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Abstract: A fast adaptive estimator is applied to the problem of range identification in the presence of unknown mo-
tion parameters. Assuming a rigid-body motion with unknown constant rotational parameters but known
translational parameters, extraction of the unknown rotational parameters is achieved by recursive least square
method. Simulations demonstrate the superior performance of fast estimation in comparison to identifier based
observers.

1 INTRODUCTION

A variety of 3D motion estimation algorithms have
been developed since 1970’s, inspired by such dis-
parate applications as robot navigation, medical imag-
ing, and video conferencing. Even though motion es-
timation from imagery is not a new topic, continual
improvements in digital imaging, computer process-
ing capabilities, and nonlinear estimation theory have
helped to keep the topic current. Assuming that the
motion of the moving object follows certain structure,
which can have parametric uncertainties, extended
Kalman filter (EKF) has been used to estimate the
states and parameters of the nonlinear system asso-
ciated with the moving object dynamics. Application
of EKF assumes linearization about the estimated tra-
jectory. However, for the motion estimation from im-
agery the geometric structure of the perspective sys-
tem can be lost during the linearization(Ghosh et al.,
1994; Dixon et al., 2003). Refs.(Jankovic and Ghosh,
1995; Chen and Kano, 2002; Dixon et al., 2003; Kara-
giannis and Astolfi, 2005; Ma et al., 2005)have con-
sidered nonlinear observers for perspective dynamic
systems (PDS) arising in visual tracking problems. In
general, a PDS is a linear system, whose output is
observed up to a homogeneous line(Chen and Kano,
2002). This class of nonlinear observers is referred to
as perspective nonlinear observers.

Perspective nonlinear observers(Jankovic and

Ghosh, 1995; Chen and Kano, 2002; Dixon et al.,
2003; Karagiannis and Astolfi, 2005; Ma et al.,
2005) are used quite often for determining the un-
known states (i.e., the 3D Euclidean coordinates) of
a moving object with known motion parameters. For
example, an identifier-based observer was proposed
in(Jankovic and Ghosh, 1995)to estimate a station-
ary point’s 3D position using a moving camera. An-
other discontinuous observer, motivated by sliding
mode and adaptive methods, is developed in(Chen
and Kano, 2002)that renders the state observation
error uniformly ultimately bounded. A state esti-
mation algorithm with a single homogeneous obser-
vation (i.e., a single image coordinate) is presented
in(Ma et al., 2005). A reduced-order nonlinear ob-
server is described in(Karagiannis and Astolfi, 2005)
to provide asymptotic range estimation. All these re-
sults are based on the assumption that the object is
following a known motion dynamics in the 3D space.

In this paper, we discuss a situation when some
of the motion parameters, more specifically, the rota-
tional parameters, are unknown constants. The objec-
tive is to achieve fast state estimation and parameter
convergence.

One model for the relative motion of a point in
the camera’s field of view is the following linear
system(Jankovic and Ghosh, 1995; Chen and Kano,
2002; Dixon et al., 2003; Karagiannis and Astolfi,
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
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


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

 ,

(1)
where the matrix[wi ] presents the rotational dynam-
ics, the vector[bi ] corresponds to the translational mo-
tion, while [X, Y, Z]⊤ are the coordinates of the point
in the camera frame. From the 2D image plane, the
homogeneous output observations are given by

x1(t) = X(t)/Z(t), x2(t) = Y(t)/Z(t). (2)

These equations might model either a stationary
point’s 3D position as observed from a moving cam-
era (assuming that the moving camera’s velocities can
be measured(Jankovic and Ghosh, 1995)) or a mov-
ing point’s 3D position as observed from a stationary
camera(Tsai and Huang, 1981). In general,wi can be
time-dependent, but in this paper we limit the discus-
sion to constantwi ’s.

