, 1975), (Nackman, 1984), (Peucker and Dou-

glas, 1975), (Watson et al., 1985). The watershed
transform introduced by Vincent et al. in (Vincent
and Soille, ), for 2D scalar fields considers the graph-
ical representation of a 2D scalar field as a surface
that will be immersed progressively in water. Catch-
ment basins, which correspond to stable Smale de-
composition in Morse theory, are constructed and sur-
face segmentation is, hence, performed. Very few pa-
pers deal with 3D (and 4D) scalar fields. This is due
to difficulty of applying, in the discrete, Morse the-
ory to 3D (and 4D)scalar fields. In (H. Edelsbrunner,
2003), an algorithm for the construction of Smale-
decomposition for linear piece-wise linear functions
on a three dimensional domain is presented. Man-
gan et al., gave in (Mangan and Whitaker, 1999) a
watershed algorithm that segments a 3D surface into
patches. Their algorithm is based on the total curva-
ture of the surface approximated at the vertices of the
mesh approximating the surface.

Here, we present two coupled novel techniques
that allow visualizing 3D scalar fields in the Euclid-
ean three-dimensional space. These novel techniques,
that we call AUBL and PGR, are based on some
fundamental geometric properties of surfaces and
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on their embedding the Euclidean three-dimensional
space.AUBL andPGRvisualization techniques have
the advantage of representing a 3D scalar field in a
natural and intuitive way and allow extracting mor-
phology features of the field that may not be captured
by classical methods. Hence, we obtain a natural gen-
eralization, to 3D scalar fields, of thewatershed trans-
form. In addition,AUBL and PGR techniques pro-
vide a new approach to study a 3D scalar field us-
ing additional tools like curvature of the surface or of
the field, and dependencies under elementary trans-
formation (e.g., time evolution of a pathology) and
that were not possible with classical methods.AUBL
and PGR can be used as a support for data mining
visualization of 4D scalar fields. Study of 4D scalar
fields goes beyond the scope of this paper whose aim
is to present the mathematical foundations ofAUBL
andPGRtechniques. Many applications ofAUBLand
PGR are possible in 3D visualization, especially in
medical imaging New multi-resolution models based
onAUBL technique can be build. We will discuss this
possibility in the paper. Roughly speaking, theAUBL
technique represents the scalar field as anatmosphere
over the domain andPGRrepresents the depth of the
upper layer of the atmosphere.
The remainder of this paper is organized as follows.
In the next Section we present some background no-
tions related to the basic mathematical notions needed
in this paper. In Section 3, we present the fundamental
geometric property from which we derive theAUBL
and PGR visualization algorithms. We will discuss
how algorithmsAUBL andPGR can be used to ex-
tract and visualize morphological features of a field
that may not be detected through other classical tech-
niques. In Section 4, we describe howAUBL visual-
ization technique can generalize the watershed trans-
form to extract the morphological feature. In the last
Section, we draw some concluding remarks and we
discuss our ongoing work.

2 BACKGROUND

In this Section, we present the basic mathematical no-
tions that we need to develop the paper material.

2.1 Geometry and Topology of
2-Manifolds

Two dimensional manifolds (without boundary) are
surfaces that are locally diffeomorphic to discs ofR2.
Around any pointp of a surfaceS, one can find a
neighborhoodU of p and a diffeormorphismφ that
maps a disc inR2 onU. At each pointp of a surfaceS,

a tangent planeTpS is defined and thus a normal vec-

tor
−→
Np to Sat pointp can be drawn. Vector

−→
Np gener-

ates a 1-dimensional vectorial space<
−→
Np >. Hence,

the Euclidean 3-dimensional spaceR3 is retrieved in
the direct sumTpS⊕ <

−→
Np > of vectorial spacesTpS

and<
−→
Np >, see Figure 1.

