
ZISC Neural Network Base Indicator for Classification 
Complexity Estimation 

Ivan Budnyk, Abdennasser Сhebira and Kurosh Madani 

Images, Signals and Intelligent Systems Laboratory (LISSI / EA 3956) 
PARIS XII University, Senart-Fontainebleau Institute of Technology 

Bat.A, Av. Pierre Point, F-77127 Lieusaint, France 

Abstract. This paper presents a new approach for estimating task complexity 
using IBM© Zero Instruction Set Computer (ZISC ©). The goal is to build a 
neural tree structure following the paradigm “divide and rule”. The aim of this 
work is to define a complexity indicator-function and to hallmark its’ main fea-
tures. 

1 Introduction 

In this paper, we present the key point of a modular neural tree structure used to solve 
classification problems. This modular tree structure called Tree Divide To Simplify 
(T-DTS) is based on the divide to conquer paradigm [1]. Complexity reduction is the 
key point on which the presented modular approach acts. Complexity reduction is 
performed not only at problem’s solution level but also at processing procedure’s 
level. The main idea is to reduce the complexity by splitting a complex problem into a 
set of simpler problems: this leads to “multi-modeling" where a set of simple models 
is used to sculpt a complex behavior. Thus, one of the foremost functions to be per-
formed is the complexity estimation. The complexity estimation approach we present 
in this paper is based on a neurocomputer [2]. Before describing the proposed ap-
proach, we present in the second section T-DTS paradigm and then the IBM© Zero 
Instruction Set Computer (ZISC®) tool. In the third section we propose a new ap-
proach for complexity estimation. We validate our approach with an academic 
benchmark problem and study the proposed indicator function’s properties. Final 
section presents conclusion and further perspectives of the presented work. 

2 Applied Systems 

In a very large number of cases dealing with real world dilemmas and applications 
(system identification, industrial processes, manufacturing regulation, optimization, 
decision, pattern recognition, systems, plants safety, etc), information is available as 
data stored in files (databases etc…) [3]. So, efficient data processing becomes a chief 
condition to solve problems related to above-mentioned areas. 

Budnyk I., Ðąhebira A. and Madani K. (2007).
ZISC Neural Network Base Indicator for Classification Complexity Estimation.
In Proceedings of the 3rd International Workshop on Artificial Neural Networks and Intelligent Information Processing, pages 38-47
DOI: 10.5220/0001635600380047
Copyright c© SciTePress



An issue could be model complexity reduction by splitting a complex problem into a 
set of simpler problems: multi-modeling where a set of simple models is used to 
sculpt a complex behavior ([4] and [5]). For such purpose a tree-like splitting process, 
based on complexity estimation, divides the problem’s representative database on a 
set of sub-databases, constructing a specific model (dedicated processing module) for 
each of obtained sub-databases. That leads to a modular tree-like processing architec-
ture including several models.  

2.1 Neural Tree Modular Approach 

In order to deal with real word problem, we have proposed a modular approach based 
on divide and conquer paradigm ([1], [3]). In this approach, Tree Divide To Simplify 
or T-DTS, we divide a problem in sub problems recursively and generate a neural tree 
computing structure.  T-DTS and associated algorithm construct a tree-like evolution-
ary neural architecture automatically where nodes are decision units, and leafs corre-
spond to neural based processing units ([5], [6], [7]). 
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Fig. 1. General bloc diagram of T-DTS. 

T-DTS includes two main operation modes. The first is the learning mode, when 
T-DTS system decomposes the input database and provides processing sub-structures 
and tools for decomposed sets of data. The second mode is the operation mode. Fig-
ure 1 gives the general bloc diagram of T-DTS operational steps. As shows this fig-
ure, T-DTS could be characterized by four main operations: “data pre-processing”, 
“learning process”, “generalization process” and complexity estimation module. The 
tree structure construction is guided mainly by the complexity estimation module. 
This module introduces a feedback in the learning process and control the tree com-
puting structure. The reliability of tree model to sculpt the problem behavior is asso-
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ciated mainly to the complexity estimation module. This paper focuses on this aspect 
and proposes a new approach based on a neurocomputer. In the following sub-section 
we describe ZISC® neurocomputer. 

2.2 IBM(c) ZISC® Neurocomputer 

ZISC® neurocomputer is a fully integrated circuit based on neural network designed 
for recognition and classification application which generally required supercomput-
ing. IBM ZISC-036 ([2], [5], [8]) is a parallel neural processor based on the RCE 
(Reduced Coulomb Energy algorithm automatically adjusts the number of hidden 
units and converges in only few epochs. The intermediate neurons are added only 
when it is necessary. The influence field is then adjusted to minimize conflicting 
zones by a threshold) and KNN algorithms (The k-nearest neighbor algorithm - 
method for classifying objects based on closest training examples in the feature space. 
k-NN is a type of instance-based learning, or lazy-learning where the function is only 
approximated locally and all computation is deferred until classification). 

