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Abstract: Calibrated 3D visual servoing has not fully matured as a industrial technology yet, and in order to widen its 
use in industrial applications its technological capability must be precisely known. Accuracy and 
repeatability are two of the crucial parameters in planning of any robotic task. In this paper we describe a 
procedure to evaluate the 2D and 3D accuracy of a robot stereo vision system consisting of two identical 1 
Megapixel cameras, and present the results of the evaluation. 

1 INTRODUCTION 

In the last decades, more and more robots 
applications were used in industrial manufacturing 
which was accompanied by an increased demand for 
versatility, robustness and precision. The demand 
was mostly satisfied by increasing the mechanical 
capabilities of robot parts. For instance, to meet the 
micrometric positioning requirements, stiffness of 
the robot’s arms was increased, high precision gears 
and low backlash joints introduced, which often led 
to difficult design compromises such as the request 
to reduce inertia and increase stiffness. This results 
in approaching the mechanical limits and increased 
cost of robots decreasing the competitiveness of the 
robot systems on the market (Arflex, 2005). 

Lately, the robot producers have put much effort 
into incorporating visual and other sensors to the 
actual industrial robots thus providing a significant 
improvement in accuracy, flexibility and 
adaptability. Vision is still one of the most 
promising sensors (Ruf and Horaud, 1999) in real 
robotic 3D servoing issues (Hutchinson et al., 1995). 
It has been vastly investigated for the last two 
decades in laboratories but it's only now that it finds 
its way to industrial implementation (Robson, 2006) 
in contrast to machine vision which became a well 
established industry in the last years (Zuech, 2000). 
There are many reasons for this. The vision systems 
used with the robots must satisfy a few constraints 
that differ them from a machine vision measuring 
systems. First of all, the camera working distances 

are much larger, especially with larger robots that 
can reach several meters. Measuring at such 
distances with high precision requires much higher 
resolution which very soon reaches its technological 
and price limits. For example, nowadays 4 
Megapixel cameras are the state of the art in vision 
technology but are not affordable in many robotic 
applications since their price almost reaches the 
robot price. The dynamics of the industrial processes 
requires high frame rates which in connection with 
real time processing puts another difficult constraint 
on system integrators. The unstructured industrial 
environment with changing environmental lighting 
is another challenge for the robot vision specialists. 

When designing the vision system within robot 
applications it is very important to choose the 
optimal equipment for the task and to get maximal 
performance out of each component. In the paper we 
represent a procedure for the precision estimation of 
a calibrated robot stereo vision system in 2D and 3D 
environment. Such a system can be used in visual 
servoing applications for precise tool center point 
(TCP) positioning. 

2 METHODOLOGY 

Four types of accuracy tests were performed: a static 
2D test, a dynamic 2D test, a static 3D test, and a 
dynamic 3D test. Throughout all the tests, an array 
of 10 infrared light emitting diodes (IR-LED) was 
used to establish its suitability for being used as a 
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marker and a calibration pattern in the robot visual 
servoing applications. 

Within the static 2D test, we were moving the 
IR-LED array with the linear drive perpendicular to 
the camera optical axes and measured the increments 
in the image. The purpose was to detect the smallest 
linear response in the image. The IR-LED centroids 
were determined in two ways: on binary images and 
on grey-level images as centers of mass. During 
image grabbing the array did not move thus 
eliminating any dynamic effects. We averaged the 
movement of centroids of 10 IR-LEDs in a sequence 
of 16 images and calculated the standard deviation 
to obtain accuracy confidence intervals. With the 
dynamic 2D test shape distorsions in the images due 
to fast 2D movements of linear drive were 
investigated. We compared a few images of IR-LED 
array taken during movement to statically obtained 
ones which provided information of photocenter 
displacements and an estimation of dynamic error. 

We performed the 3D accuracy evaluation with 2 
fully calibrated cameras in a stereo setup. Using 
again the linear drive, the array of IR-LEDs was 
moved along the line in 3D space with different 
increments and the smallest movement producing a 
linear response in reconstructed 3D space was 
sought. In the 3D dynamic test, we attached the IR-
LED array to the wrist of an industrial robot, and 
dynamically guided it through some predefined 
points in space and simultaneously recorded the 
trajectory with fully calibrated stereo cameras. We 
compared the reconstructed 3D points from images 
to the predefined points fed to robot controller. 