Let

x(t) = [x1(t), x2(t), x3(t)]
⊤

= [X(t)/Z(t), Y(t)/Z(t), 1/Z(t)]⊤ .
(3)

The system (1) with output observations (3) is equiv-
alent to the system






[
ẋ1(t)
ẋ2(t)

]

=

[
b1−b3x1

b2−b3x2

]

x3 +

[
w2 +w1x2 +w2x2

1 +w3x1x2

w3−w1x1 +w2x1x2 +w3x2
2

]

,

ẋ3(t) = (w2x1 +w3x2)x3−b3x2
3,

(4)

with the output

y(t) = [x1(t),x2(t)]
⊤. (5)

Estimation of x3(t) from the measurements
(x1(t),x2(t)) constitutes the range identification
problem. Refs.(Jankovic and Ghosh, 1995; Chen
and Kano, 2002; Dixon et al., 2003; Karagiannis and
Astolfi, 2005; Ma et al., 2005)have solved this prob-
lem assuming that the motion parameterswi andbi in
(1) are known (wherei ∈ {1,2,3}). Here, we assume
that the parameterswi are unknown. The objective,
then, is to estimatex3(t) as well as the unknown
parameterswi . This problem can be formulated in a
way such that an existing identifier-based observer
(IBO), described in(Jankovic and Ghosh, 1995),
can be applied, such that under certain assumptions,
the approach provides exponential convergence of
both the range and the parameter estimates. A more
general case of the problem is discussed in(Ma et al.,
2007), where the rotational matrix is represented by a
3×3 matrix instead of the skew-symmetric matrix as
in (1).

In this paper, a recently-developed novel adaptive
estimator is applied for the estimation ofx3(t) along

with the unknown parameterswi . A numerical com-
parison of the performance of this adaptive estimator
with the IBO observer is provided.

The paper is organized as follows. Range identi-
fication in the presence of unknown parameters via
the IBO is presented in Sec. 2. A brief review of
the fast estimator is given in Sec. 3. In Sec. 4, fast
estimation for the range identification problem with
unknown motion parameters is presented. Section 5
presents the simulation results. Section 6 extends the
analysis to general affine motion. Finally, section 7
concludes the paper.

2 RANGE IDENTIFICATION IN
THE PRESENCE OF UNKNOWN
PARAMETERS VIA IBO

Consider the state estimation problem for the perspec-
tive dynamic system (7), where the motion parameters
wi (for i = 1,2,3) are assumed to be unknown con-
stants. Letθ be a vector of these unknown constants
defined as

θ = [w1, w2, w3]
⊤ . (6)

The system (4) can be rewritten as
[
ẋ1(t)
ẋ2(t)

]

= w⊤
s (x1,x2)

[
x3
θ

]

, (7a)

[
ẋ3(t)

θ̇

]

=






(w2x1 +w3x2)x3−b3x2
3

︸ ︷︷ ︸

gs(x1,x2,x3,w2,w3)

03×1




 , (7b)

with

w⊤
s (x1,x2) =

[
b1−b3x1 x2 1+x2

1 x1x2

b2−b3x2 −x1 x1x2 1+x2
2

]

,

(8)
which fits into the form of the general nonlinear sys-
tem to which IBO might be applicable, by regarding
x1 = [x1,x2]

⊤, x2 = [x3,θ⊤]⊤, andφ(x1,u) = 0 (please
refer to(Jankovic and Ghosh, 1995)for details of the
IBO).

To apply the IBO observer, we need the following
assumption for the system in (7):

Assumption 2.1

1. Let x(t) =
[
x1(t),x2(t),x3(t),θ⊤

]⊤
be bounded

‖x(t)‖ < M, M > 0 for every t≥ 0. LetΩ = {x ∈
R

n : ‖x(t)‖ < M}. Further, for some fixed con-
stantγ > 1, let Ωγ = {x ∈ R

n : ‖x(t)‖ < γM}.

2. The function ws(x1,x2) and its first time deriva-
tive are piecewise smooth and uniformly bounded.
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Suppose that there exist positive constants L1,L2
such that

‖w⊤
s (x1,x2)‖ < L1,

∥
∥
∥
∥

dw⊤
s (x1,x2)

dt

∥
∥
∥
∥

< L2. (9)

Further, there do not exist constantsκi (for i =
1,2,3,4) with ∑4

i=1 κ2
i 6= 0 such that

κ1v1(τ)+κ2v2(τ)+κ3v3(τ)+κ4v4(τ) = 0, (10)

for all τ ∈ [t, t + µ], where µ> 0 is a sufficiently
small constant, and vi(τ) denotes the ith column
in ws in (8).

