
HELPING INSTEAD OF REPLACING
Towards A Shared Task Allocation Architecture

Foad Ghaderi and Majid Nili Ahmadabadi
Control and Intelligent Processing Center of Excellence, Mobile Robot Lab

Dept. of Elect. and Comp. Eng., Faculty of Eng., University of Tehran

Keywords: Cooperative robotics, shared task allocation, fault tolerance.

Abstract: Some failures cause the robots to loss parts of their capabilities, so that they cannot perform their assigned
tasks. Considering requirements of typical robotic teams during different missions, a distributed behavior
based control architecture is introduced in this paper. This architecture is based on an enhanced version of
ALLIANCE, and provides the robots the ability of performing shared tasks based on help requests. The
architecture contains a mechanism for adaptive action selection and a communication protocol for
information and task sharing which are required for coordination of team members. The proposed
architecture is used in a box pushing mission where heterogeneous robots push several boxes with different
masses.

1 INTRODUCTION

Sensitivity of distributed robotic systems to changes
in working environments and common failures in
their mechanical and electrical components is a
barrier to their wide physical implementation
(Ahmadabadi, 2001). So a dynamic task allocation
mechanism that supports fault tolerance behavior is
a mandatory requirement for cooperative robotics
solutions (Ghaderi, 2002).

Mataric et al. showed empirically that there is no
optimal task allocation strategy for all domains, and
even it is difficult to identify the optimal task
allocation strategy for a particular task (Mataric,
2003). In their framework (Gerkey, 2003) only one
robot could be assigned to a task, and no
redundancies were allowed.

In (Ahmadabadi, 2004) two distributed and
cooperative methods for load reallocation among
some object lifting robots without requiring them to
change their grasp positions are introduced.

Vig et al. provided RACHNA (Vig, 2005) which
is a market-based architecture for allocating multi-
robot tasks based on individual robot capabilities. In
this architecture, if a robot can not support the team,
it is more likely that another robot with similar
capabilities replaces this robot.

Some advanced behavior based control
architectures are introduced that allow adaptive task
allocation. Parker’s architecture (ALLIANCE) is

based on Subsumption architecture (Brooks, 1986).
It supports adaptive action selection for faulty robot
replacement (Parker, 1998), (Parker, 1994).

Kasahara has considered reorganization in an
organizational learning model (Kasahara, 1998).
Whenever a fault occurs, agents try to compose new
organizations using learning techniques. This
process can lead the team to its goal.

In this paper, a new task allocation method is
introduced which is based on ALLIANCE and
supports help in a team of cooperative robots. In this
method partially faulty robots do not leave the team,
but the team tries to redistribute task among other
members in order to use the whole capabilities of the
robots. The suggested architecture supports adaptive
action selection with help request processing and
allows the group to perform its mission coordinated.

In the next section importance of help in a
cooperative team of robots is discussed. The help
supporting method is introduced in section 3. Box
pushing problem is reported in section 4.
Conclusions are presented in section 5.

2 HELP IMPORTANCE IN
COOPERATIVE MISSIONS

Most of the real world mobile robots applications
are performed in dynamic environments. Missions of

240
Ghaderi F. and Nili Ahmadabadi M. (2007).
HELPING INSTEAD OF REPLACING - Towards A Shared Task Allocation Architecture.
In Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics, pages 240-243
DOI: 10.5220/0001630302400243
Copyright c© SciTePress

rescue robots, cleaning robots, robots used for
defense purposes and every other mission that robots
are used instead of human in order to decrease
dangers are examples of these applications. In these
applications a lot of changes may occur in
environment by time, and sometimes these changes
cause a team to fail in some (or all) of its tasks. If
the task selection mechanism is static and without
flexibility, then there is no way to complete the
tasks, except waiting for some robots to complete
their tasks and replacing them with those robots that
are not able to continue. Here we refer to an action
selection mechanism as static when robots do not
change their tasks even if there are some tasks in the
team with higher priorities.

