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Abstract: The area of modelling and controlling intermodal terminal systems is relatively new. The paradigms of 
Discrete Event Systems for modelling and of Multi-Agent Systems (MAS) for distributed control seem 
promising. Many research attempts developed modelling and simulation tools but no standard exists. This 
paper presents a Discrete Event System model of the agents introduced to describe how a distributed control 
of the terminal activities can be achieved. The interactions between four classes of agents are detailed. The 
approach is useful to develop a simulation platform to test MAS efficiency in terminal management and to 
measure the performance of static or adapted control strategies. 

1 INTRODUCTION 

Planning and scheduling resources in a maritime 
container terminal pose very complex modelling and 
control problems to the scientific community. 
Flexible and powerful modelling and simulation 
tools are necessary to describe an intermodal hub 
system made up of many different infrastructures 
and services. In the absence of standard tools, 
several research studies are based on discrete event 
simulation techniques (Vis and De Koster, 2003), on 
mathematical models or empirical studies (Crainic et 
al., 1993, Gambardella et al., 1998). 

In the context of intelligent control of transport 
systems, this paper uses the Discrete EVent System 
(DEVS) specification technique (Zeigler et al., 
2000) to completely and unambiguously characterize 
a Multi-Agent System (MAS) for controlling a 
container terminal. Autonomous agents play as 
atomic dynamic DEVS. They exchange messages 
one with another to negotiate services in a common 
environment. The DEVS approach leads to 
heterarchical MAS where all information and 
control functions are distributed across agents, and 
allows rigorous theoretical analysis of structural 
properties of the MAS. Moreover, the DEVS 
formalism is an interesting alternative to other tools 
for MAS specification (Huhns and Stephens, 2001, 
Lin and Norrie, 2001). It is suitable to develop 
models both for simulation and for implementation 
of the software controllers. 

As in MAS for manufacturing control (Heragu, 
2002), agents can use decision algorithms based on a 
fictitious currency to buy services from other seller 
agents which use pricing strategies. Sellers and 
buyers reach an equilibrium between conflicting 
objectives, i.e. to maximize profit and to minimize 
costs, respectively. Recent analytical models of 
negotiation (Hsieh, 2004) underline the need of a 
systematical analysis and validation method for 
distributed networks of autonomous agents. Other 
researches focus on the experimental and detailed 
validation of MAS on distributed simulation 
platforms (Shattenberg and Uhrmacher, 2001, Logan 
and Theodoropoulos, 2001). 

Here, a detailed DEVS model is developed for 
the interactions between the agents concurrently 
operating for the critical downloading process of 
containers from a ship. This paper is a contribution 
to define a complete DEVS model to develop a 
simulation platform for testing and comparing the 
proposed MAS with other distributed control 
architectures for container terminals. The simulation 
model could be used to design and test alternative 
system layouts and different control policies, both in 
standard and perturbed operating conditions. 

The paper is organized as follows. Section 2 
describes the main processes in a terminal. Then, the 
basic components of the MAS are presented, and 
their roles and relations are indicated. Section 3 
models agents as atomic DEVS, and focuses on their 
interactions when containers are downloaded from 
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ships to the terminal yard. Section 4 gives some 
ideas about the simulation platform to test efficiency 
and robustness of the proposed MAS architecture. 
Section 5 overviews the benefits of the approach and 
enlightens open issues. 

2 THE MAS FRAMEWORK FOR 
CONTAINER TERMINALS 

To define the autonomous agents operating and 
interacting in a terminal environment, the main 
terminal processes have to be abstracted. They are 
commonly identified as import, export, and 
transshipment cycles. 

2.1 Import, Export and Transshipment 
Cycles in a Container Terminal 

Imported containers arrive on a vessel or feeder ship 
and depart by trains/trucks. Exported containers 
arrive by trains/trucks and depart on a vessel ship 
(transition from railway/road to sea mode). 
Transshipped containers arrive and depart by ship: 
cargo is moved from vessel (feeder) to feeder 
(vessel) ships for close (far) destinations. 

