Ekaterina Auer, Wolfram Luther



Multibody modeling and simulation is important in many areas of our life from a computer game to space exploration. To automatize the process for industry and research, a lot of tools were developed, among which the program MOBILE plays a considerable role. However, such tools cannot guarantee the correctness of results, for example, due to possible errors in the underlying finite precision arithmetic. To avoid such errors and simultaneously prove the correctness of results, a number of so called validated methods were developed, which include interval, affine and Taylor form based arithmetics. In this paper, we present the recently developed multibody modeling and simulation tool SMART MOBILE based on MOBILE, which is able to guarantee the correctness of results. The use of validated methods there allows us additionally to take into account the uncertainty in measurements and study its influence on simulation. We demonstrate the main concepts and usage with the help of several mechanical systems, for which kinematical or dynamic behavior is simulated in a validated way.


  1. Auer, E. (2006). Interval Modeling of Dynamics for Multibody Systems. In Journal of Computational and Applied Mathematics. Elsevier. Online.
  2. Auer, E., Kecskeméthy, A., Tändl, M., and Traczinski, H. (2004). Interval Algorithms in Modeling of Multibody Systems. In Alt, R., Frommer, A., Kearfott, R., and Luther, W., editors, LNCS 2991: Numerical Software with Result Verification, pages 132 - 159. Springer, Berlin Heidelberg New York.
  3. Auer, E., Rauh, A., Hofer, E. P., and Luther, W. (2006a). Validated Modeling of Mechanical Systems with SMARTMOBILE: Improvement of Performance by VALENCIA-IVP. In Proc. of Dagstuhl Seminar 06021: Reliable Implementation of Real Number Algorithms: Theory and Practice, Lecture Notes in Computer Science. To appear.
  4. Auer, E., Tändl, M., Strobach, D., and Kecskeméthy, A. (2006b). Toward validating a simplified muscle activation model in SMARTMOBILE. In Proceedings of SCAN 2006. submitted.
  5. Berz, M. and Makino, K. (1998). Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliable Computing, 4:361-369.
  6. Berz, M. and Makino, K. (2002). COSY INFINITY Version 8.1. User's guide and reference manual. Technical Report MSU HEP 20704, Michigan State University.
  7. de Figueiredo, L. H. and Stolfi, J. (2004). Affine arithmetic: concepts and applications. Numerical Algorithms, 37:147158.
  8. Griewank, A. (2000). Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM.
  9. Griewank, A., Juedes, D., and Utke, J. (1996). ADOLC, a package for the automatic differentiation of algorithms written in C/C++. ACM Trans. Math. Software, 22(2):131-167.
  10. Hammer, R., Hocks, M., Kulisch, U., and Ratz, D. (1995). C++ toolbox for verified computing I - Basic Numerical Problems. Springer-Verlag, Heidelberg and New York.
  11. Hörsken, C. (2003). Toleranzanalyse in Mehrkörpersystemen. Duisburg-Essen.
  12. Huckle, T. (2005). Collection of software bugs.
  13. Kecskeméthy, A. (1993). Objektorientierte Modellierung der Dynamik von Mehrkörpersystemen mit Hilfe von Ü bertragungselementen. PhD thesis, Gerhard Mercator Universität Duisburg.
  14. Kecskeméthy, A. and Hiller, M. (1994). An object-oriented approach for an effective formulation of multibody dynamics. CMAME, 115:287-314.
  15. Klatte, R., Kulisch, U., Wiethoff, A., Lawo, C., and Rauch, M. (1993). C-XSC: A C++ Class Library for Extended Scientific Computing. Springer-Verlag, Berlin Heidelberg.
  16. Knüppel, O. (1994). PROFIL/BIAS - a fast interval library. Computing, 53:277-287.
  17. Lerch, M., Tischler, G., Wolff von Gudenberg, J., Hofschuster, W., and Krämer, W. (2001). The Interval Library filib++ 2.0 : Design, Features and Sample Programs. Technical Report 2001/4, Wissenschaftliches Rechnen / Softwaretechnologie, Bergische Universität GH Wuppertal.
  18. Lohner, R. (1988). Einschließung der Lösung gewönlicher Anfangs- und Randwertaufgaben und Anwendungen. PhD thesis, Universität Karlsruhe.
  19. Lohner, R. (2001). On the ubiquity of the wrapping effect in the computation of the error bounds. In Kulisch, U., Lohner, R., and Facius, A., editors, Perspectives on Enclosure Methods, pages 201-217. Springer Wien New York.
  20. Metropolis, N. and Ulam, S. (1949). The monte carlo method. Journal of the American Statistic Association, 44:335-341.
  21. Moore, R. E. (1966). Interval Analysis. Prentice-Hall, New York.
  22. Nedialkov, N. S. (1999). Computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation. PhD thesis, University of Toronto.
  23. Nedialkov, N. S. (2002). The design and implementation of an object-oriented validated ODE solver. Kluwer Academic Publishers.
  24. Neumaier, A. (2002). Taylor forms - use and limits. Reliable Computing, 9:43-79.
  25. Stauning, O. and Bendtsen, C. (2005). Fadbad++. Web page
  26. Traczinski, H. (2006). Integration von Algorithmen und Datentypen zur validierten Mehrkrpersimulation in MOBILE. PhD thesis, Univerisity of Duisburg-Essen.

Paper Citation

in Harvard Style

Auer E. and Luther W. (2007). SMARTMOBILE – AN ENVIRONMENT FOR GUARANTEED MULTIBODY MODELING AND SIMULATION . In Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-972-8865-83-2, pages 109-116. DOI: 10.5220/0001624601090116

in Bibtex Style

author={Ekaterina Auer and Wolfram Luther},
booktitle={Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},

in EndNote Style

JO - Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
SN - 978-972-8865-83-2
AU - Auer E.
AU - Luther W.
PY - 2007
SP - 109
EP - 116
DO - 10.5220/0001624601090116