In this case if there is redundancy in the team,
higher priority tasks are assigned to idle robots,
otherwise these tasks would be assigned after a time
interval that is unknown. Obviously such a task
assignment may cause a disaster for the group or
environment if the critical tasks are not assigned and
performed in an acceptable time. We define that a
task in a cooperative mission is unassigned, if no
robots have selected it ever, or if the selecting
robot(s) is (are) not able to perform the task.

Disability of a robot in performing a task may
have two reasons. First, the robot is faulty and hence
it can not complete the task, and second the robot is
not faulty but its capabilities are not enough to
complete the task.

Sometimes replacing the disabled robot with a
new one provides a new chance to the team to
achieve its goal. If there is redundancy in quantity of
the robots, problem is solved easily, and otherwise
one of the robots must ignore its task and perform
the uncompleted task. But there are some situations
that this method does not acquire mission’s goals.

We divide these missions into two categories:
 None of the team members can finish the

uncompleted task alone. In the other words,
performing the task requires efforts of more than one
of the existing robots and the task is not divisible to
simpler subtasks. This kind of tasks is called “shared
task” which requires closed coordination and real
time action of a team of robots. Transferring of an
injured person in a rescue mission is a good example
of shared tasks. In this mission, none of the robots
can complete the task alone and since some
member’s actions may disturb efforts of the others, a
close coordination between robots is mandatory.

 Performing the task depends on some
robot’s capabilities. These capabilities may include
some special mechanical mechanisms, processing
power, knowledge and etc. Therefore, the

replacement would be possible if there is another
robot with at least the same capabilities.

It is clear that the traditional way of replacing
robots will not have considerable effect in
performance of the team. In this case, the best way
to achieve the group’s goal is helping the weak
robots.

3 THE HELP SUPPORTING
METHOD

There are two important issues to be considered in
any architecture that supports help for faulty agents.
Let’s review a scenario first. Assume that some
robots are cooperating to perform a mission. During
their action, one of them senses that it is not possible
to complete its task lonely and so broadcasts a help
request. Receiving this message, other robots must
decide about helping disabled robot. After making
decision, the helping robots must cooperate to
complete the disabled robot’s task. During lots of
cooperative help tasks a closed coordination
between robots is required. So the help supporting
architecture must include appropriate mechanisms to
do action selection and closed coordination for a
cooperative task.

3.1 Action Selection

The way in which robots process the help request
and make decision has great effects on functionality
and performance of the team. In addition, there are
many factors to be considered when processing a
help request. Some of them are listed below:

- Distance to the disabled robot (in general the cost
to reach to the position in which the helper robot
can help the disabled robot),

- Cost of performing the task,
- Having useful mechanical capabilities,

knowledge and experience,
- Priority of robot’s current task compared with

the shared task,
- Criticality of the disabled robot’s task,
- Progress of the task of the team members

(including the faulty robot).
These are general parameters that can affect

performance of a help process. Besides these, other
parameters might be chosen according to specific
nature of the mission.

We used ALLIANCE architecture (Parker, 1998)
as a base for adaptive action selection. This behavior
based control architecture has adaptive action
selection capabilities that can be used in different

HELPING INSTEAD OF REPLACING - Towards A Shared Task Allocation Architecture

241

missions, but this architecture does not support help.
So we enhanced ALLIANCE to address the
mentioned requirements.

Considering motivation function and it’s
parameters in ALLIANCE architecture, it’s apparent
that if a robot selects a task, (except in some special
conditions), it will not ignore it till the task is
finished. So while a robot is performing a task and
receives a help request it is not possible to change its
behavior and select a new task. In this case the help
request is not answered if there is no idle robot in the
team.