It is straightforward to verify that, under Assump-
tion 2.1, the system in (7) verifies the assumptions re-
quired for the application of IBO. Estimation ofx3(t),
along with the unknown motion parametersθ, can be
obtained via direct application of the IBO, as given
below.

Lettinge1 = x̂1−x1, e2 = x̂2−x2, e3 = x̂3−x3, the
following observer can be designed for the system (7)






[
˙̂x1
˙̂x2

]

= GA

[
e1
e2

]

+w⊤
s (x1,x2)

[
x̂3
θ̂

]

,

[ ˙̂x3
˙̂θ

]

= −G2ws(x1,x2)P

[
e1
e2

]

+

[
gs(x1,x2, x̂3, ŵ2, ŵ3)

03×1

]

,

x̂(t+i ) = M
x̂(t−i )

‖x̂(t−i )‖
,

(11)
wherex denotes[x1,x2,x3,θ⊤]⊤, θ̂ denotes the esti-
mation ofθ, and the sequence ofti is defined as

ti = min {t : t > ti−1and‖x̂(t)‖ ≥ γM}, t0 = 0, (12)
for some fixed constantγ > 1. The closed-loop error
dynamics can be derived from (7) and (11) as






[
ė1

ė2

]

= GA

[
e1

e2

]

+w⊤
s (x1,x2)

[
e3

θ̃

]

,

[

ė3
˙̃θ

]

= −G2 ws(x1,x2)P

[
e1

e2

]

+

[
gs(x1,x2, x̂3, ŵ2, ŵ3)−gs(x1,x2,x3,w2,w3)

03×1

]

,

(13)

whereθ̃ = θ̂−θ and ˙̃θ = ˙̂θ, sinceθ is assumed to be
a constant vector. The main claim is that there ex-
ists a positive constantG0, such that the estimation
errors[e1,e2,e3, θ̃⊤]⊤ converge to zero exponentially
if the constantG in (11) is chosen to be larger than
G0(Jankovic and Ghosh, 1995).

3 FAST ESTIMATOR

Range identification in the presence of unknown mo-
tion parameters is further pursued using a recently-
developed fast adaptive estimator. The adaptive es-
timator enables estimation of the unknown time-
varying parameters in the system dynamics via fast

adaptation (large adaptive gain) and a low-pass filter.
If the time-varying unknown signal is linearly param-
eterized in unknown constant parameters, the adap-
tive estimator can be further augmented by a recur-
sive least-square algorithm (RLS) to estimate the un-
known constant parameters asymptotically(Cao and
Hovakimyan, 2007).

In the following, main results of the the adaptive
estimator are given for the purpose of completeness.
More details are presented in(Cao and Hovakimyan,
2007).

3.1 Preliminaries

Some basic definitions from linear system theory are
given in this section.

Definition 3.1 For a signal ξ(t), t ≥ 0, ξ ∈ R
n, its

L∞ norm is defined as

‖ξ‖L∞ = max
i=1,...,n

(

sup
τ≥0

|ξi(τ)|
)

, (14)

whereξi is the ith component ofξ.

Definition 3.2 TheL1 gain of a stable proper single–
input single–output system H(s) is defined as:

‖H‖L1 =

Z ∞

0
|h(t)|dt, (15)

where h(t) is the impulse response of H(s).

Definition 3.3 For a stable proper m input n output
system H(s) its L1 gain is defined as

‖H‖L1 = max
i=1,...,n

(
m

∑
j=1

‖Hi j ‖L1

)

, (16)

where Hi j (s) is the ith row jth column element of H(s).