If the surface S is described by an equation

Figure 1: A surface with its tangent plane and normal vec-
torial space at a point.

f (x,y,z) = 0 (e.g.,x2 + y2 + z2 − 1 = 0 for the unit
sphere), then coordinates of the normal vector

−→
Np

to S at a point p are given by the partial deriva-
tives ( ∂ f

∂x (p), ∂ f
∂y (p), ∂ f

∂z(p)). The tangent plane is de-

scribed by the equation∂ f
∂x (p)(x− xp) + ∂ f

∂y (p)(y−

yp) + ∂ f
∂z(p)(z− zp) = 0. If surfaceS is described

by a parametric relationsS= {(x(t,s),y(t,s),z(t,s)) :
(t,s) ∈ D ⊂ R2}, then tangent plane is generated by
the two vectors

−→
Vp = ( ∂x

∂t (t0,s0),
∂y
∂t (t0,s0),

∂z
∂t (t0,s0))

and
−→
V ′

p = ( ∂x
∂s(t0,s0),

∂y
∂s(t0,s0),

∂z
∂s(t0,s0)) with p =

(x(t0,s0),y(t0,s0),z(t0,s0)). Then the normal vec-

tor
−→
Np is equal to the vectorial product

−→
Vp
V−→

V ′
p

whose coordinates are given by( ∂y
∂t (t0,s0)

∂z
∂s(t0,s0)−

∂z
∂t (t0,s0)

∂y
∂s(t0,s0);− ∂x

∂t (t0,s0)
∂z
∂s(t0,s0)+ ∂z

∂t (t0,s0)
∂x
∂s

(t0,s0); ∂x
∂t (t0,s0)

∂y
∂s(t0,s0)−

∂y
∂t (t0,s0)

∂x
∂s(t0,s0)). For

more details, we refer to any book of differential
geometry (e.g., (Berger and Gostiaux, 1972), (Spivak,
1979) ).
Two surfaces are said be topologically equivalent if
they are homeomorphic. Algebraic topology classi-
fies compact surfaces by their genus and orientabil-
ity, see (Massey, 1977). The genusg is the number
of handles in a surface. A topological sphereS2 has
null genus since it has no handle, while a torusT2 has
genus 1, since it has exactly one handle. To obtain
surfaces of a higher genusg≥ 2, we consider the con-
nected sum ofg tori (T2#T2#. . .#T2). The connected
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sum is defined by the quotient space of an equivalence
relation that identifies (i.e., glue) the boundary points
of two holes created on two consecutive tori. In Fig-
ure 2, we give an illustration of such surfaces with
genus 0, 1, 2 or 3. A compact surface with non empty
boundary components can be obtained from the previ-
ous described surfaces by cutting along closed curves.
In the remainder of this paper we consider only ori-
entable surfaces.

(a) (b)

etc. . .
(c) (d)

Figure 2: Surfaces of genus 0 in (a), 1 in (b), 2 in (c) and 3
in (d), and so on.

2.2 Morse Theory

A Morse function on a manifold M is a C2-
differentiable real-valued functionf defined onM
such that itscritical points are non-degenerate (Mil-
nor, 1963). This means that the Hessian matrixHesP f
of the second derivatives off at any pointP∈ Rd on
which the gradient off vanishes (GradP f = 0) is non-
degenerate (Det(HesP f 6= 0). Morse (Milnor, 1963)
has proven that there exists a local coordinate system
(y1, ...,yn) in a neighborhoodU of any critical point
P, with y j(P) = 0, for all j = 1, . . . ,n, such that the
identity

f = f (P)− (y1)2− ...− (yı)2 +(yı+1)2 + ...+(yn)2

holds onU , whereı is the number of negative eigen-
values ofHesP f , and it is called theindexof f atP.
The above formula implies that the critical points of a
Morse function are isolated. This allows us to study
the behaviour off around them, and to classify their
nature according to the signs of the eigenvalues of the
Hessian matrix off . If the eigenvalues are all pos-
itives, then the pointP is a strict local minimum(a
pit). If the eigenvalues are all negatives, thenP is a
strict local maximum(a peak). If the indexı of f at
point P is different from 0 andn, then the pointP is

neither a minimum nor a maximum, and, thus, it is
called anı-saddlepoint (a pass).

