
ASPECT ORIENTATION VS. OBJECT ORIENTATION IN
SOFTWARE PROGRAMMING

An Exploratory Case-study

Anna Lomartire, Gianfranco Pesce

Università degli Studi di Roma “Tor Vergata”
Centro di Calcolo e Documentazione, via O. Raimondo, 1 - 00177 Roma, Italy

Giovanni Cantone

Università degli Studi di Roma “Tor Vergata”
Dipartimento di Informatica Sistemi e Produzione,via del Politecnico, 1 - 00133 Roma, Italy

Keywords: Aspect-oriented Programming, Object-oriented programming, Empirical Software Engineering.

Abstract: Aspect orientation is a software paradigm that is claimed to be more effective and efficient than Object
orientation when software development and maintenance interventions are taken in consideration that affect
transversally the application structure, namely Aspects. In order to start with providing evidence able to
confirm or disconfirm that opinion in our context - software processes that we enact, and products that we
develop at our University Data Center - before launching a controlled experiment, which would require the
investment of large effort, we conducted a preliminary explorative investigation that we arranged as a case
study. We started from a Web-based object-oriented application, which engineering students in Informatics
had constructed under our supervision. We specified new user needs, which realization was expected to
impact on many of the application’s classes and relationships. Hence, we applied another student to realize
those extensive requirements by using both Aspect orientation and Object orientation. Results show that, in
the average, both the completion time and the size of the additional code advantage significantly the Aspect
orientation, for maintenance interventions that are transversal to the application’s structure, with respect to
the characteristics of the experiment object utilized, the specified enhancement maintenance requirements,
and the subject involved with performing in the role of programmer. Although the exploratory nature of the
study, the limited generality of the utilized application, and the fact that just one programmer was utilized as
experimental subjects, the experiment results push us to verify the findings by conducting further
investigation involving a wider set of programmers and applications with different characteristics.

1 INTRODUCTION

Object Orientation (OO) is a software paradigm,
which nowadays has become a classic of software
analysis, design, and programming, so that we do
not mind to recall his characteristics in this paper.

Aspect Orientation (AO) is a software paradigm
too; it constructs on OO (Kiczales et al., 1997)
(Laddad, 2002) (Bonin, 2002) (TAODS, 2003)
(Eclipse, 2007) (AOP, 2007) (AODS, 2007), and
tries to make effective and efficient software
development and maintenance, when interventions
are transversal to, act on most of the structure of, the
software application, its classes, relationships, and
execution scenarios.

AO is based on the concept of Aspect , which
deals both with mechanisms, like security and

persistence, and utilities, like control-path tracing,
e.g. for structural testing and logging.

While nowadays the AO paradigm is spreading
to software architecture, analysis and design
(Keuler, Naab, 2007), this paper focuses both on
programming - particularly the impact on software
code of enhancement maintenance interventions -
and process efficiency. Some tools support the
Aspect Oriented Programming (AOP), including
programming languages, like an Aspect oriented
version for Java (AspectJ, 2007).

Based on the AO paradigm, the classes of a
program are not requested to be aware of the
program’s aspects. For instance, in order to extend a
program by using aspects, the work of an AO
programmer in not to change program classes but
consists of identifying and coding the needed
aspects , as specific programming units, and
defining the points of those classes and methods, and

47
Lomartire A., Pesce G. and Cantone G. (2007).
ASPECT ORIENTATION VS. OBJECT ORIENTATION IN SOFTWARE PROGRAMMING - An Exploratory Case-study.
In Proceedings of the Second International Conference on Software and Data Technologies - PL/DPS/KE/WsMUSE, pages 47-54
DOI: 10.5220/0001349800470054
Copyright c© SciTePress

the conditions (object states and events), which
claim for the activation of an aspect.

While there are works that are assertive of the
AO, or also present concepts and practical examples
about the usage of that paradigm (Baccan, 2004)
(RCOST, 2007) (Merlo, 2007), it is quite limited the
number of studies that investigated AO empirically,
i.e. using controlled experiments, case studies, or
surveys.

