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Abstract: In this article, we are interested in the reactive behaviours navigation training of a mobile robot in an 
unknown environment. The method we will suggest ensures navigation in unknown environments with 
presence off different obstacles shape and consists in bringing the robot in a goal position, avoiding 
obstacles and releasing it from the tight corners and deadlock obstacles shape.  In this framework, we use 
the reinforcement learning algorithm called Fuzzy Actor-Critic learning, based on temporal difference 
prediction method.  The application was tested in our experimental PIONEER II platform. 

1 INTRODUCTION 

In this article, we propose a reinforcement training 
method where the apprentice explores actively its 
environment. It applies various actions in order to 
discover the states causing the emission of rewards 
and punishments.  The agent must find the action 
which it must carry out when it is in a given 
situation It must learn how to choose the optimal 
actions to achieve the fixed goal. The environment 
can punish or reward the system according to the 
applied actions. Each time that an agent applies an 
action, a critic gives him a reward or a penalty to 
indicate if the resulting state is desirable or not 
(Sutton, 1998), (Glorennec, 2000).  The task of the 
agent is to learn using these rewards the continuation 
of actions which gets the greatest cumulative 
reward.  

Mobile robotics is a privileged application field 
of the training by reinforcement (Fujii, 1998), 
(Smart, 2002), (Babvey, 2003). This established fact 
is related to the growing place which takes, since a 
few years, an autonomous robotics without 
knowledge of the environment. The goal is then to 
regard behaviour as a function of mapping sensor-
effector. The training in robotics consists of the 
automatic modification of the behaviour of the robot 
to improve its behaviour in its environment. The 
behaviours are synthesized starting from the simple 

definition of objectives through a reinforcement 
function.   

The considered approach of the robot navigation 
using fuzzy inference as apprentice is ready to 
integrate certain errors in the information about the 
system. For example, with fuzzy logic we can 
process vague data. The perception of the 
environment by ultrasounds sensors and the 
reinforcement training thus prove to be particularly 
well adapted one to the other (Beom, 1995), (Fukuda 
1995), (Jouffe, 1997), (Faria, 2000).  

It is very difficult to determinate correct 
conclusions manually in a large base rule FIS to  
ensure  the releasing from tight corner and deadlock 
obstacles, even when we use a gradient descent 
method  or a potential-field technique due to the 
local-minimum problem. In such situations the robot 
will be blocked.   

Behaviours made up of a fusion of a «goal 
seeking» and of an "obstacle avoidance» issues are 
presented.  The method we will suggest ensures 
navigation in unknown environments with presence 
off different obstacles shape, the behaviour will be 
realised with SIF whose conclusions are determined 
by reinforcement training methods. The algorithms 
are written using the Matlab software after having 
integrated, in a Simulink block, the functions of 
perception, localization and motricity of the robot. 
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The application was tested in our experimental 
platform PIONEER II. 

2 FACL ALGORITHM  

We have selected a zero-order Takagi-Sugeno FIS 
apprentice due to its simplicity, universal 
approximator characteristics, generalization capacity 
and its real time applications.  The input variables 
have a triangular and trapezoidal membership 
functions. 

The SIF thus consists of N rules of the following 
form (Glorennec, 2000(: 

If situation then Y1 = v[i]    and Y2= u[i, 1] with q[i,1] 
              Y2= u[i, 2] with q[i,2] 
                    
             Y2= u[i, j]  with q[i,j] 

 
      Critic                        actor 
 

In FACL algorithm (Jouffe, 1997(, each rule  
of the apprentice has:  

iR

• a conclusion  used for the approximation of the  

evaluation function  of the current policy. 
"initialized to zeros". 

iv
πV

• a set of discrete actions    identical for all  rules.  iU

• a vector of parameters   indicating  the quality 
of the various discrete actions available and 
intervening in the current policy  definition. 

iq

The characteristics of the input variables 
membership functions (number, position) are fixed. 
The number of rules is also fixed. Thus, the only 
modifiable characteristics of the apprentice are the 
conclusions i (critic) and the election of an action 
u[i,j] among J actions available (actor) in the rule 

.  

v

iR

The FACL algorithm uses two types of training:  
temporal differences for training the critic 
reinforcement’s predictions, and a competition 
process between available actions for the actor 
(Jouffe, 1997).    