The decomposition of the manifold domain as-
sociated withf , introduced by Thom (Thom, 1949)
and followed by Smale (Smale, 1960) is based on the
study of the growth off along its integral curves. An
integral curve is a curve which is every where tan-
gent to the gradient vector field. Integral curves orig-
inating from a critical point of indexı form a ı-cell
Cs, called astable manifold. In the same way inte-
gral curves converging to a critical point of indexı
form a dual(n− ı)-cell Cu, called anunstable man-
ifold. Stable manifolds are pairwise disjoint and de-
compose the field domainM into open cells, (see Fig-
ure 3). The cells form a complex, as the boundary
of every stable manifold is the union of lower dimen-
sional cells. Similarly, the unstable manifolds decom-
poseM into a complex dual to the complex of sta-
ble manifolds. Integral curves connecting saddles to
other critical points are calledseparatrices.

Maximum

Minimum

Saddle

Figure 3: Decomposition of a domain into four stable 2-
manifolds.

3 3D SCALAR FIELDS
VISUALIZATION

By 3D scalar fieldwe mean a scalar field defined on
any smooth surface embedded inR3. Such surfaces
may have non-null genus, may contain boundary
components, may be compact, open, etc. . .
The basic idea underlying our new technique is to use
a fundamental geometric property of the representa-
tion of 2D scalar fields in the 3D Euclidean space. Let
us discuss first the graphical representation of a scalar
field f defined on a domainD of R2. The graphi-
cal representation off overD is a surfaceSdefined as

S= {(x,y,z) : (x,y) ∈ D andz= f (x,y)} (1)

The domainD in R3 is embedded onto a set̃D =
{(x,y,0) : (x,y) ∈ D} and a pointp(x,y) in D is sent
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to point p̃(x,y,0) in D̃. Also, domainD̃ has a para-
meterization through points ofD. Hence, functionf
can be seen as a 3D scalar fieldf̃ defined onD̃ by :
f̃ (p̃) = f (p). In Figure 4, we illustrate such situation.

Figure 4: Graphic representation off (x,y) = f̃ (x,y,0) =
cos(xy) over the DomainD = [−π/2,π/2] × [0,π/3] ≃
[−π/2,π/2]× [0,π/3]×{0} = D̃.

Property 1 (The first key Property.) For a given

point p̃ in D̃, vector
−−−→
p̃ f̃ (p̃) is normal to D̃ and ‖

−−−→
p̃ f̃ (p̃) ‖=| f (p̃) |.

This is due to the fact that the canonical basis ofR3 is
orthonormal and(0,0, f (x,y)) are the coordinates of

vector
−−−→
p̃ f̃ (p̃).

Generalizing the idea in property 1, we can give a
first graphical representation of 3D scalar fields. Let
S be an embedded smooth surface inR3 and f be a
scalar field defined onS. The graphical represen-
tation of functionf would be a subset ofR4 defined by

G = {(x,y,z, t) : (x,y,z) ∈ Sandt = f (x,y,z)} (2)

Since we cannot visualize items inR4, Property 1
allow us to visualize bothSand its image byf in R3

as in Figure 4.
First Visualization principle.

Definition 1 Let
−→
Np be the unit normal vector of S at

point p. The graphical representation of scalar field
f over S is the surfaceS ⊂ R3 defined by:

S = {p+ f (p)
−→
Np : p∈ S} (3)

To represent the image of pointp ∈ S, the pre-
vious definition associatesp with the point

f̃ (p) := p+ f (p)
−→
Np. Then, vector

−−−→
pf̃ (p) is normal

to S at p and ‖
−−−→
pf̃ (p) ‖=| f (p) | Thus, Property 1

is satisfied. The graphical representation of function
f defines anatmosphere layerover surfaceS. The
thickness of the layer is given by the function values.
As an example, the graphical representation of a
constant function over a sphere is a larger sphere with
the same center and in which the radius is augmented
by the constant value of the function.

Definition 2 When surface S is included in the inte-
rior space bounded byS we say that S has a positive
f -atmosphere. When the reverse holds, we say that S
has a negative f -atmosphere.

