
MCSS, and another market coordinator –consumer–
,  MCSC. The resulting structural mapping obtained 
from a similar use of the four stages methodology, 
and the corresponding equilibrium strategies 
applicable to each sub-game identified, are shown in 
Figure 2. 
5 FINAL CONCLUSIONS 
In this paper the strategic games matrix (SGM) 
modeling framework is used as a tool for: 
•  Describing, characterizing, and mapping a wide 
variety of conflicts of interests situations among 
intelligent autonomous agents, both for hierarchical 
and for non-hierarchical games, in an integrated 
manner; 
•  Modeling, analysis and design of multilevel 
multiple-agent control architectures in an integrated 
manner, making explicit the obvious conflicts of 
interests possibilities; 
•  Establishing a useful two-way conceptual bridge 
between game theory  and multiple-agent structures 
analysis and design. 
The SGM permits to evidence that, for a specific 
real complex problem, we should be more concerned 
with the choice of the right game to model,
 than with 
the right way to solve the game
, in spite of the 
importance of these techniques. 
REFERENCES 
Alpcan, T., Başar, T., 2002.  “A game-theoretic 
framework for congestion control in general topology 
networks”, Proc. 41st IEEE CDC, Las Vegas, Nevada.
 
Alpcan, T., Başar, T., 2004. “A game theoretic analysis of 
intrusion detection in access control systems”, Proc. 
43
rd
 IEEE CDC, Atlantis, Paradise Islands, Bahamas. 
Başar, T., Olsder, G. J., 1999. Dynamic non-cooperative 
game theory. Philadelphia, PA: SIAM, Series in 
Classics in Applied Mathematics, 1999. 
Bohacek, S., Hespanha, J. P., Obraczka, K., 2002. “Saddle 
policies for secure routing in communication 
networks”, Proc. 41
st
 IEEE CDC, Las Vegas, Nevada. 
Bottura C. P., Costa, E. A., 2004, “Business strategy 
formulation modeling via hierarchical dynamic game”, 
Proc. CSIMTA International Conference, Cherbourgh, 
France. 
Brandenburger, A. M., Nalebuff, B. J., 1995.  “The right 
game: Use of game theory to shape strategy”, Harvard 
Business Review, pp.57-81. 
Bryson Jr., A. E, Ho, Y. C., 1975. Applied optimal control. 
Washington, DC: Hemisphere. 
Castañón, D. A., Pachter, M., Chandler, P. R., 2004. “A 
game of deception”, Proc. 43
rd
 IEEE, CDC, Atlantis, 
Paradise Islands, Bahamas. 
Costa Fº, J. T., Bottura, C. P., 1990. “Parallel optimal 
hierarchical control using a MIMD architecture”, 
Proc. 29
th
 IEEE CDC, Honolulu. 
Costa Fº, J. T., Bottura, C. P., 1991. “Hierarchical 
multidecision making on a computer network with 
distributed coordination and control”, Proc. 39
th
 
Annual Allerton Conference on Communication 
Control and Computing, Urbana, IL, pp. 703-704. 
Costa Fº., J. T., 1992. “Proposta para computação 
assíncrona paralela e distribuída de estruturas especiais 
de jogos dinâmicos”, Universidade Estadual de 
Campinas, Faculdade de Engenharia Elétrica, Tese de 
Doutorado, Campinas, SP, Brazil. 
Costa, E. A., Bottura, C. P., 2006. “The Strategic Games 
Matrix (SGM) as a new tool for strategic management 
via game theory”, Sistemas & Gestão, 1 (1) pp. 17-41. 
(in  
http://www.latec.com.br/sg/arevista/Volume1/Numero
1/V1_1_index.htm ). 
Cruz Jr., J. B., 1978.  “Leader-follower strategies for 
multilevel systems”, IEEE Trans. on Automatic 
Control,
 vol. AC-23 (2), pp. 244-255. 
Dimarogonas, D. V., Kyriakopoulus, K. J., 2005. “A 
feedback stabilization and collision avoidance scheme 
for multiple independent nonholonomic non-point 
agents”,  Proc.  2005 IEEE Int. Symposium on 
Intelligent Control, Limassol, Cyprus. 
Haimes, Y. Y., Li, D., 1988. “Hierarchical multiobjective 
analysis for large-scale systems: Review and current 
status”, Automatica, vol. 24 (1), pp. 53-69. 
Liu, Y., Galati, D. G., Simaan, M. A., 2004, “A game 
theoretic approach to team dynamics and tactics in 
mixed initiative control of automa-teams”, Proc. 43
rd
 
IEEE CDC, Atlantis, Paradise Islands, Bahamas. 
Rahimi-Kian, A.  Tabarraei, H., Sadeghi, B., 2005. 
“Reinforcement learning based supplier-agents for 
electricity markets”, Proc. 2005 IEEE Int. Symposium 
on Intelligent Control, Limassol, Cyprus. 
Schelling, T. C., 1960. The strategy of conflict. New York, 
NY: Harvard University Press. 
Shao, J., Xie, G., Yu, J., Wang, L., 2005. “Leader-
following formation control of multiple mobile 
robots”,  Proc. 2005 IEEE Int. Symposium on 
Intelligent Control, Limassol, Cyprus. 
Shi, H., Wang, L., T. Chu, T., 2005. “Coordination of 
multiple dynamic agents with asymmetric 
interactions”,  Proc. 2005 IEEE  Int. Symposium on 
Intelligent Control, Limassol, Cyprus. 
THE STRATEGIC GAMES MATRIX AS A FRAMEWORK FOR INTELLIGENT AUTONOMOUS AGENTS
HIERARCHICAL CONTROL STRATEGIES MODELING
189