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Abstract. A major step for high-quality optical surfaces faults diagnosis con-
cerns scratches and digs defects characterisation. This challenging operation is 
very important since it is directly linked with the produced optical component’s 
quality. To complete optical devices diagnosis, a classification phase is manda-
tory since a number of correctable defects are usually present beside the poten-
tial “abiding” ones. Unfortunately relevant data extracted from raw image dur-
ing defects detection phase are high dimensional. This can have harmful effect 
on behaviors of artificial neural networks which are suitable to perform such a 
challenging classification. Reducing data dimension to a smaller value can 
however decrease problems related to high dimensionality. In this paper we 
compare different techniques which permit dimensionality reduction and evalu-
ate their possible impact on classification tasks performances. 

1 Introduction 

We are involved in fault diagnosis of optical devices in industrial environment. In 
fact, classification of detected faults is among chief phases for succeeding in such 
diagnosis. Aesthetic flaws, shaped during different manufacturing steps, could pro-
voke harmful effects on optical devices’ functional specificities, as well as on their 
optical performances by generating undesirable scatter light, which could seriously 
degrade the expected optical features. Taking into account the above-mentioned 
points, a reliable diagnosis of these defects in high-quality optical devices becomes a 
crucial task to ensure products’ nominal specification and to enhance the production 
quality. Moreover, the diagnosis of these defects is strongly motivated by manufac-
turing process correction requirements in order to guarantee mass production (repeti-
tive) quality with the aim of maintaining acceptable production yield.  

Unfortunately, detecting and measuring such defects is still a challenging dilemma 
in production conditions and the few available automatic control solutions remain 
ineffective. That’s why, in most of cases, the diagnosis is performed on the basis of a 
human expert based visual inspection of the whole production. However, this usual 
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solution suffers from several acute restrictions related to human operator’s intrinsic 
limitations (reduced sensitivity for very small defects, detection exhaustiveness al-
teration due to attentiveness shrinkage, operator’s tiredness and weariness due to 
repetitive nature of fault detection and fault diagnosis tasks).    
 To overcome these problems we have proposed a detection approach based on 
Nomarski’s microscopy issued imaging [1] [2]. This method provides robust detec-
tion and reliable measurement of outward defects, making plausible a fully automatic 
inspection of optical products. However, the above-mentioned detection process 
should be completed by an automatic classification system in order to discriminate the 
“false” defects (correctable defects) from “abiding” (permanent) ones. In fact, be-
cause of industrial environment, a number of correctable defects (like dusts or clean-
ing marks) are usually present beside the potential “abiding” defects. That is why the 
association of a faults’ classification system to the aforementioned detection module 
is a foremost supply to ensure a reliable diagnosis. In a precedent paper [3], we pro-
posed a method to extract relevant data from raw Nomarski images. In the aim of 
effectively classify these descriptors, neural network based techniques seem appropri-
ate because they have shown many attractive features in complex pattern recognition 
and classification tasks [4] [5]. But we are dealing with high dimensional data (13 and 
more components vectors), therefore behaviour of a number of these algorithms could 
be affected. To avoid this problem we are investigating different dimension reduction 
techniques for achieving better classification (in terms of performance and processing 
time). 

 This paper is organized as follows: in the next section, motivations for reducing 
data dimensionality and also SOM, CCA and CDA, three technique carrying out this 
task are introduced. These techniques have been tested using an experimental proto-
col presented in Section 3. The Section 4 deals with experiments results: first a com-
parison of data projection quality and an analysis of their possible impact on classifi-
cation tasks are carried out. Secondly this impact is demonstrated on a classification 
task involving Multilayer Perceptron artificial neural network. Finally, the Section 5 
will conclude this work and will give a number of perspectives. 

2 Data Dimensionality Reduction Techniques 

It can be found in literature, lot of examples using various dimension reduction tech-
niques (linear or not) as a preliminary step before more refined processing, among 
which, Self Organizing Maps (SOM) [6;7], Curvilinear Component Analysis (CCA) 
[8;9] and Curvilinear Distance Analysis (CDA) [10]. 

2.1 The “curse of dimensionality” 

Dealing with high-dimensional data indeed poses problems, known as “curse of di-
mensionality” [9]. First, sample number required to reach a predefined level of preci-
sion in approximation tasks, increases exponentially with dimension. Thus, intui-
tively, the sample number needed to properly learn problem becomes quickly much 
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too large to be collected by real systems, when dimension of data increases. Moreover 
surprising phenomena appear when working in high dimension [11] : for example, 
variance of distances between vectors remains fixed while its average increases with 
the space dimension, and Gaussian kernel local properties are also lost. These last 
points explain that behaviour of a number of artificial neural network algorithms 
could be affected while dealing with high-dimensional data. Fortunately, most real-
world problem data are located in a manifold of dimension p much smaller than its 
raw dimension. Reducing data dimensionality to this smaller value can therefore 
decrease the problems related to high dimension. 