When the new surfaceS is topologically equivalent to
S, we can always inflate or deflate surfaceS (without
losing the perpendicularity property) so thatS ∩S= /0
and obtain positive, or negative atmosphere follow-
ing the need of the user to get a best representation
scheme.Inflation (resp:deflation) can be performed
by translatingf̃ (p) in the direction of the normal vec-
tor

−→
Np by a constant positive (resp. negative) value.

Formal definitions of inflation and deflation are given
in section 4. To avoid self-intersections ofS due to
limitation of available space in the interior of even-
tual handles of the surfaceS, we can change the scale
of the normal vector

−→
Np by a multiplicative smaller

constant value.
When the topology equivalence betweenS andS is
not satisfied, we can only deflateS to include it in
the interior space ofS and, hence, obtain a nega-
tive atmosphere. In Figure 6, we illustrate the above
situation for the unit spherex2 + y2 + z2 = 1 with
a negative atmosphere corresponding to the function
f (x,y,z) = x2−y2−1.

(a) (b)
Figure 5: In (a), a plane section representing the unit sphere
with a negative atmosphere defined by a functionf (x,y,z) =
x2−y2−1. In (b), the visualization ofS corresponding to
f̃ .
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(a) (b)

(c) (d)
Figure 6: In (b)and (c): The graphical representation ofOx-
height function f (x,y,z) = x of a torusT2 (in (a)) whose
revolution axis isOz. In (d), we represent a section of
the height function representation: The torus and itsf -
atmosphere are Shown.

Definition 3 Under such assumptions, we call the
graphical representationS of f , the atmosphere up-
per bound layer(AUBL) of the pair(S, f ).

In Figure 6, we illustrate the atmosphere ofOx-height
function defined on a torusT2 whose revolution axis
is Oz(i.e., f (x,y,z) = x for all points(x,y,z) ∈ T2).

Second Visualization Principle.
AUBL visualization can be completed by a second
visualization technique based on a graph represen-
tation of f over flat subsetD ∈ R2. This can be
realized by composingf with a (local) coordinates
system onS. Of course, this second visualization
does not represent directlyf overS, but it has some
advantages:

• This representation provides additional informa-
tion on the morphology of the surface that can
be easily captured by the different existing tech-
niques since it is based on 2D scalar field visual-
ization.

• The AUBL visualization technique described
above depends on the geometry of surfaceS.
Hence, a negatively (resp. positively) curved
hump onS may produce a negatively (resp. pos-
itively) curved hump onS . Then functionf may
have a decreasing (resp. increasing) appearance,
while, in reality, f has the opposite growth. To
compensate this issue, we consider the growth of
f over a flat domain ofR2. Composingf with φ

and then representing the resulting function over
D solves this issue.
From an other point of view, the above discussed
humps that appear onS represent interesting re-
gions related to the morphology of the surface
and that may correspond tosome kind of critical
points of the vector functioñf and/or f . Thus,
additional morphology information is captured by
AUBL visualization that cannot be seen by stan-
dard tools.

Let {φ(t,s) = (x(t,s),y(t,s),z(t,s)) : (t,s) ∈ D} a
local (or a global) parameterization ofS over a do-
mainD ∈ R2.

Definition 4 We call the visualization of f◦φ over D
by the parametric growth representation (PGR) of f
over S.

Hence, a complete understanding off will be
achieved by coupling together both visualizations
AUBLandPGR.

In Figure 7, we provide an illustration of (AUBL,
PGR)-visualizations of the(Ox)-height scalar field
defined on torusT2 parameterized by(t,s) wheret is

the angle between axis(Ox) and
−→
Op′ wherep′ is the

projection a current pointp on T2. Parameters is the
angle between axis(Oz) and

−→
Op. ThePGRrepresen-

tation shows that setting parameters = s0, function
f ◦ φ(t,s0)) increases, reaches a maximum and then
decreases. Similar behaviour happens by fixing first
t.