At our University’s Data Center (“Centro di
Calcolo e Documentazione”, CCD), where we
design and develop software for providing services
to the Administration and students, we have been
reflecting on the utilization of AOP for maintaining
or re-engineering our applications. In order to
become confident with AO and related technologies,
and in the aim of understanding what advantages
and disadvantages might derive from using AOP, in
which circumstances, and in what extent, our
decision was to start first an exploratory study, and
then, in case of successful results, to launch a
controlled experiment to conduct initially with
students of engineering and then with our
professionals.

The scientific conjecture for this our work is that
the development and maintenance of software with
structurally pervasive characteristics should find
relative advantage in using AO rather than OO.

Many points, which are in our research agenda
but this paper cannot afford, include but are not
limited to: (i) Pros and cons of AO vs. OO, when
software requirements are provided, which have, and
respectively have not, a transversal impact on the
software architecture, for development from the
scratch or maintenance interventions, respectively;
(ii) Impact of AOP on readability,
comprehensibility, efficiency, testability; (iii)
Debugging and static analysis of AOP vs. OOP
software applications. Moreover, in what extent: (iv)
The extension points that AOP provides can be
utilized to implement and manage dependence
relationships between use cases; (v) The application
characteristics (e.g. its structure) have influence on
the utility of applying AOP rather than OOP.

In the remaining of the present paper, Section 2
recalls previous work, reasons on AO and AOP
mechanisms; Section 3 sketches on AspectJ and its
AOP constructs; Section 4 presents the case study,
Section 5 and Section 6 present and discuss the
related results, respectively. Some final remarks and
forwards to future work conclude the paper.

2 ASPECT ORIENTATION

In the traditional OO approach, it is complex or
impossible to utilize modular entities like classes,

and methods to model behaviors, which spread
anywhere in the application, do not need explicit
invocations, and are specified and defined in one
point of a software artifact. Memory management,
security mechanisms, logging, fault and exception
management are some of the characteristics that
suffer for such a limit.

AO has been proposed as a solution for problems
of that kind. In the view of the AO supporters, OO
should deal with the business logics, domain entities,
and interaction with the external world; AO should
deal with all the remaining. Let us consider, for
instance, a data-management system component,
which is in the responsibility to “Insert a new
customer in the DB”. This component should also
deal with some access-related auxiliary concerns,
like authorization, tracing, and policies. These
auxiliary concerns have pervasive impacts; we need
programming supports, which allow having just a
copy of those access checks in a program rather than
duplicating them in all the impacted operations. The
AO approach claims to have enough expressive
power to meet all those constraints and requirements
in the whole application.

AO provides design concepts, and programming
constructs and mechanisms, which allow
practitioners to isolate functionalities that impact
transversally on the application system. AO calls
these functionalities with crosscutting and groups
them and related activation points in an aspect. For
instance, with regard to the previous example of
data-management system component, it should be a
good choice to evaluate for crosscutting eligibility
those functionalities that deal with DB access
policies, authorization, and tracing.

In the AO context, the term Concern is used to
denote a concept or area of interest, or also a
requirement or functionality, eventually a behavior,
which can be thought and developed autonomously.

There are AO Concerns of two kinds: Core
Concern and Crosscutting Concern. OO is well able
to model the former by using delegation and/or
inheritance and polymorphism. The goal of AO is to
capture the latter kind and provide simple means to
represent it in a software artifact by minimizing
dependencies between the involved entities.

In order to introduce a Crosscutting Concern into
a program, a programmer is just requested to provide
the desired new behavior (Concern) and the
application points where s/he wants that the behavior
is entered. Hence, two fundamental parts compose
an aspect:

• Advice, which provides a full implementation
of the Concern;

• Pointcut, which defines a family of points in
the program flow where to exec the aspect.