We supposed that each task is allowed to be
shared just between two robots. In order to achieve
adaptive action selection, some changes were
applied to ALLIANCE. In fact, we designed a two
dimensional motivation vector for each robot. Two
axes of this vector represent team members and
tasks of the team. So mijk in robot i is motivation
function corresponding to behavior j, while robot k
broadcasts a help request. The new motivation
function for the shared task j in robot i is defined by
the following equation:

()
() () ()

()
()

()
()()

()tceacquiescen

tquestReHelp_1

t_resetimpatience

tpressionsupactivity_

tedbacksensory_fe

]timpatience1t[mtm

00m

ij

ijk

ijk

ij

ijk

ijkijkijk

ijk

×

+×

×

×

×

+−=

=

(1)

The parameters are defined below:
Impatienceijk(t): This parameter shows robot's

impatience for interfering other robot's tasks. If task
j is not selected by any other robot, Impatience will
have a large value; otherwise its quantity depends on
the type of task, environmental conditions, and
progress of the task. In shared task, some more
factors such as the criticality of the task, the
efficiency of the robot in performing the task and
type of the help request are important.

Sensory_feedbackijk(t): This parameter indicates
whether behavior j is required at the time to reach
the goals of the team or not. Often, physical robots
sensors produce this information, but in practical
robotics applications it's possible to use virtual
sensors such as memory (as a flag), and
communication lines to indicate this parameter. If
robot k needs some help to complete task j and robot
i can cooperate in this task, sensory_feedback is one,
otherwise it is equal to zero.

Activity_Suppressionij(t): When a behavior is
active in a robot, this parameter suppresses
behaviors with lower priorities to be activated. This
suppression is not applied to higher priority tasks
and so permits the robot to change its active

behavior in order to increase team's efficiency or
help other robots in critical tasks.

If priority of task j is higher than active behavior
in robot i, this parameter is equal to 1, otherwise it's
0. In Parker's architecture (Parker, 1994), (Parker,
1998), the criticality of the tasks is not taken into
account in evaluating this parameter. So if any
behavior is active, others would be suppressed,
regardless of the criticality of the others.

Impatience_Resetijk(t): The default value of this
parameter is 1. When a robot selects behavior j to
help robot k, it broadcasts its decision. As a result,
Impatience_Reset in the other robots becomes zero
for a defined period of time, and then increases to 1
again, and the robots motivation to participate in
task j resets consequently.

Help_requestijk(t): Default value of this parameter
is zero and takes a positive value for a predefined
interval, whenever robot i receives a help request
from robot k requesting to cooperate in task j. If in
this period the value of impatience_reset is not zero,
the motivation value will be multiplied by a value
bigger than one. (Notice that faulty robot broadcasts
help request periodically until its task is finished.)

Acquiesenceij(t): The same as that in ALLIANCE
architecture.

Initial values of the parameters and their changes
deeply depend on the general requirements of the
mission, robots type and different performance
indexes used. Therefore, the initial values must be
optimized for each task.

3.2 Robots Coordination in Help
Process

After deciding to help, robots must coordinate to
perform the shared task. The coordination strategy
depends on the special characteristics of the task and
there is no general method to do this. But, the
coordination methods are generally based on the
information about activities of the other robots.
Then, we used the communication method used in
(Asama, 1992) to obtain information about others
tasks, activities, and their progress in order to
coordinate the robots.

In Asama’s protocol, nine procedures are defined
to communicate information (Asama, 1992). We
selected seven of them to coordinate the team:
- Report for ready state,
- Declaration of task selection,
- Request for Cooperative task,
- Acceptance of Cooperative task,
- Report of completion of preparation for cooperation,
- Command for start of cooperative task,
- Report of task completion.

ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics

242

4 EVALUATING THE
ARCHITECTURE

Task assignment and adaptive behavior of a
cooperative team that uses help mechanism is
evaluated in a box pushing problem. Box pushing is
a common test bed in the field of cooperative
robotics. It is assumed that some boxes are
distributed in an environment and some robots must
push them to the front wall.

There are two kinds of boxes. Some of them are
light and can be moved by a single robot. Others are
heavy such that one robot is not able to transfer them
alone. Each robot selects a box to transfer while it
has no information about weight of the box.
Whenever the robot detects that the selected box is
heavy and it’s not possible to move it alone, it will
broadcast a help request.