2.1 Critic 

The role of the critic is to approximate the 
evaluation function which constitutes a better 
criterion for the choice of the actions than that 
represented by the primary reinforcements.  The 

critic value in the state  is inferred from the 

conclusions   vector   
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Where    represents the apprentice perception 

at time step t (i.e. contains the truth value of 
activated rules A 

T
tφ

t  for the state ). tS

The approximation error of the critic is given by 
the temporal difference error TD as follows: 
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The critic uses this error to update the 

conclusions vector v by a traditional stochastic 
gradient descent: 

  ),(.~. 11 ttvttt SVvv ∇+= ++ εβ  

                        tttv φεβ .~. 1++=                        (3) 

2.2 Actor 

Concerning the actor, the local actions are elected 
for each rule activated on the basis of quality of 
these actions, and also according to a policy 
exploration  which we will see further. 

The global action for the state  is then 
determined by the inference of these locally elected 
actions: 
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Where Election is a function returning the action 

elected for each activated rule. 

The training of the optimal policy thus consists 
in adjusting the vector of parameters so that the 
induced policy is improved.   

q

Again the TD error provides a measurement of 
this quality improvement. Then, we obtains the 
following rule for training the actor   

titRt
i
t

i
t

i
t

i
t ARSUqUq

i
∈∀+= ++ ),(.~)()( 11 αε     (5) 

The above expression shows that a positive error 
TD implies that the action has been just applied is 
preferable than the t-optimal action.  It is necessary 
to increase the quality of the action being applied.  
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Reciprocally, if the TD error is negative, it is 
necessary to decrease the quality of the action being 
applied because it led the system in a state whose 
evaluation is lower than that expected.  

2.3 Eligibility Traces 

The traces implementation of the critic and the actor 
rise directly from the incremental version of the TD.    

Let tφ  be the trace of the critic at step t, tφ is a 
short term memory of the visited states by the 
apprentice. This memory is based on the apprentice 
perception, i.e.:  truth values of the rules:  
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where λ  is  the proximity factor of the critic.   
 
An equivalent trace for the actor consists in 

memorizing the actions applied in the states. We use 
a short term memory of the truth values of each rule 
according to each action available in these rules.  Let   

 be the trace value of the action  in the 
rule  at the step t  (Jouffe, 1997): 
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where   λ′  is  the proximity factor of the actor.   
 
The updates of the parameters preset by (3) and 

(5) for all the rules and actions become: 
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2.4 Description of the FACL Execution 
Procedure 

The execution in a time step can be divided into six 
principal stages.  Let t+1 the step of the current 
time; the apprentice then has applied the action     
elected in the previous time step and on the other 
hand has received the primary reinforcement    

for the transition from the state   to . After 
the calculation of the truth values of the rules, the six 
stages are as follows (Jouffe, 1997): 

tU

1+tr

tS 1+tS

 
1- Calculation of the t-optimal evaluation 

functions of the current state by the critic: 
 

T
tttt vSV 11 .)( ++ = φ                 (10) 

As proposed by Baird (Baird, 1995), to eliminate 
the instability source due to the approximation by 
SIF, we do not perform a gradient descent on the 
residual of Bellman defined by  ε   but on the 
average residual quadratic of Bellman. The 
modification to be made on the   trace of eligibility 
is then given by the following relation: 

               
  1+−← ttt γρφφφ , ]1,0[∈ρ                (11) 

 
2-    TD Error calculation: 
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3-   Update of training rates corresponding to the 
critic parameters for all rules in three stages: 

In order to accelerate its training speed and to 
avoid instability, we adopt a heuristic adaptive 
training rate (Jouffe, 1997). The implementation of 
heuristic is carried out by the means of Delta Bar 
Delta rule: 
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Where in our case: 

-   is the training rate of the critic for the rule  
  in the time step t; 

i
tβ

iR
 - i
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i
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1+=  represent the variation brought to 
the parameter of the critic in which we propose to 
integrate the trace of eligibility directly and not 
simply the partial derivative; 
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average 
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This rule increases linearly the training rates in order 
to prevent that it do not become too large, and 
decrementing it in an exponential way to ensure that 
it decrease quickly.  

4- Training of the critic and the actor by updating 
the vector v and the matrix  : q

          T
ttttt vv φβε ..~

111 +++ +=                     (14) 

tttt eqq 11
~

++ += ε                              (15) 
 
5-  It is again necessary to calculate the t-optimal 

evaluation function of the current state by the critic 
but this time with the lately updated parameters:  

 
                          (16) T

tttt vSV 1111 .)( ++++ = φ
 
This value will be used for the TD error 

calculation in the next step of time. 
 