A pointcut, in its turn, can be expressed by a
combination of Join points, each expressing a

ICSOFT 2007 - International Conference on Software and Data Technologies

48

characteristic point of the program flow, like the
invocation of a certain method or constructor, the
access to an attribute, or the raise of an exception.

The construction of an AO software is structured
in four sequential steps, and includes OO
construction:

• Aspects identification and decomposition:
here each transversal service, is detected.

• Class structure definition: the same as for
OO.

• Independent implementations of classes,
and of transversal services as apects.

• Aspects re - composition (Weaving).

3 USING ASPECTJ TO
PROGRAM ASPECTS

AspectJ is a Java compatible AOP language. It adds
concepts and constructs like joint point, aspect,
pointcut, advice, and inter-type declaration to Java.

3.1 Aspect

An Aspect is the modular unit that AspectJ provides
to express crosscutting concerns. Classes and aspects
share syntax and structure less the keyword class
that moves to aspect , and the fact that an aspect can
also include pointcuts, advices, inter-type
declarations, and other aspects. Of course, an aspect
can also contain what a class can include: e.g.,
constructors, attributes, methods, and inner classes.

3.2 Join-point

In an AspectJ, a joint point is a well-defined point,
which regards the program flow, including
asynchronous events and exceptions that might
occur at run time.

AspectJ provides support for implementing some
types of join point, including:

• Invoking a method or constructor.
• Entering a method or constructor.
• Initializing an object.
• Reading from or writing into an attribute.
• Executing an exception handler.

3.3 Pointcut

A pointcut allows the definition of a one or more
join points; in other words, in order to intercept an
occurrence, a pointcut is specified in such a way to
define join points.

AspectJ provides primitive pointcut designators
that allow a programmer to define many types of

join points. A pointcut designator is a matching tool
for an application’s identified event set (join points).

The syntax of a pointcut is: [v is ib il i ty-
modif iers] pointcut name(ParameterLis t) :
PointcutExpression; where the vis ib i l i ty-
modif iers field allows to explicitly define the
visibility of the pointcut in {public, protected ,
pr ivate}. The field name is for the user-defined
pointcut’s unique name. PointcutExpress ion
indicates what the pointcut has to intercept; logical
operators can be used to combine primitive pointcut
designators.

For instance, it specifies the interception of all
the invocations of the methods setAnAtb(in t) and
setAnotherAtb (in t) in the class AClass , the
expression: ca l l (vo id AClass . se tAnAtb (in t)) | |
ca l l (void AClass . se tAnotherAtb (in t)) .

Finally, wild cards are allowed for use in a
pointcut expression. For instance, it specifies the
interception of any method in any class with name
suffix “AClass”, the following expression:
cal l(*AClass .*(…)). Of course, if a naming
convention is applied, wild card can be extensively
utilized. Vice versa, an existing application might
cause additional effort for defining the pointcuts if
its naming is not consistent.

3.4 Advice

Advices allow users to define the code to exec when
a join point is intercepted. There are three types of
Advices that AspectJ provides:

• Before advice is invoked when a join point
is reached, i.e. just before the call of the
method that the join point specifies. An
instance of such an usage follows, where a
message is printed just before any
occurrence of a specified event: before() :
anEvent(){<print msg>}

• After advice is invoked when, following the
interception of a joint point, the control
flows goes again through to the intercepted
join point, i.e. at the end of the invoked
method, just when this returns the control to
the caller. An instance of such an usage
follows, where a message is printed just
after any occurrence of a certain event:
af ter() :anEvent(){<print msg.>}

• Around advice is executed in the range that
Before and After advices define. This is the
most power type of advice. It includes all
other advices; additionally, it may change
the execution context to install on return
from the method. The syntax for such an
advice is: ReturnType around
(ParamList) ; in order to specify when to
return from an Around advice to the related

ASPECT ORIENTATION VS. OBJECT ORIENTATION IN SOFTWARE PROGRAMMING - An Exploratory
Case-study

49

joint point, a call to proceed is used,
which returns a value of the ReturnType.

