
OPTIMAL NONLINEAR IMAGE DENOISING METHODS IN 
HEAVY-TAILED NOISE ENVIRONMENTS 

Hee-il Hahn 
Dept. Information and Communications Eng. Hankuk University of Foreign Studies, Yongin, Korea 

Keywords: Nonlinear denoising, robust statistics, robust estimation, maximum likelihood estimation, myriad filter, 
Cauchy distribution, amplitude-limited sample average filter, amplitude-limited myriad filter. 

Abstract: The statistics for the neighbor differences between the particular pixels and their neighbors are introduced. 
They are incorporated into the filter to enhance images contaminated by additive Gaussian and impulsive 
noise. The derived denoising method corresponds to the maximum likelihood estimator for the heavy-tailed 
Gaussian distribution. The error norm corresponding to our estimator from the robust statistics is equivalent 
to Huber’s minimax norm. This estimator is also optimal in the respect of maximizing the efficacy under the 
above noise environment. It is mixed with the myriad filter to propose an amplitude-limited myriad filter. In 
order to reduce visually grainy output due to impulsive noise, Impulse-like signal detection is introduced so 
that it can be processed in different manner from the remaining pixels. Our approaches effectively remove 
both Gaussian and impulsive noise, not blurring edges severely. 

1 INTRODUCTION 

Noise introduced into images via image acquisition 
devices such as digital cameras can be adequately 
assumed to be additive zero-mean Gaussian 
distributed. Such impulsive noise as caused by 
transmission of images can be more approximated as 
α stable distribution. In general, the noise with 
zero-mean and independent properties can be easily 
removed by locally averaging pixel values. A mean 
filter is known to be a maximum likelihood 
estimator for additive Gaussian noise and is optimal 
in the sense of minimizing mean square error. This 
filter, however, tends to degrade the sharpness of the 
boundaries between regions of an image although it 
effectively removes noise inside the smooth regions. 
Basically linear filters can not overcome this 
problem. That is why nonlinear methods should be 
employed for this purpose.  One of the simplest 
nonlinear filtering algorithms is the median-based 
filter. It is a maximum likelihood estimator for 
Laplacian distribution. It has a relatively good 
property of preserving fine details except for thin 
lines and corners. It is known to be robust to 
impulsive noise. Stack filter, weighted median and 
relaxed median are among its variations to improve 
the performance. Median-based methods basically 

select one of the samples in the input window. Thus,  
it is known that they can not reduce noise effectively. 
Motivated by the above limitations, several kinds of 
myriad filters have been proposed, which are known 
to be maximum likelihood estimator under Cauchy 
distribution (Gonzalez, Arce, 2001), (Zurbach, et al., 
1996). Optimality of myriad filters are presented 
under α stable distributions (Gonzalez, Arce, 2001). 
(Hamza and Krim, 2001) proposed mean-relaxed 
median and mean-LogCauchy filters by combining a 
mean filter with a relaxed median or LogCauchy 
filter. They are maximum likelihood estimators 
under the assumption that the noise probability 
distribution is a linear combination of  normal 
distribution and heavy-tailed distribution such as 
Laplacian or Cauchy distribution. Another popular 
methods are the anisotropic diffusion techniques into 
which  a variety of research has been devoted since 
the work of (Perona and Malik, 1990). Recent 
researches have shown that nonlinear methods such 
as median filters and anisotropic diffusions can be 
reinterpreted using the theory of robust statistics 
(Huber, 1981). Robust-statistics-based denoising 
algorithms are developed, which deal with intensity 
discontinuities to adapt the analysis window size 
(Rabie, 2005). He chose a Lorenzian redescending 
estimator in which the influence function tends to 
zero with increasing distance.  
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A large number of image denoising algorithms 
proposed so far are limited to the case of Gaussian 
noise or impulsive noise, not to both of them. The 
algorithms tuned for Gaussian noise or impulsive 
noise alone present serious performance degradation 
in case images are corrupted with both kinds of 
noise. To tackle the problem, an amplitude-limited 
sample average filter is proposed. It is also a 
maximum likelihood estimator in the density 
function which is Gaussian on ( ),δ δ− , but 
Laplacian outside the region. Its idea is incorporated 
into the myriad filter to propose an amplitude-
limited myriad filter. In order to reduce visually 
grainy output due to impulsive noise, Impulse-like 
signal detection is introduced so that it can be 
processed in different manner from the remaining 
pixels. Our approaches effectively remove both 
Gaussian and impulsive noise, not blurring edges 
severely.  
After reviewing the problems of finding the best 
estimate of a model in terms of maximum likelihood 
estimate (MLE), given a set of data measurements, 
our estimators are interpreted  based on the theory of 
robust estimation in both Gaussian and impulsive 
noise environment. 