6-  Now it   remains the choice of the action to be 

applied in the state . 1+tS
We consider the case of continuous type actions, 

which is inferred from the various actions elected in 
each rule,   
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The traces eligibility updates for the critic and 

the actor are given by the two following formulas: 
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2.5 Proposed Exploration / 
Exploitation  

The actions election strategy which we used is a 
combination of directed and random exploration 
(Jouffe, 1997). The global election function, applied 
to each rules, is then defined by: 

))()()(()( UUUqArgMaxqElection UUU ρη ++= ∈
       (20) 

Where U represents the set of available discrete 
actions in each rules, and   the associated vector 

quality. 

q

)(Uη  the random exploration term, and   
)(Uρ the directed exploration term.   

The term η is in fact a random values vector. It 
corresponds to a vector ψ   of values sampled 
according to an exponential law, standardized in 
order to take into account the  qualities size scale:  q
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Where  represents the maximum size of the 
noise relative to the qualities amplitude,  is the 
corresponding normalisation factor.  Used alone, this 
term of exploration allows a random choice of 
actions when all qualities are identical and allows in 
the other case, to test only the actions of which 
quality satisfied: 

ps

fs

          (23) )))(())((()()( UqMinUqMaxsUqUq p −−≥ ∗

This term then allow us to avoid the choice of 
bad actions (Jouffe, 1997). 

The term of directed exploration  ρ   permit the 
test of actions not having been applied often. It is 
thus necessary to memorize the times number where 
the action was elected.  This term is defined in the 

following way: )()( Unte
U θ

ρ =                             (24) 

Where θ  represents a positive factor which 
permit to equilibrate the directed exploration,  
the applications number of action U at the time step 
t. In the case of actions of the continuous type,  

 corresponds to a number of applications of 

the discrete action U in the considered rule. Let     
the discrete action elected at the step of time t in the 
rule ; the update of this variable is determined by 
the following equation: 
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3 EXPERIMENTAL PLATFORM  

Pioneer P2-dx with its modest size lends itself well 
to navigation in the tight corners and encumbered 
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spaces such as the laboratories and small offices. It 
has two driving wheels and a castor wheel. 

 
Figure 1: Pioneer II Robot Photo. 

To detect obstacles, the robot is equipped with a set 
of ultrasounds sensors. It supports eight ultrasonic 
sensors placed in its front (fig. 2). The range of 
measurements of these sensors lies between 10cm as 
minimal range and 5m as maximum range.  

 
Figure 2: Position of the ultrasonic sensors used in the 
robot Pioneer II.  

The software Saphira/Aria (Konolige, 2002a), 
(Konolige, 2002b) allows the control of the robot 
(C/C++ programming). We have integrated  
functions of  Saphira  (perception, localization and 
motricity)  in  Simulink using  API (S-Function), 
Thus we can benefit from MatLab computing power 
and simplicity  of Simulink to test our algorithms 
and to control  the robot Pioneer II. 

4 EXPERIMENTATION 

The task of the robot consists in starting from a 
starting point achieving a fixed goal while avoiding 
the static obstacles of convex or concave type.  It is 
realised by the fusion of two elementary behaviours 
«goal seeking» and «obstacle avoidance ". 

4.1 The «goal seeking» Behaviour 

For the "goal seeking" behaviour, we consider three 
membership functions for the input 

Rbθ  (robot-goal 
angle), and two membership functions for the input 

bρ (robot-goal distance) (Figure 3). The base of 
knowledge consists of six fuzzy rules. The SIF 
controller has two output for the actor (rotation 
speed Vrot and the translation speed Vit) and one 

output for the critique who is related to the 
evaluation function of the pair actions (Vrot,Vit).   

 

Figure 3: membership functions for Rbθ  (a) and bρ  (b). 

From the heuristic nature of FACL algorithm, we 
carried out several tests to determine the values of 
the parameters which accelerate the training speed 
and to obtain good performances for the apprentice. 
After a series of experiments,   we found the 
following values: 

5.0,9.0,50 ==′== ρλλθ ,   and 1.0=sp 9.0=γ  

Available actions for  all rules, are  as follow  {-
20°/s, -10°/s, -5°/s, 0°/s, +5°/s, +10°/s, +20°/s} for 
the rotation velocity  and {0 mm/s,  150 mm/s, 
350mm/s} for translation, which gives 21 possible 
actions in each fuzzy rule. 

The reinforcement function   is defined as 
follows: 

- If the robot is far from the goal, the 
reinforcement is equal to 

• 1 if  ( Rbθ . < 0) &  Vit=0 
Rb

θ

• 1 if  (-1°< Rbθ <+1°) &  Vit ≠ 0 
• 0 if ( Rbθ . = 0) &  Vit=0 

Rb
θ

• -1 else 

- If the robot is close to the goal, the 
reinforcement is equal to   

•  1 if  ( Rbθ . < 0) & Vit=0 
Rb

θ

• -1 else  

Figure (4) shows the trajectory of the robot 
during the phase of training and validation.  