2.2 Self-Organizing Maps (SOM) 

Self-Organizing Map is a classical method originally proposed by Kohonen [12]. This 
algorithm projects multidimensional feature space into a low-dimensional presenta-
tion. Typically a SOM consists of a two dimensional grid of neurons. A vector of 
features is associated with each neuron. During the training phase, these vectors are 
tuned to represent the training data under constraint of neighbourhood conservation. 
Similar data are projected to the same or nearby neurons in the SOM, while different 
ones are mapped to neurons located further from each other, resulting in clustered 
data. Thus, SOM is an efficient tool for quantizing the data’s space and projecting 
this space onto a low-dimensional space, while conserving its topology. SOM is often 
used in industrial engineering [13], [14] to characterize high-dimensional data or to 
carry out classification tasks. Unfortunately it suffers from major drawbacks: first the 
configuration of the topology is static and should be fixed a priori (what is efficient 
only for little values of projection subspace dimension), moreover the method defines 
only a discrete nonlinear subspace, and finally algorithm is computationally too ex-
pensive to be practically applied for projection space dimension higher than 3.   

2.3 Curvilinear Component Analysis (CCA) 

The goal of this technique proposed by Demartines [15] is to reproduce the topology 
of a n-dimension original space in a new p-dimension space (where p<n) without 
fixing any configuration of the topology. To do so, a criterion characterizing the dif-
ferences between original and projected space topologies is processed: 
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considered distribution in original space (resp. in projected space), and F is a decreas-
ing function which favors local topology with respect to the global topology. This 
energy function is minimized by stochastic gradient descent [16]: 
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Where ]1;0[: →ℜ+α  and ++ ℜ→ℜ:λ are two decreasing functions represent-
ing respectively a learning parameter and a neighborhood factor. CCA provides also a 
similar method to project, in continuous way, new points in the original space onto 
the projected space, using the knowledge of already projected vectors. 

2.4 Curvilinear Distance Analysis (CDA) 

Since CCA encounters difficulties with unfolding of very non-linear manifolds, an 
evolution called CDA has been proposed [17]. It involves curvilinear distances (in 
order to better approximate geodesic distances on the considered manifold) instead of 
Euclidean ones. Curvilinear distances are processed in two steps way. First is built a 
graph between vectors by considering k-NN,ε , or other neighbourhood, weighted by 
Euclidean distance between adjacent nodes. Then the curvilinear distance between 
two vectors is computed as the minimal distance between these vectors in the graph 
using Dijkstra’s algorithm. Finally the original CCA algorithm is applied using proc-
essed curvilinear distances. This algorithm allows dealing with very non-linear mani-
folds and is much more robust against the choices of α and λ functions. 

3 Experimental Validation Protocol 

In order to obtain exploitable data for a classification scheme, we first needed to ex-
tract relevant information of raw Nomarski’s microscopy issued images. We pro-
posed to proceed in two steps [2]: first a detected items’ images extraction phase and 
then an appropriated coding of the extracted images. The image associated to a given 
detected item is constructed considering a stripe of ten pixels around its pixels. Thus 
the obtained image gives an isolated (from other items) representation of the defect 
(e.g. depicts the defect in its immediate environment). Figure 1 gives four examples 
of detected items’ images using the aforementioned technique. It shows different 
characteristic items which could be found on optical device in industrial environment. 

 

a) b) c) d)  

Fig. 1. Images of characteristic items:  a) scratch; b) dig; c) dust; d) cleaning marks. 

The information contained in such images is highly redundant. Furthermore, the gen-
erated images don’t have necessarily the same dimension (typically this dimension 
can turn out to be thousand times as high). That is why these raw data (images) can-

59



not be directly processed and have to be appropriately encoded. This is done using a 
set of Fourier-Mellin transform issued invariants described bellow. The Fourier-
Mellin transform of a function );( θrf , in polar coordinates, is given by relation (1), 