2 NOISE STATISTICS 

In deriving our robust denoising filter, we employ an 
observed image model corrupted with additive 
Gaussian and impulsive noise 
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where i  is a zero-mean additive white Gaussian 
noise plus impulsive noise. in  is uncorrelated to the 
image sequence i

n

x  and i is the observed noise-
contaminated image sequence. In this case, in  can 
be assumed to have a density function whose tails 
are heavier than Gaussian. To ensure the 
unbiasedness of the maximum likelihood estimator, 
its density function is assumed to be symmetric. The 
density function of i  is assumed to be Gaussian on 

y

n
( , )δ δ− , but Laplacian outside the region It has a 
shape of Gaussian distribution with heavier 
exponential tails  given by 
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where, of course, C  should be chosen so that the 
density ( )f x  has unit area by proper adjustment of  

and a δ . Its statistics can be modelled as symmetric 
α stable ( )S Sα  distribution. 

3 OUR PROPOSED FILTERS 

3.1 Amplitude-Limited Sample 
Average Filter 

Let us found out the MLE of the mean of a normal 
random variable with known variance from M  
independent observations. The density function for 
M  independent observations is  
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The MLE of μ  that maximizes the above density 
function is given by  
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The MLE is just the sample mean and μ̂  is known to 
be a minimum variance unbiased and consistent 
estimate. This means that the MLE for estimating 
the signal under the additive Gaussian model is a 
mean filter. It can be interpreted as optimum filter in 
the sense of mean-square errors. 
Likewise, when the observations have a density of 
Laplacian instead of Gaussian, the density function 
for M  independent observations is 
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and the MLE of η  that maximizes the above 
equation is given by  
 

                             (6) 
 
 

Its MLE corresponds to the median filter which 
selects the sample located at the center after 
arranging the observations in the ascending order. 
Thus, combining the results given in Eq. (4) and (6) 
we obtain the MLE of  θ  for the density function 
given in Eq. (2). 
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The corresponding filter can be easily implemented  
by 
 

                                              (8) 
 

 
 
where                                                                      (9)  

 
 
 

We call this filter as an amplitude-limited sample 
average filter (ALSAF). The efficacy of the estimate 
can be found out as follows, 
 
 
 

                                    (10) 
 
 

In the above equation, ( )f x , given in Eq.(2), 
represents the density function for each observation.  
 
Since                                   ,   Efficacy ξ  has the  
 
maximum value. Thus, the ALSAF given above is 
the optimal estimate in terms of maximizing the 
efficacy under the above noise environment. The 
error norm corresponding to our estimator from the 
robust statistics is given by 
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This is equivalent to Huber’s minimax norm (Huber, 
1981), (Black, et al., 1998). To apply our denoising 
filter, we need to choose the variables a  and δ  as 
given in Eq. (2) and Eq. (9), which depends on the 
statistics of the noisy images. The value of δ  is 
inversely proportional to the amount of outliers such 
as impulsive noise. If the value of δ is equal to the 
standard deviation σ of the density function given in 
Eq. (2), the distribution will be similar to Gaussian, 
which means that the outliers rarely exist. Thus, δ  
should be less than σ  (typically  0.8σδ = ). The 
probability Gp that the noise is greater than δ  is 
computed as  
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And the probability Lp that the noise is less than δ  
is 
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where                                        . 
 