Each chip is able to perform up to 250 000 recognitions per second ZISC® is the 
implementation of the RBF-like (Radial Basic Function) model [9]. RBF approach 
could be seen as mapping an N-dimensional space by prototypes. Each prototype is 
associated with a category and an influence field. ZISC® system implements two 
kinds of distance metrics called L1 and LSUP respectively. The first one (L1) corre-
sponds to a polyhedral volume influence field and the second (LSUP) to a hyper-
cubical one.  
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Fig. 2. IBM ZISC-036 chip’s bloc diagram. 

ZISC® neuron is an element, which is able: 
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• to memorize a prototype composed of 64 components, the associated category, 
an influence field and a context, 

• to compute the distance, based on the selected norm (norm L1 or LSUP) be-
tween its memorized prototype and the input vector, 

• to compare the computed distance with the influence fields, 
• to interact with other neurons (in order to find the minimum distance, category, 

etc.), 
• to adjust its influence field (during learning phase). 

Fig 2 shows the bloc-diagram of an IBM© ZISC® chip. The next section present 
the complexity estimation approach based on such neurocomputer’s capabilities. 

3 Complexity Estimation Approach 

The aim of complexity estimation is to check and measure the difficulty of a classifi-
cation task, before proper processing. Classification complexity estimation is used to 
understand the behavior of classifiers. The most famous classification methods are 
based on Bayes error, the theoretical probability of classification error. However it is 
well known that Bayes error is difficult to compute directly. Significant part of com-
plexity estimation methods is related to Bayes error estimation. There are two general 
ways to estimate Bayes error:  
• indirectly [10] by proposing a measure which is a lower or higher bound of it 

but easier to compute than direct estimation, 
• Bayes error estimation by non-parametric method and show the relation to 

Bayes error [11]. Other methods use space partitioning [12]. 
We deal with classification problems. We suppose that a database compounded of 

a collection of m objects associated to labels or categories is available. To estimate 
such database complexity we use the ZISC® as a classification tool. The goal we 
want to reach is not to build a classifier for this problem, but to estimate the prob-
lems’ difficulty. We first used the ZISC® neurocomputer to learn this classification 
problem using the associated database. Then we estimate the task complexity by 
analyzing the generated neural network structure.  We expect that a more complex 
problem will involve a more complex structure. The simplest neural network structure 
feature is the number n of neurons created during the learning phase. The following 
indicator is defined, where n is a parameter that reflects complexity: 

m
nQ =  , 0,1 ≥≥ nm  (1) 

We suppose that there exists some function n = g(.) that reflects problem com-
plexity. The arguments of this function may be the signal-to-noise ratio, the dimen-
sion of the representation space, boundary non-linearity and/or database size. 

In a first approach, we consider only g(.) function’s variations according to m 
axis: g(m). 

We suppose that our database is free of any incorrect or missing information. 
On the basis on g(m), a complexity indicator is defined as follow: 
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We expect that for the same problem, as we enhance m, the problem seem to be 
less complex: more information reduces problem ambiguity. On the other hand, for 
problems of different and increasing complexity, Qi indicator should have a higher 
value. In order to check the expected behavior of this indicator function, we have 
defined an academic and specific benchmark presented in the following sub-section. 

3.1 Academic Benchmark Description 

Basically we construct 5 databases representing a mapping of a restricted 2D space to 
2 categories, (Fig. 3). Each pattern was divided into two and more equal striped sub-
zones, each of them belonging to the categories 1 or 2 alternatively. 

 

 
Fig. 3. Test patterns. 

In learning mode, we create samples using randomly generated points with coor-
dinates (x,y). The number of samples m, in our case of uniform random distribution, 
naturally has an influence on the quality of the striped zones (categories) demarca-
tion. According to the value of the first coordinate x, and according to the amount of 
the striped sub-zones, the appropriate category c is assigned to the sample, and such 
structure (xj ,yj, cj) sends to neurocomputer on learning. 

The second mode is a classification or in other words real testing of the generaliz-
ing ZISC® neurocomputer abilities. We again, randomly and uniformly, generate m 
samples and their associated category. Getting classification statistics, we compute 
the indicator-function Qi. 