Then, containers have to be: loaded/downloaded 
on/from ships; delivered/picked to/from trucks or 
trains; stacked and kept in blocks, in which the 
terminal yard is divided; transferred from 
ship/train/truck to blocks and backwards; 
consolidated, i.e. redistributed between blocks to 
allow fast retrieval. To this aim, several dedicated or 
shared resources are used: quay cranes, yard cranes, 
railway cranes; internal transport vehicles (trailers); 
quays and berths, lanes for internal transport, gates, 
railway tracks; skilled human operators. 

A road import cycle follows three steps. Firstly, 
quay cranes download containers from a berthed 
ship to trailers, which transfer cargo to yard. Here, 
yard cranes pick-up containers from trailers and 
stack them in assigned positions. Secondly, 
containers stay in the blocks while waiting for their 
destination; they are eventually relocated by yard 
cranes and trailers in a more proper position. 
Thirdly, containers are loaded from blocks to trucks, 
and exit from the gate. Similarly, in a railway import 
cycle, yard cranes pick-up containers from blocks 
and load them on trailers moving from yard to the 
railway connection, where special cranes pick-up 
containers to put them on departing trains. 

In a road/railway export cycle, the sequence goes 
in the opposite sense: from terminal gate or railway 
connection to blocks and then to vessel ships. 

In a transshipment cycle, when a vessel ship 
arrives, containers are downloaded to trailers by 
quay cranes, transferred to blocks by trailers, picked-
up and stacked by yard cranes. After a consolidation 
and/or a delay in their position, containers are 
picked-up and transferred to the quay area, where 
they are loaded on a feeder ship. The opposite 
occurs if a feeder arrives and a vessel departs. 

Here, the focus is on the first step of the import 
and transshipment cycles. Similar models can be 
defined for the following steps and the export cycle. 

2.2 Agents in a Container Terminal 

The main agents controlling a terminal are: 
 the Container Agent (CA): each CA is an 

autonomous entity controlling the flow of a 
single or a group of containers (stowed in a 
ship bay or stacked in yard blocks); 

 the Quay crane Agent (QA): it is an 
autonomous controller for a (set of) quay 
crane(s) with the same performances or the 
same reachable ship bays; 

 the Trailer Agent (TA): it is associated to a 
(set of) trailer(s) with the same performances, 
or with the same reachable quay or yard 
spaces; 

 the Yard crane Agent (YA): it manages a (set 
of) yard crane(s) with the same performances, 
or associated to the same yard blocks; 

 the Railway crane Agent (RA): it controls a 
(set of) railway crane(s), to receive containers 
from trailers and load them on trains at the 
railway connection, or to deliver containers 
from trains to trailers; 

 the Truck Agent (KA): it follows the 
operations executed by a (set of) truck(s), 
entering or leaving the terminal by its gate. 

In import processes, the CA identifies the most 
suitable quay crane to download containers from 
ship, then it selects the trailers to transport 
containers to their assigned yard blocks, and finally 
the yard cranes to pick-up and stack containers in 
their assigned block positions. In export processes, 
the CA selects the yard cranes to pick-up containers 
from blocks, trailers to transport them to the quay 
area, and quay cranes to load them into their 
assigned bay-row-tier location in the ship. 

The decisions taken by a CA are based upon 
real-time updated information received from agents 
of the alternative available cranes and trailers. 

The global control of the activities in the 
terminal emerges from the behaviour of concurrently 
operating agents. The dynamical interaction between 
agents has to be analysed to specify the desired 
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system behaviour. The precedent observations lead 
us to examine interactions between a CA and several 
QAs, TAs, and YAs for downloading, transferring, 
and stacking containers, or for picking, transferring, 
and loading containers. Interactions exist also 
between a CA and YAs, TAs, and RAs/KAs when 
railway/road cycles are considered. 