 
a is chosen empirically for each specific image such 
that G Lp p=  to optimize the estimate. The ALSAF 
is iteratively applied to reduce any residual noise by 
estimating the variables a  and δ from the statistics 
of the neighbor differences at each iteration. The 
algorithm stops when the residual error between the 
current and the next estimate falls below some 
threshold at each pixel, which is usually less than δ . 
Recall the Perona-Malik (PM) anisotropic diffusion 
(Perona and Malik, 1990) 
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where  , ∇  denotes divergency and gradient, 
respectively. Since the robust estimation can be 
posed as: 
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where Ω  is the domain of  the image. Eq. (15) can 
be solved using the gradient descent as follows: 
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Comparing Eq. (14) with Eq. (16), we can obtain the 
relation  
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Thus, our denoising algorithm can be implemented 
using PM anisotropic diffusion by selecting the edge 
stopping function ( )h x  given in Eq. (17) (Black, et 
al., 1998). 
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3.2 Amplitude-Limited Myriad Filter 

Similarly, the myriad filter which is the MLE of 
location under heavier-tailed Cauchy distributed 
noise is defined as 

 
                                                                        (18) 
 

The behavior of the myriad filter is determined by 
the value of k , which is called the linearity 
parameter. Given a set of samples 1 2, , , Mx x x⋅ ⋅⋅ , 

the sample myriad ˆ
kβ  in Eq. (18) converges to 

sample mean μ̂  in Eq. (4), as k  (Gonzalez, 
Arce, 2001). It is proposed in this paper that outliers 
which are samples outside the region (

→∞

),δ δ− , are 
limited, as shown in Eq. (9). That is, the sample 
myriad is computed as 

 

(19) 

where ( )g ⋅  is as given in Eq. (9). This filter is 
named an amplitude-limited myriad filter (ALMF).  
Its sample myriad ˆkγ results in amplitude-limited 

sample average δ̂θ depicted in Eq. (8), as 
.This can be easily proved in the same way 

as the myriad filter converges to a mean filter as 
as given in (Gonzalez, Arce, 2001). 

k →∞

k →∞

3.3 Filtering Scheme 

As mentioned above, if the given image pixel is 
known to belong to one of the smooth regions 
Gaussian noise can be reduced by a mean filter This 
filter, however, tends to degrade the sharpness of the 
boundaries between regions of an image if it belongs 
to the boundary regions. This problem can be 
reduced effectively by the ALSAF, which however, 
produces visually grainy output as the amount of 
impulsive noise increases. Thus, our proposed 
approach utilizes the statistics of the samples in the 
window. The parameter  in Eq. (19).is determined 
according to the presence of impulsive noise in the 
window.  

k

 

3.3.1 Processing of Impulsive Noise  

Deciding which pixels in an image are replaced with 
impulsive noise is not clearly defined yet. Especially 
in cases they are also corrupted with Gaussian noise, 
the problem will be very complicated. Fortunately, 
image pixel values does not vary severely from its 
surrounding pixels even in the boundary regions. 
Thus, each pixel isolated with its neighbors is 
detected as an impulse-like pixel.  

( )( )22

1

In order to decide how impulse-like each pixel is, 
the pixels within the window are arranged in the 
ascending order for each pixel location, and it is 
decided whether the pixel is located at some 
predefined range as given in Eq. (20), 
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and  and  are such that l u
1 1 2 1≤ ≤ + ≤ ≤ + i. If D corresponding 

to the pixel ix equals 0, then the ALSAF or ALMF 

with  a large value of  is applied to the samples in 
the window because it is more probable the pixel 
belongs to smooth regions. However, when 

k

1iD = , 
the pixel is regarded as impulse-like if the mean of 
absolute values of its neighbour differences (MAD), 
as given in Eq. (22) is above the predefined 
threshold,  
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where is the center pixel and Ω is the set of its 
neighbors. It is verified experimentally to be a good 
indicator of impulsive noise. Its idea is borrowed 
from (Garnett, et al., 2005). Fig. 1 and Fig. 2 depict 
mean MAD values on whole image pixels as 
functions of types of noise and its amount. Impulsive 
noise pixels have much larger mean MAD values 
than the uncorrupted pixels or the pixels corrupted 
with Gaussian noise. When impulsive noise exists at 
some pixel in Lena image, its mean MAD value is 
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127, which does not vary with the amount of 
Gaussian noise. In our method, the image pixels 
whose MAD values exceed 80 are classified as 
impulsive noise. The pixels decided to be impulse-
like are separated to process with an ALMF, whose 
parameter as given in Eq. (19) is small. In case 
there is no impulse within the window, k  is set to a 
large value so that the ALMF may function as an  
ALSAF. 

k

 
 

 
Figure 1: Mean MAD values as a function of standard 
deviation of Gaussian noise. 