3.2 Problem Formulation

Consider the following system dynamics:

ẋ(t) = Amx(t)+ω(t), x(0) = x0, (17)

wherex∈ R
n is the system state vector (measurable),

ω(t) ∈ R
n is a vector of unknown time-varying sig-

nals or parameters, andAm is a knownn×n Hurwitz
matrix. Let

ω(t) ∈ Ω , (18)

whereΩ is a known compact set. The signalω(t) is
further assumed to be continuously differentiable with
uniformly bounded derivative

‖ω̇(t)‖ ≤ dω < ∞, ∀ t ≥ 0, (19)

wheredω can be arbitrarily large. The estimation ob-
jective is to design an adaptive estimator that provides
fast estimation ofω(t).
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3.3 Fast Adaptive Estimator

The adaptive estimator consists of the state predictor,
the adaptive law and a low-pass filter, which extracts
the estimation information.

State Predictor: We consider the following state
predictor:

˙̂x(t) = Amx̂(t)+ ω̂(t), x̂(0) = x0, (20)

which has the same structure as the system in (17).
The only difference is that the unknown parameters
ω(t) are replaced by their adaptive estimatesω̂(t) that
are governed by the following adaptation laws.

Adaptive Laws: Adaptive estimates are given by:

˙̂ω(t) = ΓcProj(ω̂(t),−Px̃(t)), ω̂(0) = ω̂0, (21)

wherex̃(t) = x̂(t)−x(t) is the error signal between the
state of the system and the state predictor,Γc ∈ R

+ is
the adaptation rate, chosen sufficiently large, andP is
the solution of the algebraic equationA⊤

mP+ PAm =
−Q, Q > 0.

Estimation: The estimation of the unknown sig-
nal is generated by:

ωe(s) = C(s)ω̂(s), (22)

whereC(s) is a diagonal matrix with itsith diagonal
elementCi(s) being a strictly proper stable transfer
function with low-pass gainCi(0) = 1. One simple
choice is

Ci(s) =
θa

s+θa
. (23)

3.4 Convergence Results

The fast adaptive estimator in Sec. 3.3 ensures that
ωe(t) estimates the unknown signalω(t) with the final
precision:

‖1−C(s)‖L1‖ω‖L∞ +
γc√
Γc

, (24)

where‖ · ‖L1 denotes theL1 gain of the system.
To quantify this performance bound between

ωe(t) andω(t), an intermediate signalωr(t) is intro-
duced as:

ωr(s) = C(s)ω(s). (25)

The following theorem gives the performance
bound betweenωe(t) andωr(t). Details of the proof
can be found in(Cao and Hovakimyan, 2007).

Theorem 3.1 For the system in (17) and the fast
adaptive estimator in (20), (21) and (22), we have

‖ωe−ωr‖L∞ ≤ γc√
Γc

, (26)

where

γc = ‖C(s)H−1(s)‖L1

√
ωm

λmin(P)
, (27a)

H(s) = (sI−Am)−1, (27b)

ωm = max
ω∈Ω

4‖ω‖2 +2
λmax(P)

λmin(Q)

(

dω max
ω∈Ω

‖ω‖
)

, (27c)

and‖ · ‖L∞ denotes theL∞ norm of the signal.

Corollary 3.1 For the system in (17) and the fast
adaptive estimator in (20), (21) and (22), we have

lim
Γc→∞

(ωe(t)−ωr(t)) = 0, ∀ t ≥ 0. (28)

We further characterize the performance bound
betweenωr(t) andω(t). For simplicity, we use a first
orderC(s) as in (23). It follows from (25) that

ω̇r(t) = −θaωr(t)+θaω(t) , ωr(0) = 0. (29)

We note thatωr(t) can be decomposed into two com-
ponents:

ωr(t) = ωr1(t)+ωr2(t), (30)

whereωr1(t) andωr2(t) are defined via:

ω̇r1(t) = −θaωr1(t)+θaω(t), ωr1(0) = ω(0),(31a)

ω̇r2(t) = −θaωr2(t), ωr2(0) = −ω(0). (31b)

It follows from (31a) that

‖ωr1 −ω‖L∞ = ‖1−C(s)‖L1‖ω‖L∞ . (32)

Since
lim

θa→∞
‖1−C(s)‖L1 = 0, (33)

the norm‖ωr1 − ω‖L∞ can be rendered arbitrarily
small by increasing the bandwidth ofC(s). Further,
ωr2(t) decays to zero exponentially and the settling
time is inverse proportional to the bandwidth ofC(s).
Increasing the bandwidth ofC(s) implies thatωr2(t)
decays to zero quickly.