The agents' decisions are only limited by 
constraints of terminal spaces and resources (e.g., 
the limited number of quay cranes that can serve a 
fixed ship bay; the limited number of yard cranes), 
and of schedules for downloading/loading processes 
(establishing the number of containers moved for 
each ship bay, the location in the ship hold or cover, 
sequence of handling moves, the preferred crane). 

Agents' decisions are fulfilled by human 
operators devoted to the associated resources (e.g. 
crane operators, trailer/truck drivers). The network 
of interacting agents may appear and behave as a 
unique distributed supervisor for the terminal. 

3 DEVS MODELLING OF 
AGENTS' DYNAMICS 

Each agent in the previously identified classes is 
described as an atomic DEVS. Namely, all agents 
interact by transmitting outputs and receiving inputs, 
which are all considered as event messages. Events 
are instantaneous, then timed activities are defined 
by a start-event and a stop-event. 

For each agent, internal events are triggered by 
internal mechanisms, external input events (i.e. 
inputs) are determined by exogenous entities (other 
agents), and external output events (i.e. outputs) are 
generated and directed to other entities. 

External or internal events change the agent 
state. An agent stays in a state until either it receives 
an input or the time specified before an internal 
event elapses. In the first case, an external transition 
function determines the state next to the received 
input; in the second case, an internal transition 
function gives the state next to the internal event. An 
output function generates the reactions of the agent. 

The sequential state, s, refers to the transition 
mechanism due to internal events, and is based on 
the current value of status (condition between 
consecutive events) and other information i peculiar 
to the considered agent: s = (status, i). The total state 
q = (s, e, DL), where e is the time elapsed since the 
last transition, and DL is the decision logic currently 
used by the agent to rank and choose the offers 
received by other agents. 

For a CA, s may include information on: the 
current container position; the quay cranes available 
for negotiating handling operations; the trailers 
available for negotiating transport between quay and 
yard; the yard cranes available for negotiating 
handling operations from trailer to a block position 
or backwards; time scheduled in current state before 
the next internal event, if no input occurs. 

For QAs, YAs, TAs, RAs, KAs, the sequential 
state may include the queued requests coming from 
CAs (for availability, for data about offered service, 
for confirmation of assigned service, etc.), and the 
time prospected before the next internal event. 

To summarize, each agent can be represented as 
an atomic DEVS in the following way: 

 
A = < X, Y, S, δint, δext, λ, ta > (1)

 
where X is the set of inputs, Y is the set of outputs, S 
is the set of sequential states, δint:S→S is the internal 
transition function, δext:Q×X→S is the external 
transition function, Q={q=(s,e,DL)|s∈S,0≤e≤ta(s)}, 
λ:S→Y is the output function, ta:S→ℜ0

+ is the time 
advance function, with ℜ0

+ set of positive real 
numbers with 0 included. 

The negotiation between agents is typically 
organized in the following steps. Announcement: an 
agent starts a bid and requires availability to other 
agents for a service. Offer: the agent requests data 
only to the available agents. Data regard the offered 
service the queried agents can guarantee. Reward: 
the agent selects the best offer between the collected 
replies and sends a rewarding message. 
Confirmation: the agent waits for a message from 
the rewarded agent, then it acquires the service. If 
confirmation does not arrive, then the agent selects 
another offer in the rank or restarts the bid. 

In this paper, the focus is on the interactions 
between a CA with QAs, TAs and YAs for 
downloading containers from ship to a yard block. 
The study can be easily extended to other 
negotiations for loading or other processes. Besides, 
the status transitions are examined since the status is 
the main component of the sequential state. 