 
Figure 2: Mean MAD values as a function of probability 
of impulsive noise. 

4 EXPERIMENTAL RESULTS 

The widely used gray-scale Lena image is selected 
to test our proposed method. Impulsive noise as well 
as Gaussian noise are injected to the test image. In 
other words, the pixel corrupted with Gaussian noise 
is replaced randomly with impulse, which has the 
value of 0 (“black”) or 255(“white”) with equal 
probability. Simulations are carried out for a wide 
range of noise density levels. The performance of 
our denoising filter is evaluated by way of mean-
square-error (MSE) metric and  peak signal-to-noise 
ratio (PSNR) given by 
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where eσ  is the standard deviation of the residual 
errors  
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In the above equation, Ω  represents the number of 
pixels in the image.  
 
 

 
 
 
 
 
 
 

 
 

(a)                                          (b) 
 

 
 
 
 
 
 
 
 

(c)                                        (d) 
Figure 3: (a) Corrupted Lena image degraded by Gaussian 

noise of variance , with a measured 2 924nσ =

18.5PSNR dB=  (b) PM anisotropic diffused image after 

10 iterations with  and  2 153.3nσ = 26.3PSNR dB=  
(c) Output of the ALSAF after 10 iterations with 

 and  2 137.6nσ = 26.8PSNR dB=  (d) Output of the 

ALMF with  and  2 155.2nσ = 26.2PSNR dB= . 

Fig. 3 shows the simulation results when gray scale 
image of size 256 256×  is corrupted with additive 
Gaussian noise of variance n  2 924σ =

)( 20PSNR dB= . Obviously, both our methods 
suppress additive Gaussian noise without severely 
destroying the fine details compared with PM 
equation in spite of the fact that there are no 
significant differences in their PSNR values. 
Simulation results are depicted in Fig. 4 when the 
Lena image is corrupted with both Gaussian noise of 
variance 2  and 10% of impulsive noise 900σ =
( 20PSNR dB)= . Simulation results show that the 
ALSAF is not effective in removing impulsive noise, 
while the myriad filter can be extended to reduce 10

255
20 log

e

PSNR
σ

=
⎛ ⎞
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both Gaussian and impulsive noise by limiting the 
amplitude of samples outside predefined range as 
given in Eq. (9). This ALMF tends to preserve the 
fine details while reducing both Gaussian and 
impulsive noise. 

 
 
 
  

 
 
 
 
 
 

(a)                                      (b) 
 
 

 
 
 
 
 
 
 
 

(c)                                       (d) 
Figure 4: (a) Lena image corrupted with both Gaussian 
noise of 30σ =  and impulsive noise of 10%p = , 

with a measured residual variance  and 2 2059.3nσ =

15.0PSNR dB= , (b) Output of the ALSAF after 10 

iterations with  and  2 359.6nσ = 22.6PSNR dB=   (c) 

Output of myriad filter with  and  2 557.9nσ =

20.67PSNR dB=  (d) Output of  ALMF with 

 and  2 234.7nσ = 24.42PSNR dB= . 

5 CONCLUSIONS 

Optimal nonlinear filter which maximizes the 
efficacy under mixed Gaussian noise environment is 
derived. This filter effectively can be implemented 
using PM anisotropic diffusion by selecting the 
appropriate edge stopping function. However, it 
produces visually grainy output as the amount of 
impulsive noise increases. Thus, impulse-like signal 
detection is introduced to process impulsive pixels 
differently from the remaining pixels. For this 
process, a myriad filter is selected, which is a 
maximum log-likelihood estimator of the location 
parameter for Cauchy density. The filter is known to 

outperform median-based filters in removing 
impulsive noise. By combining ALSAF which is a 
MLE in mixed Gaussian noise with a myriad filter, 
the resulting filter (ALMF) effectively removes both 
Gaussian and impulsive noise, preserving the fine 
details. 
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