3.5 Inter-type Declaration

The Inter-type declaration is an advanced and risky
feature that allows changing the structure and
behavior of a software module by adding attributes,
methods or constructors, and modifying class
relationships. The syntax of an inter-type declaration
is:

• For an attribute: [Modif iers]
FieldType TargetType.Id;

• For a method: [Modif iers]
 ReturnType TargetType.Id
(Formals) [throws TypeList]
{Body};

• For a constructor: [Modif iers]
TargetType.new (Formals) [throws
Typel is t] {Body};

The default visibility of an attribute or method is
pr ivate; it can be set to publ ic. For instance, the
statement: in t AClass.anAtb=0; specifies that
the class AClass is requested to include the private
integer attribute anAtb and to initialize it to zero for
any instance. The further statement: publ ic in t
AClass.getAnAtb () {return th is .anAtb;}
specifies that AClass is requested to have an
integer method that is called with getAnAtb() and
returns the value of the receiver’s data field anAtb.
Finally, the following statement: declare parents :
CC extends AClass; sets AClass as superclass
of CC. Similar syntax is used for declaring the
implementation of an interface: declare parents :
AClass implements IC.

4 THE CASE STUDY

In order to start comparison of AOP and OOP, we
made decision to design and eventually conduct an
enhancement maintenance case study. The goal
(Basili, Caldiera, Rombach, 1994) and the
consequent underlining hypotheses that we assumed
for this initial study were that for some types of
enhancement maintenance interventions on small-
medium size data-management Web Java OO
applications, it should be significantly worth,
effective and/or efficient, to use AOP rather than
OOP in the context of an academic Data Center,
with junior programmers, from the researcher point
of view.

Based on the case study goal, in the design stage,
we choose to add some orthogonal utilities and use-
cases to a pre-existent student-made Java J2EE Web
application for home-library management.

Additionally, because we made design decision
to involve no more than a couple of subjects to
perform as programmers in the initial exploration of
AOP vs. OOP, our further decision was to proceed
by a paired case study, that is to indicate each
subject, one or two, to utilize both the treatments in
random order, hence to develop each maintenance
intervention two times, by using AOP and OOP,
respectively.

4.1 The Application to Enhance

The use case object is FamilyLibraryMgt, FLM,
i.e. a software application, which allows a family to
manage musical, artistic, or reference materials (as
books, manuscripts, recordings, or films) in terms of
media catalog, search, and allocation in the available
bookcases.

FLM is a Web application, which is Model-
View-Control designed and includes 4 packages, 46
classes, 579 methods and 46 constructors. Beside the
Internet access, two human Actors define the
application’s boundary: the Adminis tra tor and its
super class User , who interact with FLM by 11 use
cases.

Once the application owner registers himself or
herself into the application system, s/he creates the
personal virtual FLM, and is set as the FLM‘s
Adminis tra tor . S/he can then store or search the
FLM DB for media, and register other users.

For registration of a new User , the application
asks the Adminis tra tor for some user attributes,
including username and initial password.

Registered users are allowed to manage the
library in the limits specified by the level of
authorization that the administrator assigned them.

For including a new item in the system, this asks
the user for attributes that any medium has, and
some other ones, which are medium-type specific,
like Book, Magazine, VHS, ACD, DVD.

Functionalities that the application provides are:
• Inser t ; the specification of a physical

location in a bookcase for the real medium
is also requested.

• Search; both simple and advanced types
of searches are provided.

• Lend, concerning media that friends lend/
borrow.

• Cancel a media by providing motivation
and confirmation.

4.2 The Maintenance Requirements

The enhancement maintenance requirements of
FLM are reported in the following, as sketched in
terms of a non-functional requirement (L) and two
use cases (K, M) additionally requested for FLM.

ICSOFT 2007 - International Conference on Software and Data Technologies

50

• Logging (L): the system updates the Log
file anytime a method is entered.