In the following example, we consider the case of
a function which is not Morse with two degenerated
points. We will show howPGR visualization tech-
nique can be applied to extract 6 critical points on a
surface. In Section 4, we will show howAUBL visu-
alization technique can be applied to retrieve the same
critical points with the critical net in addition.
Example. Let us consider functionf (x,y,z) = x2−y2

defined on the unit sphereS2. Gradient vector field
at any pointp = (x,y,z) ∈ R3 is given byGradp f =
(2x,−2y,0). The gradient field vanishes on the set
{(0,0,z) :∈ R}. The Hessian matrixHesp f of f
at point p is generated by column vectors(2,0,0),
(0,−2,0) and (0,0,0). Matrix Hesp f is clearly de-
generate at any pointp∈ R3. Hencef is not a Morse
function. Thus, we can not apply techniques of Morse
theory to studyf .
Let us parameterize the unit sphere with it spher-
ical coordinatesx = cos(t)sin(s), y = sin(t)sin(s)
and z = cos(s), where t ∈ [0,2π] is the angle in
(Oxy)-plane attached to the(Ox)-axis. Parameter
s∈ [0,π] is the angle attached to(Oz)-axis. A simple
computation gives̃f (t,s) = f (x(t,s),y(t,s),z(t,s)) =
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(a) (b)

(c) (d)
Figure 7: In (a) thePGR and, in (b), the AUBL
visualizations of Ox-height function f (x,y,z) = x
of torus T2 = {(x(t,s),y(t,s),z(t,s)) : x(t,s) =
(2 + cos(s))cos(t);y(t,s) = (2 + cos(s))sin(t);z(t,s) =
sin(s) : (t,s) ∈ [−π,π]2}. In (c), an atmosphere section
at t = 0 and att = π. In (d), an atmosphere section at
t = −π/2 and atπ/2 .

cos(2t)sin2(s). The gradient vector field of̃f at a
pointu = (t,s) is given by

Gradu f̃ = (−2sin(2t)sin2(s),cos(2t)sin(2s)).

The gradient of f̃ vanishes on the set
Crit f̃ = {(t,0),(t,π) : t ∈ [0,2π]} ∪
{(0,0),(π/2,π/2),(π,π/2),(3π/2,π/2}. On the
unit sphere, points in the first set ofCrit f̃ of type
(t,0) correspond to the north pole(0,0,1), and to the
south pole(0,0,−1) for points of type(t,π). Points
in the second set ofCrit f̃ corresponds respectively to
(1,0,0), (0,1,0), (−1,0,0) and(0,−1,0).
The Hessian matrix of f̃ is generated by vec-
tors (−4cos(2t)sin2(s),−2sin(2t)sin(2s)) and
(−2sin(2t)sin(2s),2cos(2t)cos(2s)). Simple com-
putation implies that Hesu f̃ is degenerate for
points of type (t,0) and (t,π) that corresponds
to north and south poles of the sphere. For the
other four points, the HessianHesu f̃ is non de-
generate and has determinant equal to 8 (≥ 0)
at each point. This implies that each point in
{(0,0),(π/2,π/2),(π,π/2),(3π/2,π/2} is either a
maximum or a minimum. Thus maxima and minima
of f on the unit sphere correspond to(1,0,0),
(0,1,0), (−1,0,0) and(0,−1,0). A simple compu-
tation gives a maximal value 1 off at points(1,0,0)
and(−1,0,0) and a minimal value−1 of f at points

(a) (b)
Figure 8: In (a), PGR visualization of the function
f (x,y,z) = x2− y2 over the unit sphere. Maxima and min-
ima appear alternatively. There are two minima and one
maximum in the interior of the surface. Two maxima appear
on the boundary segmentst = 0, t = 2π but they correspond
to the same point on the unit sphere. Functionf ◦φ, has a
constant value on segmentss = 0, s = π. Points on these
boundary segments are critical, they correspond all to the
north or the south pole. In (b), thePGRvisualization of the
function f (x,y,z) = x2− y2−1. The shapes of surfaces in
(a) and in (b) are identical. This is not the case withAUBL
visualization technique, see Figure 9(a) and (c).

(0,1,0) and(0,−1,0). Hence, north and south poles
of the sphere are degenerate saddles andf vanishes
on them (f (0,0,1) = f (0,0,−1) = 0). The PGR
visualization of function f is illustrated in Figure
8(a).