Robots have some inexact information about the
position of the boxes, so they must search for them.
At the beginning, the robots assume that all of the
boxes are light. So after selecting a box, the robot
goes towards it and tries to move it. If the box is
heavy, the robot broadcasts a help request, and waits
for other’s responses.

Experiments show that the team can manage
existing resources to complete the mission in cases
that some robots are not able to perform their
assigned task.

5 SUMMARY

In this paper, we have introduced a help supporting
architecture that focuses on task allocation in cases
that some of the team members are not able to
complete their tasks. This architecture supports fault
tolerance in cooperative missions that have various
tasks with different criticalities. In this method, the
team tries to redistribute the tasks among members
by processing help requests from disabled robots in
order to use all robots capabilities. The suggested
architecture supports adaptive action selection and
let’s the group to perform its mission in cooperation.
In our method the robots are committed unless some
critical tasks are not assigned and they are
individualistic unless some robots require help. The
architecture is evaluated in a box pushing mission
and results show acceptable performance.

ACKNOWLEDGEMENTS

This work is partially supported by Control and
Intelligent Processing Center of Excellence,
University of Tehran.

REFERENCES
Ahmadabadi, M. N. and Nakano E., “A Constrain and

Move approach to distributed object manipulation”,
IEEE Trans. on Robotics and Automation, Vol. 17,
No. 2, pp. 157-172 , April 2001.

Ghaderi, F., Ahmadabadi, M. N. “Distributed Cooperative
Fault Tolerance In A Team Of Object Lifting Robots”,
In IEEE Proc. of 1996 Int. Conf. on Intelligent
Systems and Robots, 2002, pp. 2721-2727.

Mataric, M. J., Sukhatme, G. S., Østergaard, E. H.,
“Multi-Robot Task Allocation in Uncertain
Environments”, Autonomous Robots 14, 255–263,
2003, Kluwer Academic Publishers.

Gerkey, B. P., Mataric, M. J., “A Framework for studying
multi robot task allocation”, In Multi-Robot Systems:
From Swarms to Intelligent Automata, Volume II,
Pages 15-26, the Netherlands, 2003, Kluwer Academic
Publishers.

Ahmadabadi, M. N., Ghaderi, F. “Distributed cooperative
load redistribution for fault tolerance in a team of four
object-lifting robots”, Advanced Robotics, Vol. 18,
No. 1, pp. 61–81, 2004.

Vig, L., Adams, J. A., “A Framework for Multi-Robot
Coalition Formation” In Proc. of the 2nd Indian
International Conference on Artificial Intelligence,
2005, India.

Brooks, R. A., "A Robust Layered Control System for a
Mobile Robot", IEEE Journal of Robotics and
Automation, Vol.2, No.1, March 1986 pp. 14-23.

Parker, L. E., “ALLIANCE: An Architecture for Fault
tolerant Multi-robot Cooperation”, IEEE Trans.
robotics and automation vol. 14, No. 2, pp. 220-240,
April 1998.

Parker, L. E., “Heterogeneous Multi-Robot Cooperation”,
Ph.D. Thesis, Massachusetts Institute of Technology,
Cambridge, MA, Feb.1994.

Kasahara, H., Takadama, K. , Nakasuka, S., Shimohara,
K.,“Fault Tolerance in a Multiple Robots Organization
Based on an Organizaional Learning Model” The
IEEE 1998 International Conference On Systems, Man
and Cybernetics (SMC'98), pp. 2261-2266, 1998.

Asama H., Ozaki K., Matsumoto A., Ishida Y., and Endo
I. , “Development of task assignment system using
communication for multiple autonomous robots”,
Journal of Robotics and Mechatronics, pp. 122-127,
1992.

HELPING INSTEAD OF REPLACING - Towards A Shared Task Allocation Architecture

243