• Control led access (K): the system is
requested to manage the access to videos
depending on the age of the user. In the
user view, as a result of this intervention:
Each registered VHS and DVD has the
attribute usageLabel , which gets value
into {Green, Yel low, Red}. Moreover,
restrictions to access are reinforced, so that
a medium is like not existent in the
electronic library for people who have not
the requested authorization and access
level. Furthermore, the access to videos is
restricted as in the following:
In case of usageLabel :

 Green: no restriction applies.
 Yellow: for 14 or older.
 Red: for 18 or older.

• Inser t ion management (I): the
Administrator is the only user allowed to
assign a usageLabel different from Red
to, or change the usageLabel of, a video
medium.

4.3 The Case-study Participant

When we were ready to start with the case study,
one subject was available, and we made decision to
begin the exploratory study with just that participant.

A bachelor engineer in Informatics less final
dissertation was involved as subject in the case
study. Previously: he had performed in the average,
as a student of OOP and OOAD; moreover, he had
never experienced as a software professional or been
exposed to AOP.

4.4 Training

Before starting with the case study, the subject had
to refine his Java OOP practical knowledge by
analyzing and constructing an UML-documented
small size data-management application under the
supervision of professionals at the CCD.

Successively, he attended a briefing on AOP
introductory elements.

4.5 Threats to Results Validity

Based on the training received, the subject should be
considered much more expert with OOP than AOP.

Consequently, the validity of results from the
case study should be considered as threaten, whether
giving an advantage to OOP; vice versa, results
should be emphasized, whether providing an
advantage for AOP.

In order to keep in control the further threat to
validity, which relates to the learning effect that is
surely associated with using one subject in a paired
case study, we instructed the participant: (i) to start
the work with AOP; (ii) to change the treatment to
use first (OOP, AOP, OOP, and so on) in the current
pair when passing from a requested enhancement to
the next one, and (iii) to not change the treatment
before completing the current intervention. In
practice, he applied three paired maintenance
enhancements by using orderly treatments as in the
following: (L: AOP, OOP), (K: OOP, AOP), and
(M: AOP, OOP).

4.6 Case-study Operation

Eventually, both the available application and the
maintenance requirements for extension L were
given to the subject, who was then instructed to
make the requested ordered pair (AOP, OOP) of
interventions. When he had finished with these, the
requirements for K and M were assigned him, and
he was requested to develop first the pair of
interventions (OOP, AOP) for extension K, and then
the pair (AOP, OOP) for I requirements.

In order to allow replications of the study by
interested scientists, if any, some further details are
given in following.

The subject was invited to develop the
maintenance interventions where and when he
preferred, but to refer systematically to the involved
academics: tutor and professionals.

The subject preferred to work at his own home
and meet academics on demand, depending on his
work advancement or the occurrence of blocking
doubts. During the development, academics spent
one man-hour per week, in the average, for meeting
the subject.

The enhancement maintenance implementation is
sketched in the following sub-sections. Cumulative
results are given first for the whole interventions
(Sub-Section 4.2.1). Subsequently, the interventions
are classified per the requested non-functional
requirements (L) and use cases (K and I),
respectively, one per sub-section, and presented with
some details.

5 RESULTS

5.1 Total Results

It follows the total size (numbers of methods,
classes, aspects, and Source Lines Of Code, SLOC,
default value is zero) of, and time spent for, AOP
and OOP maintenance interventions on the pre-
existent FLM application, respectively. It counted

ASPECT ORIENTATION VS. OBJECT ORIENTATION IN SOFTWARE PROGRAMMING - An Exploratory
Case-study

51

one time per intervention an impacted artifact, e.g. a
class was counted two times if it was modified by
two interventions.

AOP: • New artifacts:
 5 methods, 16 SLOC.
 2 aspects, total size 45 SLOC.

• Amount of time spent:
 135 minutes.