4 MORPHOLOGY EXTRACTION
BASED ON AUBL
INFLATION/DEFLATION

The distance between a pointp and its image (on
AUBL, PGRor in the standard cartesian case) is given
by | f (p) |. Points for which this distance is mini-
mal correspond to minima and points for which this
distance is maximal correspond to maxima. In this
section we will give a method that extracts those crit-
ical points with saddle and the critical net on surface
S associated with functionf . To begin, let us give a
formal definition of inflation and deflation.

Definition 5 Suppose that normal vectors
−→
Np are di-

rected towards the exterior of S. Inflation process is a
dynamical system In f lat: S × [0,+∞[→R3 that asso-
ciates a pair( f̃ (p), t) with In f lat( f̃ (p), t) = f̃ (p)+

t
−→
Np.

Deflation process is a dynamical system De f lat:
S×]−∞,0]→ R3 that associates a pair( f̃ (p), t) with
De f lat( f̃ (p), t) = f̃ (p)− t

−→
Np.

For each instantt0, In f lat(S , t0) (resp.De f lat(S , t0))
is a surfaceSt0 obtained fromS by translating all

points f̃ (p) along vectors
−→
Np by constant value
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t0. In Section 3, we have seen that inflation and
deflation of the atmosphere permit to get positive
and negative atmospheres over the surfaceS. This
inflation/deflation process has an important property
in capturing the morphology of surfaceS. This is
given by

Property 2 (The second key Property).While per-
forming an inflation/deflation, imprints of crossing
surface S at a given time t0 defines level sets S∩ S

of f over S at moment t0.

Proof. At instantt0, intersection of surfaceSt0 with S

is given by the set of points{p∈S: f̃ (p)∓t0
−→
Np = p}.

Substitutingf̃ (p) by its value, we haveSt0 ∩S= {p∈

S : p + f (p)
−→
Np ∓ t0

−→
Np = p} which givesSt0 ∩ S =

{p ∈ S : f (p) = ±t0}. This is equivalent to say
St0 ∩S= f−1(±t0). Thus level sets at instantt0 are
simply St0 ∩S.
This property generalizes thewatershed transformfor
2D scalar fields. The watershed transform extracts
morphology features of 2D scalar fields by crossingS

parallel planesz = constants. In the 3D scalar field
case, minima and maxima off are obtained when
S and St0 intersect tangentially. In case of non de-
generate points, we obtain, at momentt0, isolated
points. And in case, of degenerate points we obtain
sub-surface patches. After the detection moment of
local minima (or maxima), circles are created and cor-
respond to level sets of the function. When the infla-
tion/deflation process continue in time, circles grow
up onS until a moment in which an intersection be-
tween circles holds. At this moment, saddle points are
obtained. When pursuing inflation/deflation process
small time after, obtained saddle points split out and
the previous circles merge together. Level circles
propagate with time onS and the splitted points fol-
low integral lines an describe the critical net off over
S(i.e., integral lines that are separatrices). Hence, the
morphology ofS is captured naturally by the infla-
tion/deflation process.
In Figures 9 and 10, we represent the infla-
tion/deflation process, at different moments, of func-
tion f (x,y,z) = x2 − y2 defined over the unit sphere
S2. Critical points of f and the critical net onS2 ap-
pear naturally by the inflation/deflation process here.
Critical net is formed by two orthogonal big circles
on S2 obtained from the intersection betweenS2 with
planesx = 0 andy = 0), see Figure 10(m).
We have seen in Section 3 that this function is not
Morse and the study ofPGR visualization implies
four non degenerate points (2 maxima and 2 minima),
and two degenerate points at north and south poles of
the sphere. These poles are two (degenerate) saddle

(a) (b)

(c) (d)
Figure 9: Inflation/Deflation process of functionf (x,y,z) =
x2 − y2 defined over the unit sphereS2: In (a), surfaceS

alone is depicted while in (b)AUBL visualization ofSand
S is shown. In(c), the completely deflatedS is represented.
In (d), a section showing the completely deflated scheme
inside the unit sphere. The two intersection points of the
unit sphere with the deflated surface are critical points of
the same nature (minima or maxima).

points. We retrieve here this result plus the critical
net. Four Regions (stable and unstable components)
representing Morse complex on the unit sphere are,
thus, obtained.