3 TESTING SETUP 

The test environment consisted of:  
 PhotonFocus MV-D1024-80-CL-8 camera with 

CMOS sensor and framerate of 75 fps at full 
resolution (1024x1024 pixels), 

 Active Silicon Phoenix-DIG48 PCI frame 
grabber,  

 Moving object (IR-LED array) at approximate 
distance of 2m. The IR-LED array (standard 
deviation of IR-LED accuracy is below 0.007 
pixel, as stated in (Papa and Torkar, 2006)) 
fixed to Festo linear guide (DGE-25-550-SP) 
with repetition accuracy of +/-0.02mm.  

For then static 2D test the distance from camera 
to a moving object (in the middle position) that 
moves perpendicularly to optical axis was 195cm; 
camera field-of-view was 220cm, which gives pixel 
size of 2.148mm; Schneider-Kreuznach lens 

CINEGON 10mm/1,9F with IR filter; exposure time 
was 10.73ms, while frame time was 24.04ms, both 
obtained experimentally.  

For the dynamic 2D test conditions were the 
same as in static test, except the linear guide was 
moving the IR-LED array with a speed of 460mm/s 
and the exposure time was 1ms. 

In the 3D reconstruction test the left camera 
distance to IR-LED array and right camera distance 
to IR-LED array were about 205cm; baseline 
distance was 123cm; Schneider-Kreuznach lens 
CINEGON 10mm/1,9F with IR filter; Calibration 
region-of-interest (ROI): 342 x 333 pixels; 
Calibration pattern: 6 x 8 black/white squares; 
Calibration method (Zhang, 1998); Reconstruction 
method (Faugeras, 1992). The reconstruction was 
done off-line and the stereo correspondence problem 
was considered solved due to a simple geometry of 
the IR-LED array and is thus not addressed here. 

For the 3D dynamic test, an ABB industrial robot 
IRB 140 was used with the standalone fully 
calibrated stereo vision setup placed about 2m away 
from its base and calibrated the same way as before. 
The robot wrist was moving through the corners of 
an imaginary triangle with side length of 
approximately 12cm. The images were taken 
dynamically when the TCP was passing the corner 
points and reconstructed in 3D with an approximate 
speed of 500mm/s. The relative length of such 
triangle sides were compared to the sides of a 
statically-obtained and reconstructed triangle. The 
robot native repeatability is 0.02 mm and its 
accuracy is 0.01mm. 

4 RESULTS  

4.1 2D Accuracy Tests 

The results of the evaluation tests are given below. 
Tests include the binary and grey-level centroids. 
For each movement increment the two figures are 
presented, as described below.  

Pixel difference between the starting image and 
the consecutive images (at consecutive positions) – 
for each position the value is calculated as the 
average displacement of all 10 markers, while their 
position is calculated as the average position in the 
sequence of the 16 images grabbed at each position 
in static conditions. The lines in these figures should 
be as straight as possible. 

The 0.01mm, 0.1mm, and 1mm increments for 
2D tests are presented in Figure 1. 
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Figure 1: Pixel difference for 0.01mm (top), 0.1mm 
(middle), and 1mm (bottom) increments. 

Figure 2 compares normalized pixel differences 
in grey-level images of a single marker.  
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Figure 2: Normalized differences of grey-level images for 
each position comparing different increments. 

A linear regression model was applied to 
measured data, and the R2 values calculated to asses 
the quality of fit. The results are presented in Table 1 
for 2D tests and in Table 2 for 3D tests. The R2 
value can be interpreted as the proportion of the 
variance in y attributable to the variance in x (see 
Eqn. 1), where 1 stands for perfect matching (fit) 
and a lower value denotes some deviations.  
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Considering the R2 threshold of 0.994 we were 
able to detect increments of the moving object in the 
range of 1/5 of a pixel. The value of the threshold is 
set to the value that gives a good enough 
approximation of the linear regression model, to 
ensure the applicable results of the measurements. 