with q∈  Z, s = σ + ip ∈  C (see[18]): 
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In [19], are proposed a set of features invariant on geometric transformation: 
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In order to validate the above-presented concepts and to provide an industrial proto-
type, an automatic control system has been realized. It involves an Olympus B52 
microscope combined with a Corvus stage, which allows scanning an entire optical 
component. 50x magnification is used, that leads to microscopic 1.77mm x 1.33 mm 
fields and 1.28µm x 1.28µm sized pixels. These facilities were used to acquire a great 
number of defects images. These images were coded using Fourier-Mellin transform 
with 1=σ  and  { });1()0;0/(),(),( PpPQqPpqpqpq ≤≤−≤≤∪≤≤=∈  
where 1=P  and 2=Q  (see Equation 2). Such transform provides a set of 13 features 
for each item. Three experiments called A, B, C were carried out, using two optical 
devices. Table 1 shows the different parameters corresponding to these experiments. 
It’s important to note that, in order to avoid false classes learning, items images de-
picting microscopic field boundaries or two (or more) different defects are discarded 
from used database. First, since database C is issued from a cleaned device, it’s con-
stituted with almost only “permanent” defect. And because database B came from the 
measurement of the same optical device but without cleaning phase, it’s constituted 
with the same type of “permanent” defects but also with “correctable” ones. In the 
aim of studying structure of space described by database when reducing its dimen-
sion, we perform some experiments. First a reduction of dimensionality from 13 (raw 
dimensionality) to 2 of the database B was performed using SOM, CCA and CDA, in 
order to compare projection quality of these three techniques  Then the entire data-
base C was projected into the obtained space in order to evaluate the pertinence of 
dimensionality reduction for discrimination between “correctable” and “abiding” 
defects. Finally a classification task, involving aforementioned databases and Multi-
layer Perceptron artificial neural network, was carried out with and without dimen-
sionality reduction phase with the aim to demonstrate usefulness of such pre-
processing phase. 
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Table 1.   Description of the three experiments supplying studied databases. 

Database Optical Device 
Identifiant Cleaning Number of studied 

microscopic fields 
Correspondant 

studied area 
Number of items in 

the learning database 

A 1 No 1178 28 cm² 3865 

B 2 No 605 14 cm² 1910 

C 2 Yes 529 12,5 cm² 1544 

4 Experimental Results and Analysis 

4.1 Quality of Projection 

Dimensionality reduction has been performed using the three aforementioned tech-
niques, SOM, ACC and CDA on database B. To compare the results of the three 
experiments, the 2-D projections issued from CCA and CDA were processed by a 
SOM, using the same shape of grid (20x8) as in the SOM experiment. An important 
point is that SOM is just used, in these two last cases, to perform a quantization and 
not for dimension reduction, since it works on a 2 dimension space. Therefore, we 
can directly compare dimension reduction ability of the different techniques by com-
paring these maps with map obtained by applying SOM’s algorithm on raw data.  The 
quality evaluation of non-linear projection of the data space onto the neurons grid 
space is performed by studying, for each pair of neurons, the dx distance between 
these two neurons in the data space, versus the dy distance between these two neurons 
in the grid space [20]. For each couple of neurons );( ji we draw a point 

)),();,(( jidxjidy  where ji xxjidx −=),(  and ji yyjidy −=),( . 

kx (resp. ky ) is the vector of features corresponding to the k-th neuron in the data 
space (resp. in the grid space). If the topology of the data space is not well respected, 
dx is not related to dy and we obtain a diffuse cloud of points. On the contrary, if 
neurons organization is correct, the drawn points are almost arranged along a straight 
line. 

 
Fig. 2. dy-dx representation of the three obtained SOMs for database B (mean □ and standard 
deviation ◊ of dx are also represented). Left: SOM; middle: CCA; right: CDA. 
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First, in Figure 2, cloud of points is more diffuse for SOM than in the case of CCA, 
and the curve constituted by dx averages for each dy less uniformly monotonic. It 
reveals the fact that the CCA performs better than SOM, while approximately the 
same quantity is minimized. The cloud obtained for CDA is quite different because 
dy is related to curvilinear distance and not Euclidean one. The figure is however the 
same as for CCA for little dy value, because in these cases Euclidean distance is a 
good approximate of curvilinear one (and therefore distribution is locally linear).  

4.2 Analysis of Possible Impact on Classification Tasks 

We now consider the database C (only “permanent” defects) and project its items 
onto the three previously obtained SOMs. We perform also an equivalent experiment 
on raw data (13-dimension), using k-means algorithm with k=20x8=160. Since k-
means algorithm has identical behaviour as SOM, except concerning neighbourhood 
constraints, it has the same effect on projected items distribution but doesn’t allow 
visual representation. Projected items distribution after SOM (Figure 3), CCA (Figure 
4) and CDA (Figure 5) dimension reduction are studied. In these figures, the equal-
ized grey level depicts the number of projected items for each SOM’s cell (this num-
ber is also reported in the cell). In table 2 are reported some characteristic values of 
permanent defects distributions “homogeneity”:  entropy and standard deviation of 
projected items number in each cell; number of empty or quasi-empty cells (<3 pro-
jected items). 