From (26) and (32), when the transients ofC(s)
due to the initial condition−ω(0) die out,ωe(t) es-
timatesω(t) with the final precision given in (24).
It is obvious that both the final estimation precision
and the transient time can be arbitrarily reduced by
increasing the bandwidth ofC(s), which leads to
smallerL1 gain for‖1−C(s)‖L1. However, the large
bandwidth ofC(s) leads to further increase ofγc,
which requires largeΓc to keep the term γc√

Γc
small.

We note that largerΓc implies faster computation and
requires smaller integration step.

3.5 Extraction of Unknown Parameters

If the time-varying signalω(t) can be linearly param-
eterized in unknown constant parameters and known
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nonlinear functions, extraction of the unknown pa-
rameters can be achieved by recursive least-square
(RLS) algorithm under certain persistent excitation
type of condition. The RLS algorithm is reviewed be-
low.

Consider a linear scalar regression model denoted
as:

ωk = θ⊤φk +ek, (34)

where
θ = [θ1,θ2, · · · ,θn]

⊤ (35)

is then×1 vector of the plant parameters, and

φk = [φk,1,φk,2, · · · ,φk,n]
⊤ (36)

is then× 1 regressor vector at time instantk, while
ek is a zero-mean discrete white noise sequence with
varianceσ2

k. When the observation of(ωk,φk) has
been obtained fork = 1, · · · ,N (with N > n), the RLS
estimate forθ, denoted bŷθ, can be obtained in the
following discrete form(Verhaegen, 1989):

Lk =
Pk−1φk

λ+φ⊤k Pk−1φk
,

θ̂k = θ̂k−1 +Lk(ωk−φ⊤k θ̂k−1),

Pk =
1
λ

(

Pk−1−
Pk−1φkφ⊤k Pk−1

λ+φ⊤k Pk−1φk

)

,

(37)

whereP0 = pIp×p andλ ∈ (0,1]. Coefficientsp andλ
are design gains and need to be chosen appropriately.
Whenφk is persistently exciting during the observa-
tion period, RLS algorithm ensures the convergence
of θ̂ to θ. The convergence rate of RLS can be in-
creased by choosing largeλ.

The PE condition of the regressor vector is defined
as(Verhaegen, 1989):

Definition 3.4 The regressor vectorφk is persistently
exciting over the observation interval k0 ≤ k ≤ kN
with an exponentially forgetting factorλ ≤ 1, if the
following condition is fulfilled:

αI ≤
kN

∑
k=k0

φkφ⊤k λkN−k ≤ βI (38)

for some positiveα > 0 andβ > 0.

4 FAST ESTIMATION FOR
RANGE IDENTIFICATION IN
THE PRESENCE OF
UNKNOWN PARAMETERS

Denote

η(t) =

[
η1(t)
η2(t)

]

, (39)

and write equation (7a) as
[
ẋ1(t)
ẋ2(t)

]

= w⊤
s (x1,x2)

[
x3(t)

θ

]

= η(t). (40)

From equations (6), (8), and (40), we have

[
b1−b3x1 x2 1+x2

1 x1x2

b2−b3x2 −x1 x1x2 1+x2
2

]






x3(t)
w1
w2
w3




= η(t).

(41)
Multiplying the first equation in (41) byT2 = b2 −
b3x2(t) and subtracting the second equation from it
pre-multiplying it byT1 = b1−b3x1(t), we arrive at:

[
T2x2 +T1x1,T2(1+x2

1)−T1x1x2,T2x1x2−T1(1+x2
2)
]

︸ ︷︷ ︸

φ⊤(t)





w1

w2

w3





︸ ︷︷ ︸

θ(t)

= [T2η1−T1η2].
(42)

Recursive least squares method can be used to extract
wi ’s according to (37), withω replaced byT2η1 −
T1η2. Oncewi (for i = 1,2,3) are available, equation
(41) takes the form:

[
b1−b3x1
b2−b3x2

]

x3 =

[
η1
η2

]

−
[

x2 1+x2
1 x1x2

−x1 x1x2 1+x2
2

]




w1
w2
w3



 ,

(43)
wherex3(t) can be extracted using pseudo-inverse.