 

 
Figure 4: Trajectory of the robot during and after training. 

BEHAVIOUR NAVIGATION LEARNINIG USING FACL ALGORITHM

343



 

4.2 The «obstacle avoidance» 
Behaviour  

For this behaviour, we have determined the 
translation speed of the robot proportional to the 
distance from the frontal obstacles, with a maximum 
value of 350 mm/s (fig.5).  

 
Figure 5: Translation speed Vit. 

Inputs of the fuzzy controller for this behaviour 
are the minimal distances provided by the four sets 
of sonar {min(d90,d50), min(d30,d10), min(g10,g30), 
min(g90,g50)}, with respectively three membership 
functions for each one (fig. 6).  

 
 
 
 
 

 
 
 
 

Figure 6: input  membership functions for the fuzzy 
controller Vrot (a) :{min(d90,d50), min(g90,g50)} 
(b) :{min(d10,d30), min(g10,g30)}. 

The set of the action  U   common to all rules 
consists of five actions {-20°/s, -10°/s, 0°/s, +10°/s, 
+20°/s}.  

 
The reinforcement function is defined as follows: 
             

• +1 if min {min(d90,d50),min(d30,d10)} <  min 
{min(g10,g30),min(g90,g50)} & Vrot > 0  

• +1 if min {min(d90,d50),min(d30,d10)}>  min 
{min(g10,g30),min(g90,g50)} & Vrot < 0 

• -1   otherwise  
 
The figure (7) shows the evolution of the robot 

during the training phase.   
 

On the figure (8), we represent the time 
evolution of the robot. It shows that the robot is able 
to be released from the tight corners and deadlock 
obstacles shape. 

 
 
 
 
 
 
 

Figure 7: Trajectories of the robot during and after 
training. 

 
                        (a)                                    (b) 

 

4 8 1 5 9 1

P M L P M L

(a) (b) 

                         (c)                                   (d) 

Figure 8: Time evolution of the robot after training. 

4.3 Fusion of the Two Behaviours 

The goal of the two elementary behaviours fusion is 
to allow the robot navigation in environments 
composed by fixed obstacles of convex or concave 
type and to achieve a fixed goal while ensuring its 
safety, witch is a fundamental point in reactive 
navigation.  

 
The suggested solution consists in considering 

the whole input variables of the two behaviours 
« goal seeking » & « obstacles avoidance » 
associated with distributed reinforcement function 
by the means of a weighting coefficient between the 
two behaviours (0.7 for obstacles avoidance and 0.3 
for the goal seeking). 

 
The fuzzy controller input are six   who are the 

minimal distances provided by the four sets of sonar 
{min(d90,d50), min(d30,d10), min(g10,g30), 
min(g90,g50)}, with respectively three membership 
functions  for the side sets and two membership 
functions for the frontal sets,  to which we add the 
input Rbθ  with three membership functions,  and 

bρ  with two membership functions.   The rules base 
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thus consists of 216 fuzzy rules.  The translation 
speed of the robot is proportional to the distance 
from the frontal obstacles.  The FACL algorithm 
parameters are slightly modified as follows: θ =20 
& sp  =0.9  

Figure (9) represents the type of trajectory 
obtained during the training phase. The robot 
manages to avoid the obstacles and to achieve the 
goal assigned in environments encumbered by 
maintaining a reasonable distance between the 
obstacle and its with side dimensions.  Figure (10) 
illustrates the satisfying behaviour of the robot after 
training. The various trajectories obtained for the 
same environment and the same arrival and starting 
points are due primarily to the problems of the 
perception of the environment by the robot and are 
related to the phenomena of sonar readings, these 
differences confirm at the same time the 
effectiveness of the training algorithm.  

  

 
Figure 9: Trajectories of the robot in training phase. 

 
                (a)                                     (b) 

 
                  (c)                                  (d) 

Figure 10: Various trajectories of the robot after training. 

 
Figure 11: Trajectory of the real robot after training. 

Figure (11) illustrates the satisfying behaviour of 
the real robot which evolves/moves in an unknown 
environment and which manages to achieve the 
fixed goal. 

5 CONCLUSION 

FACL Algorithm makes it possible to introduce 
generalization into the space of the states and the 
actions, and a Sugeno type order zero SIF 
conclusions adaptation incrementally, and this only 
by the means of the interactions between the 
apprentice and his environment.  The reinforcement 
function constitutes the measure of the performance 
of the required behaviour solution.  Also, fusion of 
the behaviours « goal seeking» & « obstacle 
avoidance » is presented by using a combined 
reinforcement function. The simulation and 
experimentation results in various environments are 
satisfactory. 
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