 

 
Fig. 3. Distribution of projected items in SOM map. (SOM reduction dimension). 

 
Fig. 4. Distribution  of projected items in SOM map. (CCA reduction dimension). 

Maps and numerical measurements for SOM and CCA are comparable and therefore 
these techniques are equivalent for the considered problem. CCA is however easier to 

62



perform (no a priori knowledge or difficult choice) and provide more information 
(continuous projection). CDA offers the same advantages as CCA, but it seems to be 
more appropriate for pre-processing before classification. Corresponding map depicts 
indeed more specific “areas” for database C projected defects. This intuition is con-
firmed by numerical measurements: entropy is lower than in SOM and CCA cases 
(better organization), standard deviation is higher (better contrast between full and 
empty areas) and there are more quasi-empty cells. We think that this organization is 
a foremost guarantee for the dimension reduction to allow a better classification. We 
can also remark that results obtained with CDA are fairly similar as those with raw 
data; it shows that little information is lost while reducing dimensionality.  

 
Fig. 5. Distribution of projected items in SOM map. (CDA reduction dimension). 

Table 2. Different measurements characterizing the projections distribution of database C 
items (permanent defects). 

Applied dimensional-
ity reduction technique 

Standard-deviation of 
 projected defects distribution 

Entropy of projected 
defects distribution 

Number of 
empty cells 

Number of 
cells with less 
than 3 defects 

None 8.72 2.055 15 30 

SOM 5.78 2.114 9 26 

CCA 5.72 2.121 5 20 

CDA 7.04 2.088 7 32 

4.3 Validation on an Artificial Neural Network Based Classification 

We studied a classification problem in order to evaluate pertinence of using dimen-
sion reduction before such task. First, we fixed item labels using obtained SOM with 
CDA dimension reduction (see Figure 5). Since database C wasn’t completely consti-
tuted of “permanent” defects (according to an expert, some dusts and cleaning marks 
still remain), we chose to label all SOM cells with less than 5 projected items of data-
base C as 1:“probably correctable defects” , and the others as -1:“probably permanent 
defects”. Then each item from database A and B was projected into the SOM and 
labelled in accordance with its belonging cell, obtaining databases described in Table 
3. We performed a first experiment, training a  multilayer perceptron with 13 input 
neurons, 35 neurons in one hidden layer, and 2 output neurons (13-35-2 MLP) 
artificial neural network using BFGS [21] with bayesian regularization algorithm with 
database 2. Then a second experiment was carried out, training a 2-25-2 MLP 
artificial neural network with database 2 after CDA 2-dimensional space reduction. 
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For these two experiments, training was achieved 20 times and  the generalization 
ability of obtained neural networks was processed using database 1. Results are 
presented in Table 4. Since database 1 and database 2 came from different optical 
devices, these generalization results are significant. These results clearly prove that 
the considered classification problem can be simplified, when properly reformulated 
in a dimension lower than its raw dimensionality and in accord with its real 
dimensionality. 

Table 3. Description of classification databases. 

Database Coming from database Total number of items Label 1 items Label –1 items  

1 A 3865 1046 2816 

2 B 1910 489 1421 

Table 4. MLP classification performances on database 1. 

CDA Reduc-
tion Dimen-

sion 

Training 
database 

 dimensionality 

Class 1 items 
Well- 

Recognized 

Class -1 items 
 Well-

Recognized 

Global 
 Performance of good 

classification 

Global Performance 
Standard Deviation 

No 13 71.6 % 78.0 % 76.27 % 1.,37 % 

Yes 2 87.4 % 96.7 % 94.16 % 0.87 % 

5 Conclusion and Perspectives 

A reliable diagnosis of aesthetic flaws in high-quality optical devices is a crucial task 
to ensure products’ nominal specification and to enhance the production quality by 
studying the impact of the process on such defects. To ensure a reliable diagnosis, an 
automatic classification system is needed in order to discriminate the “correctable” 
defects from “abiding” ones. Unfortunately relevant data extracted from raw Nomar-
ski image during defects detection phase are high dimensional. This can have harmful 
effect on behaviors of artificial neural networks which are suitable to perform such a 
challenging classification. Reducing the dimension of the data to a smaller value can 
decrease the problems related to high dimension. In this paper we have compared 
different techniques, SOM, CCA and CDA which permit such dimensionality reduc-
tion and evaluated their impact on classification tasks involving real industrial data. 
CDA seems to be the most suitable technique and we have demonstrated its ability to 
enhance performances in a synthetic classification task. Next phase of this work will 
deal with a classification task on data previously labeled by an expert. 
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