Remarks.

• Under the inflation/deflation process, the scalar
field is simply translated. Thus, the shape of
the surface obtained from thePGRvisualization
of the field is the same. The surfaces is simply
translated positively (inflation) or negatively (de-
flation), see Figure 8.

• In AUBL visualization, the shape of surfaceS
depends continuously on the inflation/def-lation
process, see Figure 10. This is due to the fact
that the original surfaceS is curved. From an-
other point of view, this is a remarkable fact, since
it will give more flexibility to the user to work
with the field under translations or homotheties.
This will open other perspectives to study the
fields with other approaches (constraint on field
(i.e.,S ) curvature, . . . ). In medicine applications,
the shape evolution, with time, of a pathological
organ can be predicted with the inflation/deflation
process (i.e, by translating the field by constants
(time)). And hence consequences can be pre-
dicted, see Figure 11.
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(e) (g)

(h) (i)

(j) (k)

(l) (m)
Figure 10: In(e), the beginning of the inflation process of
S . Unit sphere intersects the inflated surface at two created
circles representing levels sets off . In (g), the growing
process of level sets (circles) appear clearly. In (h), the max-
imal growing of the two circles. Their intersection points
are a saddles (north and south poles). In (i), each saddle
point is splitted into 2 points to allow the previous circles
to merge together in one curve that appear clearly. In (j),
the splitted points follow the planex = 0 and describe a big
circle on the unit sphere. In (k), the ultimate intersectionbe-
tweenS2 and the inflated surface. In (l), pursuing inflation,
we obtain a positive atmosphere around the unit sphere. In
(m), the critical net corresponds to big circles obtained by
the intersection ofS2 with planesx = 0, y = 0. Planey = 0
corresponds to section in (d). Four Regions representing
stable and unstable Smale-decomposition components are,
thus, obtained.

• The curvature of the field (i.e., of surfaceS ) tends
to 0 with inflation ( positive translations). The
classical methods do not approach fields from
this point of view, since translations and homo-
theties do not have a significant importance from
the Cartesian point of view. From our point of
view this fact gives a coarse vision of the original
field, see Figure 11. An application ofAUBL to
multi-resolution is conceivable from this point of
view. Each resolution level corresponds to a trans-
lation valuec. Coarse levels are obtained when
c increases (inflation), and refined level appear
when c decreases towards zero (deflation). The
original surface is obtained forc = 0. Moreover,
this multi-resolution process can be applied to the
original surfaceSwith function f = 0 (in this case
we haveS= S ) to produce multi-resolution mod-
els of surfaceS. We can also apply it to any func-
tion f to get multi-resolution models of surface
S . We can find a correspondence between infla-
tion and the reduction process of the mesh, since
the simplification process reduces the number of
triangles and curvature tends to zero on larger re-
gions. We can also find correspondence between
deflation and refinement process, since this later
increases the number of triangles and the curva-
ture takes more precise values.

5 CONCLUDING REMARKS

We have presented two novel techniquesAUBL and
PGRthat allow visualization of 3D-scalar fields in the
Euclidean spaceR3. AUBL andPGR techniques are
coupled together to give a complete comprehensive
representation of 3D scalar fields. We have pointed
out other advantages of (AUBL,PGR) that allow the
extraction of additional morphological features of the
domain that may not be captured by classical tools. A
method, based onAUBL, generalizing the watershed
transform has been presented and detailed with an ex-
ample. In our ongoing work, we will adaptAUBL
technique for meshes and we will develop a visual-
izing tool that allow the user to interact with both
AUBL andPGR techniques at the same time. More-
over, we will develop algorithms for the generalized
watershed transform to extract morphology features
of 3D scalar fields. We plan also to investigate the
possibility of applying our approach in the visual data
mining field. The idea is to enhance the segmental
visualization technique (Ankerst, 2000) over a sphere
divided into sectors.
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(a) (b)

(c) (d)

(e) (g)

(h)
Figure 11: Evolution of surfaceS with inflation process.
Size ofS grows up and its curvature tends to 0 with time.
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