3.1 Dynamics of Interactions between 
Agents in a Downloading Process 

To download containers from a ship bay, transport 
and stack them into a yard block, each CA interacts 
with QAs to choose the quay crane for downloading, 
with TAs to select the trailers for moving the 
containers from the quay to the yard area, and finally 
with YAs to determine the yard cranes for stacking. 
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We assume that the CA firstly communicates 
exclusively with QAs, then with TAs only, finally 
with YAs. The negotiation is based on data about the 
offered services: a QA gives the estimated time to 
wait before the related crane can start downloading 
containers, and the estimated time to execute the 
task; a TA the estimated times to wait a trailer and 
for the transport task; a YA the estimated time for 
the yard crane to be ready close to the block, and the 
estimated time for the stacking task. 

3.1.1 Interactions between a CA and QAs 

For t<tC0 let the CA, say C, associated with a generic 
container be in a quiescent status (QUIESC) and let 
it begin its activity at tC0 (input XC0). Then C spends 
the interval [tC0,tC1] to send outputs YC01, YC02,…, 
YC0q at instants t01>tC0, t02,…, t0q=tC1. These 
messages request the availability to all the q 
alternative QAs of cranes that can serve the 
container. The sequence of requests (REQQAV) is 
not interrupted by any internal or external event. C 
makes transition at tC1 (internal event IC1). 

In [tC1,tC2] C waits for answers (WAIQAV) from 
QAs. Namely, the request C transmits to each QA 
may queue up with similar ones sent by other CAs. 
Next transition occurs at tC2 when either C receives 
all the answers from the queried QAs (XC1), or a 
specified time-out of WAIQAV expires before C 
receives all the answers. In case it receives no reply 
within the time-out (IC2), C returns to REQQAV and 
repeats the request procedure. In case of time-out 
expiration and some replies received (IC3), C 
considers only the received answers to proceed. The 
repeated lack of valid replies may occur for system 
congestion, crane failures, communication faults, or 
other unpredictable circumstances. To avoid 
indefinite circular waits and improve system fault-
tolerance, we use time-outs and let C repeat the 
cycle REQQAV-WAIQAV only a finite number of 
times, after which C is replaced by another agent. 

If all or some replies arrive before the time-out 
expiration, C starts requesting service to the g≤q 
available QAs at tC2. In [tC2,tC3] C requests 
information with YC11, YC12, …, YC1g at instants 
t11>tC2, t12,…, t1g=tC3. The uninterrupted sequence of 
requests in status REQQSE terminates at tC3 and C 
makes transition (IC4). 

Then, C spends [tC3,tC4] waiting for offers from 
the available QAs (WAIQOF), as the request C 
transmits to each QA may queue up with those sent 
by other CAs. Next transition occurs at tC4 when 
either all the answers from the QAs arrive (XC2) or a 
time-out of WAIQOF expires. In case no reply 
comes within the time-out (IC5), C returns to 
REQQSE and restarts. If time-out expires and some 
replies are received (IC6), C considers only the 

received offers. Again, cycling between REQQSE 
and WAIQOF is only for a finite number of times. 

Once received the offers from QAs, C uses 
[tC4,tC5] to take a decision for selecting the quay 
crane (TAKQDE). At tC5 the decision algorithm ends 
(IC7): all the offers are ranked and a QA is selected. 

Subsequently, C reserves the chosen crane with 
message YC2 to the corresponding QA. C takes 
[tC5,tC6] for communicating the choice to the winner 
QA (COMCHQ). At tC6 the communication ends 
(IC8). Now, the QA sends XC5: a rejection, if there is 
a conflict with another CA, or a confirmation. 
Hence, C uses [tC6,tC7] to wait for a confirmation 
from the selected QA (WAIQCO). The confirmation 
is necessary because CAs different from C act 
during the decision interval, and the selected crane 
can be no longer available. If C receives a rejection 
(XC3), or no reply within a time-out (IC9), it returns 
to COMCHQ, sends a new request of confirmation 
to the second QA in its rank. If C has no alternative 
destinations and the rejection (XC4) or the time-out 
(IC10) occurs, it returns to REQQAV and restarts. 