3.2 Results 

The testing has been performed within: 
• 2 IBM(c) ZISC® modes (LSUP/L1), 
• 5 different databases with increasing complexity, 
• 8 variants of m value (50, 100, 250, 500, 1000, 2500, 5000, 10000). 

For each set of parameters, tests are repeated 10 times in order to get statistics and 
as stated to check the deviations and to get average. Totally, 800 tests have been per-
formed. 
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Fig. 4. LSUP ZISC’s mode, Qi(m). 

 
Fig. 5. L1 ZISC’s mode, Qi(m). 

Fig. 4 and Fig. 5 show the charts of Qi where i is the database index or pattern in-
dex. We expect that Q5 for 10 sub-zones reaches a higher value than Q1. Intuitively the 
problem corresponding to classification of 10 stripped zones (Q5) is more complex 
than for 2 (Q1). 
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The chart analysis suggests that exists a point(s) mj such as: 
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At such point mj we have the following propreties: 
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It means that there exists one or more points mj where the second derivative of Qi 

changes its sign. Then we are interesting in m0 defined by: 

kj

kkj

mmm

mmmmm

<<<<

==

.....

,),...,..,max(

1

10  (5) 

 
Where k is the number of points mj. 
After polynomial approximation for 2 different ZISC’s modes we compute the 

coefficients of complexity Qi(m0). Table 1 represents the summary of the obtained 
results described on the Figures 4 and 5 

Table 1. Coefficients of complexity for DNA sequences recognition. 

 
 

 
 
 
 
 
 
Main characteristic of the point m0 is: 

constmQmmm i →⇒+∞→>∀ )(:0  (6) 

 
In our case const = 0 , in general not obviously const = 0. The feature of the second 

derivative sign changing is also a characteristic of success rate of the classification 
(Fig. 6 and Fig. 7).That supports the idea of the strong influence second derivate fea-
ture has on the complexity estimation task. That fact turn a look on the problems not 

LSUP L1 ZISC’s mode 
m0 Qi(m0) m0 Qi(m0) 

Example 1 100 0.154 88 0.151 
Example 2 170 0.182 168 0.177 
Example 3 190 0.233 186 0.229 
Example 4 235 0.240 229 0.239 
Example 5 265 0.261 254 0.254 
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from the quantity side of complexity, but allows us to make a transitional step on the 
quality level. It is clearly seen that in our pattern examples, complexity of the classifi-
cation is lying in the range from Example 1 (2 zones, the easiest one) till Example 5. 
Analysis of the plots m0,Q1 (Example 1) till m0,Q5 (Example 5) for related classification 
tasks implies the following property: 

 

54321 ,0,0,0,0,0 QQQQQ mmmmm <<<<  (7) 

 
In our particular case  

)()()()()( 0504030201 mQmQmQmQmQ <<<<  (8) 

 
In our experimental validations, the relation (6) (giving the limit of Qi (m) when m 

becomes + ∞) can be interpreted as the case where m is large comparing to m0 mean-
ing that the additional new data doesn’t change the dynamic of the classification tasks. 
In other words this signifies that situation becomes more predictable regarding indica-
tors’ evolution (Fig 4 and Fig 5) and the classification rates (Fig 6 and Fig 7). 

 
Fig. 6. Success rates of patterns’ classification. Example 1 – 5. LSUP ZISC’s mode. 
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Fig. 7. Success rates of patterns’ classification. Example 1 – 5. L1 ZISC’s mode. 

On the other hand, one can consider a particular value of m (an interesting value is 
m0 for which the second derivative of Qi (m) changes the sign) making Qi(m0) acting as 
a “complexity coefficient”. In our case, Qi(m0) acts as a “checkpoint” evaluating the 
“stability of the classification process”. The increase of m0  stands for the classification 
task’s complexity increasing. 

4 Conclusions 

In this paper we describe a new method for complexity estimation and propose a 
constructed Q(m) – indicator function. This approach is based on the ZISC neuro-
computer. The complexity indicator is extracted from some pertinent neural network 
structure parameters and specifically in this paper from the number of neuron in the 
structure. More complex structures are related to more complex problems. The pre-
sented concept have been implemented on IBM© ZISC-036 ® massively parallel 
neurocomputer validated using a two-classes set of classification academic bench-
marks with increasing complexity. First investigation of the second derivative sign 
behavior of the proposed complexity indicator allows to exhibit some interesting 
properties. 

Perspectives of this work will be a formal description of the defined complexity 
indicator, the specification of other pertinent parameters and the study of their proper-
ties. We are also working on the validation of this theoretical approach to complexity 
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evaluation of a real-word problem in the medical area:  DNA patterns classification 
(recognizing given a sequence of DNA the boundaries between exons and introns). 
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