Using the fast adaptive estimator described in
Sec. 3, estimation ofη(t), denoted byηe(t), can be
obtained via the following steps:

• State Estimator:
[

˙̂x1
˙̂x2

]

= Am

[
x̃1
x̃2

]

+ η̂(t),

[
x̃1
x̃2

]

=

[
x̂1−x1
x̂2−x2

]

. (44)

• Adaptive Law (use largeΓc):

˙̂η(t) = −ΓcP⊤ [x̃1 x̃2
]⊤

. (45)

• Extraction:

ηe(s) = C(s)η̂(s), C(s) =
C

s+C
. (46)

According to Corollary 3.1, the final estimation pre-
cision ηe(t)−η(t) and the transient time to achieve
this can be arbitrarily reduced by increasing the band-
width of C(s). Increasing the bandwidth ofC(s) re-
quires largerΓc.

The flow chart of state and parameter estimation
of a rigid motion using the fast adaptive estimator is
illustrated in Fig. 1. In the first step of estimatingη(t),
both the estimation precision and transient time can
be arbitrarily reduced by increasing the bandwidth of
C(s) and using largerΓc. In the second step of extract-
ing ŵi ’s from ηe(t) using the recursive least square

FAST ESTIMATION FOR RANGE IDENTIFICATION IN THE PRESENCE OF UNKNOWN MOTION
PARAMETERS

161



method, fast speed can be achieved by properly tun-
ing the RLS gains. Estimation ofx3(t), denoted by
x̂3(t), can be obtained fromηe(t) andŵi ’s via pseudo-
inverse. Since the fast adaptive estimator assumes
minimization of theL1 gain of 1−C(s) for perfor-
mance improvement, it is referred to asL1 adaptive
estimator.

)(teη )(ˆ3 tx

          
 
 
 
 
 

)(ˆ tη  )(sC  

Adaptive Estimator 

RLS 
)(ˆ twi Pseudo-inverse 

Figure 1: Flow chart ofL1 adaptive estimator.

5 SIMULATION RESULTS

State estimation of[x3(t),θ⊤]⊤ using the IBO ob-
server (11) and the fast adaptive estimator (44) (46)
are implemented in Matlab, where the motion dynam-
ics are selected to be




Ẋ(t)
Ẏ(t)
Ż(t)



=





0 −4 −0.8
4 0 −0.6

0.8 0.6 0









X(t)
Y(t)
Z(t)



+





10
3πsin(2πt)

3πsin(2πt +π/4)



 ,

(X0,Y0,Z0) = (1,1.5,2.5), x0 = (X0/Z0,Y0/Z0,1/Z0).
(47)

First, we present simulation results in the ideal case
with no measurement noise. The parameters for the
IBO observer and the fast adaptive estimator are cho-
sen to be:

• IBO (referring to (11)):
G= 10, (x̂3(0), ŵ1(0), ŵ2(0), ŵ3(0)) = (0,0,0,0).

• Fast adaptive estimator (referring to (37), (45),
(46)):
p = 100, λ = 0.99999, Am = −I2,
(η̂1(0), η̂2(0)) = (0,0), Γc = 2×108, C = 200.

In both cases, we set (x̂1(0), x̂2(0)) =
(x1(0),x2(0)), M = 30, A = I2, P = −1/2 × I2,
whereI2 denotes the 2×2 identity matrix.

Estimation ofwi (for i = 1,2,3) with the use of the
IBO and the fast adaptive estimator is shown in Fig-
ures 2 and 3, respectively. Figure 4 shows the zoomed
version of Figure 3 for the steady state error. State es-
timation error ofx3 is plotted in Figure 5 for compar-
ison of both methods.