At tC7, after receiving a confirmation (XC5) from 
the selected QA, C makes a transition to DWNLDG: 
interval [tC7,tC8] is for issuing the command YC3 to 
the quay crane downloading the container. 

Figure 1 depicts the complex dynamics 
previously described. Circles represent status-values 
and encapsulate outputs, arrows represent internal or 
input events. 

3.1.2 Other Interactions 

When, at time tC8, the command is complete (IC11), C 
starts the negotiation with TAs for a trailer. 

C follows the same procedure as with QAs 
(requests and waits for availability and then for 
offers, decision for the best offering TA, waits for a 
confirmation/rejection). Then, the graph in figure 1 
continues with a second part (not shown for lack of 
space), with the same structure as the first part. This 
guarantees modularity, which is important for 
simulation and control. After a confirmation, C 
issues a transport command, and the container is 
loaded on the vehicle associated to the selected TA. 

Then, C starts the negotiation with YAs to stack 
the container in an assigned block position. Again, 
due to the modularity of the approach, the sequence 
of status-values follows the same protocol, and, 
finally, if a confirmation is received, C issues a 
stacking command and gets back to QUIESC. 

C stops interacting and remains quiescent until 
the beginning of the next negotiation (if any) for 
downloading, consolidating or loading another 
container. The associated container is downloaded, 
transported and stacked in a block where it waits for 
the next destination (a block or a ship). If faults 

A DISCRETE-EVENT SYSTEM APPROACH TO MULTI-AGENT DISTRIBUTED CONTROL OF CONTAINER
TERMINALS

303



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Dynamics of the interaction between a CA when negotiating with QAs. 

occur to the selected cranes or trailer, C remains in 
QUIESC. Terminal operators restore the normal 
operating conditions and the container can be 
handled by the selected resources. 

3.2 Specification of the DEVS Model of 
a Container Agent 

We may identify the components of the DEVS 
model of a CA, on the basis of the negotiation 
mechanism previously described. Table 1 reports the 
admissible status-values. Detailed description of 
inputs, outputs and internal events is not reported for 
lack of space, but it can be easily derived from the 
interactions between a CA and QAs, TAs, and YAs. 

The sequential state s collects the status-value 
and other information i about the CA, which is: 

 
i = ( p, AQ, AT, AY, ta(s) ) (2)

 
including the current position p of the container (on 
ship, picked by quay crane, on trailer, picked by 
yard crane, in the yard block); the set AQ of quay 
cranes available for the currently negotiated 
downloading operations, or the set AT of trailers 
available for the currently negotiated transport, or 
the set AY of yard cranes available for currently 
negotiated stacking tasks; the time ta(s) scheduled in 
current state before the next internal event. 

The time advance function gives the residual 
time ta(s) in state s before the next scheduled 
internal invent. E.g., at the time t* of entering a 
waiting status, the time-out fixes Tw, such that 
ta(s) = t*+Tw-t, where t is the current time. 

Table 1: Status-values for a Container Agent. 

Status Activity Description 
QUIESC Agent quiescent 

REQQAV Request availability to all QAs 
WAIQAV Wait for availability from QAs 
REQQSE Request service to available QAs 
WAIQOF Wait for offers from available QAs 
TAKQDE Take decision for the best QA 
COMCHQ Communicate choice to selected QA 
WAIQCO Wait conf./reject. from selected QA 
DWNLDG Command selected QA to download 
REQTAV Request availability to all TAs 
WAITAV Wait for availability from TAs 
REQTSE Request service to available TAs 
WAITOF Wait for offers from available TAs 
TAKTDE Take decision for the best TA 
COMCHT Communicate choice to selected TA 
WAITCO Wait conf./reject. from selected TA 
TRANSP Command selected TA to transport 
REQYAV Request availability to all YAs 
WAIYAV Wait for availability from YAs 
REQYSE Request service to available YAs 
WAIYOF Wait for offers from available YAs 
TAKYDE Take decision for the best YA 
COMCHY Communicate choice to selected YA 
WAIYCO Wait conf./reject. from selected YA 
STCKNG Command selected YA to stack 
 
DEVS models can be also specified for the other 

agents, and status-transition diagrams can be defined 
for the interactions occurring when agents negotiate 
tasks in loading or consolidation processes. 