Table 1: Comparison of standard deviations and R2 values 
for different moving increments in 2D. 

standard 
deviation[mm] R2 increments 

[mm] binary grey-
level binary grey-

level 
0.01 0.045 0.027 0.4286 0.6114 
0.1 0.090 0.042 0.8727 0.9907 
1 0.152 0.069 0.9971 0.9991 

 
The dynamic 2D test showed that when 

comparing the centers of the markers of the IR-LED 
array and the pixel areas of each marker in statically 
and dynamically (linear guide moving at full speed) 
grabbed images there is a difference in center 
positions and also the areas of markers in 
dynamically grabbed images are slightly larger than 
those of statically grabbed images. 

Table 2 presents the differences of the centers of 
the markers, and difference in sizes of the markers 
of the statically and dynamically grabbed images.  

Table 2: Comparison of the images grabbed in static and 
dynamic mode. 

 X Y width height area 
static 484.445 437.992 6 6 27 
dynamic 484.724 437.640 7 6 32 

 
Regarding the results presented in Table 2, the 

accuracy of the position in direction x of 
dynamically grabbed images comparing to statically 
grabbed is in the range of 1/3 of a pixel, due to the 
gravity centre shift of pixel area of marker during 
the movement of the linear guide.  

4.2 3D Reconstruction Tests 

We tested the static relative accuracy of the 3D 
reconstruction of the IR-LED array movements by 
linear drive. The test setup consisted of the two 
calibrated Photonfocus cameras focused on the IR-
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LED array attached to the linear drive which 
exhibited precise movements of 0.01mm, 0.1mm 
and 1mm. The mass centre points of 10 LEDs were 
extracted in 3D after each movement and relative 3D 
paths were calculated and compared to the linear 
drive paths. Only grey-level images were 
considered, due to the better results obtained in 2D 
tests, as stated in Figure 2 and in Table 1. The 
0.01mm, 0.1mm, and 1mm increments for the 3D 
tests are presented in Figure 3. 

The accuracy in 3D is lower than in the 2D case, 
due to calibration and reconstruction errors, and 
according to the tests performed it is approximately 
1/2 of a pixel.  

Table 4 presents the results of the 3D dynamic 
tests where the triangle area and side lengths a, b 
and c, reconstructed from dynamically-obtained 
images were compared to static reconstruction of the 
same triangles. 10 triangles were compared, each 
formed by a diode in IR-LED array. The average 
lengths and the standard deviations are presented. 

Table 3: Comparison of standard deviations and R2 values 
for different moving increments in 3D. 

increments [mm] standard 
deviation [mm] R2 

0.01 0.058 0.7806 
0.1 0.111 0.9315 
1 0.140 0.9974 
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Figure 3: Pixel difference in the 3D reconstruction. 

Table 4: comparison of static and dynamic triangles. All 
measurements are in mm. 

 a  σ  b  σ  c  σ  

static 193.04 12.46 89.23 2.77 167.84 12.18 
dynamic 193.51 12.43 89.03 2.77 167.52 12.03 
 

We observe a significant standard deviation (up 
to 7%) of triangle side lengths which we ascribe to 

lens distortions since it is almost the same in the 
dynamic and in the static case. The images and the 
reconstruction in dynamic conditions vary only a 
little in comparison to static ones. 

5 CONCLUSIONS 

We performed the 2D and 3D accuracy evaluation of 
the 3D robot vision system consisting of 2 identical 
1 Megapixel cameras. The measurements showed 
that the raw static 2D accuracy (without any 
subpixel processing approaches and lens distortion 
compensation) is confidently as good as 1/5 of a 
pixel. However, this is reduced to 1/2 of a pixel 
when image positions are reconstructed in 3D due to 
reconstruction errors.  

In the dynamic case, the comparison to static 
conditions showed that no significant error is 
introduced with moving markers in both, 2D and 3D 
environment. For the speed level of an industrial 
robot the accuracy is though not reduced 
significantly. 
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