From Figures 2 and 3, it can be observed that the
fast adaptive estimator achieves faster estimation of
the motion parameters. The same is true forx3.

Simulation results are also presented in Figs. 6∼9
when the output is noise-corrupted with uniform
bound±10−2. The simulation parameters are the
same as above. In this case, when extracting ˆx3(t), the
output from the pseudo-inverse is further processed
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Figure 2: Estimation of motion parametersusing IBO
(without measurement noise).
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Figure 3: Estimation of motion parametersusing fast adap-
tive estimator (without measurement noise).

using a low-pass filter30
s+30 to give the final state esti-

mation. We observe that corresponding plots with or
without measurement noise are very similar.

6 FURTHER EXTENSION

In this paper, rigid-body motion is considered that
contains only three rotational parameters(w1,w2,w3)
as given in (1). For general affine motion described
by




Ẋ(t)
Ẏ(t)
Ż(t)



=





a11 a12 a13
a21 a22 a23
a31 a32 a33









X(t)
Y(t)
Z(t)



+





b1
b2
b3



 , (48)

the rotational matrix contains nine parameters. As-
suming that the[ai j ] (for i, j = 1,2,3) are unknown
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Figure 4: Enlarged view of Fig. 3 (without measurement
noise).
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Figure 5: Comparison of state estimation errors (without
measurement noise).

constants, the method described in Sec. 4 cannot lead
to extraction of the nine unknown parameters in a
straightforward way.

The system (48) with output observations (3) is
equivalent to the system






[
ẋ1(t)
ẋ2(t)

]

=

[
b1−b3x1
b2−b3x2

]

x3 +

[
a13+(a11−a33)x1

a23+a21x1

]

+

[
a12x2−a31x2

1− a32x1x2

(a22−a33)x2−a31x1x2− a32x2
2

]

,

ẋ3(t) = −(a31x1 +a32x2 +a33)x3−b3x2
3,

(49)
with the output (5). The above system can also be
rewritten in the form of (7a), whereθ andw⊤

s (x1,x2)
take the forms

θ = [a11, a12, a13, a21, a22, a23, a31, a32, a33]
⊤ ,

(50)
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Figure 6: Estimation of motion parametersusing IBO (with
measurement noise).
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Figure 7: Estimation of motion parametersusing fast adap-
tive estimator (with measurement noise).

and

w⊤
s (x1,x2) =

[
b1−b3x1 x1 x2 1 0 0 0
b2−b3x2 0 0 0 x1 x2 1

−x2
1 −x1x2 −x1

−x1x2 −x2
2 −x2

]

,

(51)

respectively. Following the logic in Sec. 4, we can
write the following system of algebraic equations

w⊤
s (x1,x2)

[
x3 a11 a12 · · · a33

]⊤
=

[
η1
η2

]

,

(52)
with thew⊤

s (x1,x2) given in (51). Again, multiplying
the first equation in (52) byT2 = b2−b3x2 and sub-
tracting the second equation from it pre-multiplying it
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Figure 8: Enlarged view of Fig. 7 (with measurement
noise).
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Figure 9: Comparison of state estimation errors (with mea-
surement noise).

by T1 = b1−b3x1, we arrive at:

[T2(x1,x2,1), T1(x1,x2,1), (b1x2−b2x1)(x1,x2,1)]
︸ ︷︷ ︸

φaffine(t)







a11
a12
...

a33







= [T2η1−T1η2].
(53)

The nine columns inφaffine(t) in (53) are linearly de-
pendent. It is obvious that the 7th,8th, and 9th columns
can be presented as linear combinations of the first
six columns. For example, column9 can be written
as column9 = column5 − column1. Thus, extraction
of the nine unknown parameters cannot be performed
by the recursive least square method since it violates
the PE condition in (38). Further research will ex-
plore the use of adaptive observers for general affine
motion identification.

7 CONCLUSION

A recently developed fast adaptive estimator is ap-
plied to the range identification problem of a rigid
motion in the presence of unknown motion parame-
ters. Fast convergence speed is achieved compared to
existing nonlinear perspective observers.
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