QUIESC WAIQAV WAIQOF TAKQDE COMCHQ
YC2

REQQAV
YC01…YC0q

REQQSE
YC11…YC1g

WAIQCO

[tC0, tC1]
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[tC2, tC3]

[tC3, tC4] [tC4, tC5] [tC5, tC6]

[tC6, tC7]

XC0

(tC0)

IC1

(tC1) IC2

(tC2)

XC1 / IC3

(tC2)
IC4

(tC3) IC5

(tC4)

XC2 / IC6

(tC4)
IC7

(tC5)

IC8

(tC6)
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(tC7)

XC4 / IC10

(tC7)

IC11

(tC8)

XC5

(tC7)
[tC7, tC8] DWNLDG

YC3
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4 IDEAS FOR SIMULATING MAS 

The DEVS atomic models can be integrated in a 
network, which can be used as a platform for 
simulating the MAS controlling a terminal, e.g. the 
Taranto Container Terminal (TCT). 

In this context, it is possible to simulate not only 
the dynamics of terminal activities, the flow of 
containers, and the utilization of terminal resources 
(cranes, trailers, human operators, etc.), but also the 
efficiency of the MAS and its agents (flow of event 
messages, status transitions, waiting loops, etc.). 

Then, two types of performance indices can be 
defined. Namely, it is possible to measure 
conventional indices: the total number of (imported, 
exported, transshipped) containers; the average 
throughput, during downloading (from ship to yard) 
or loading (from yard to ship) processes; the average 
lateness of containers in the terminal. Moreover, it is 
possible to measure the behaviour of the MAS and 
the efficiency of the agents' decision policies by 
means of: the average number of requests for each 
negotiation; the number of loops of status-values 
before a final decision is taken by a CA, expressed 
in percentile terms with respect to the total number 
of operations executed by every CA. 

The performance measures can be evaluated both 
in steady-state operating conditions and in perturbed 
conditions. Perturbations may arise from: hardware 
faults or malfunctions; abrupt increase/decrease of 
maritime traffic volumes; sudden increase/reduction 
of yard space; traffic congestion of trailers; 
congestion, delays, message losses, and faults in the 
communication between agents. 

Then, it is important to measure robustness of 
agents' decision laws, to see how they dynamically 
react to disturbances and parameter variations, and 
eventually to adapt them. The adaptation aims to 
make the autonomous agents learn the most 
appropriate decision laws in all terminal conditions. 

To conclude, the simulation platform will allow 
to compare control architectures defined by:  

 a static MAS in which CAs use heuristic 
decision parameters (estimated time of the 
requested task, distance of cranes or trailers); 

 a dynamic MAS in which CAs take decisions 
by fuzzy weighted combinations of heuristic 
decision criteria; the weights can be adapted 
by an evolutionary genetic algorithm. 

5 CONCLUSIONS 

This paper proposes a MAS architecture for 
controlling operations in intermodal container 
terminal systems. The autonomous agents are 
represented as atomic DEVS components. The 
interactions between agents are modelled according 
to the DEVS formalism to represent negotiations for 
tasks when downloading containers from ship to 
yard stacking area. The developed model can be 
easily extended to describe other processes (loading 
containers from yard area to ships, redistributing 
containers in the yard area). 

The DEVS model of the MAS can be used in a 
detailed simulation environment of the TCT, which 
allows to measure standard terminal performance 
indices and the efficiency of the MAS. Moreover, 
open issues are testing and comparing static MAS 
and dynamically adapted MAS, if evolutionary 
adaptation mechanisms are used. 
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