OOP: • New artifacts:
 1 class.
 6 methods, 28 SLOC.

• Changed artifacts
 49 classes.
 582 methods, 721 SLOC.

• Amount of time spent:
 530 minutes.

5.2 Logging

The maintenance intervention was first realized in
AOP and then in OOP for this utility.

AOP. The AOP implementation of this extension
includes an aspect, which names Logging, where a
pointcut is defined, which is named with
logPoint() , and is able to intercept the invocation
of any of the 579 methods that populate the
application. Additionally, an after-advice is defined:
subsequently to logPoint() ‘s interception, the
aspect’s method addI tem(Str ing log()) is
invoked, which eventually appends the identifier of
the receiver and the signature of the invoked method
to the Log file.

OOP. The OOP implementation of this
extension includes the new class LoggingPrint ,
which is in the responsibility of updating the Log
file. Additionally, each method has been extended to
include the following Java instruction:
LoggingPr in t . addLogging (obj&methodInfo) ;

Results. On the AOP side, 12 SLOC in an aspect
(Logging) were sufficient to implement the
maintenance intervention. The amount of time spent
to enact this extension is 60 minutes.

On the OOP side, 1 new class, 6 new methods 28
SLOC; 46 modified classes, 579 modified methods
(705 SLOC) are the numbers that characterize the
size of this intervention, which impacted on all the
previous methods and classes. The amount of time
spent to enact this extension is 480 minutes.

5.3 Controlled Access

The maintenance intervention was first realized in
OOP and then in AOP for this use case.

OOP. A class has been modified for managing
the user’s birth date. Additionally, in the class
PostgresqlDAO, the method has been modified,
which is in the responsibility of loading a video

medium from the DB. Only those media are loaded
which the current user is allowed to access.

AOP. As before for the OO intervention, a class
has been modified for the user birth date
management. Additionally, an aspect has been
created and implemented, which names with
CheckForAdminis tra tor . In such an aspect,
two pointcuts and related advices have been defined
and called with: receiveAdmrAttr ibutes() and
usageLabel() , respectively. The former is in the
responsibility of intercepting application system
logins. Just after such an execution, an advice gets
the birth date of the current user. The latter is in the
responsibility of: (i) intercepting PostgresqlDAO
invocations to the method setUsageLabel
(Str ing) in the class Video; such a method is also
called whenever the system tries to load a video
medium from the DB; and, (ii) calling the related
advice. Only videos are made visible that satisfy the
conditions that the use case defines.

Results. The same amount of new lines of code
was necessary to implement the OOP and AOP
interventions.

The amount of time that the subject employed to
enact this extension is 60 minutes for the AOP
intervention, and 30 minutes for the OOP
intervention.

5.4 Insertion Management

The maintenance intervention was first realized in
AOP and then in OOP for this use case.

AOP. The aspect CheckForAdminis tra tor
and a class (see Section 5.3) have been extended by
57 Java SLOC. The latter includes the pointcut
checkUsageLabel() . This contains join points
that concern: (i) PostgresqlDAO calls for the
method getUsageLabel() in the class Video;
such a call occurs whenever the system is requested
to store new videos into the DB, and (ii) any
execution of the method getUsageLabel() in the
Java Bean class InsVideoBean; in fact, such a
method receives attributes of the video medium to
insert in the DB; the user defines values for those
attributes by filling in the fields of the user
interface. An advice is associated with such a
pointcut, to apply controls that depend on the type of
the current user (Administrator or not).

OOP. A class has been extended as for the AO
intervention. Following that step, based on the use
case requirements, a couple of lines of code have
been added to two methods: the method which, as
part of the class PostgresqlDAO, is in the
responsibility of inserting video media into the DB;
and the other method which, as part of a boundary
class, manages the interaction with the user through
the user interface.

ICSOFT 2007 - International Conference on Software and Data Technologies

52

Results: The AOP and OOP maintenance
interventions are practically equivalent in term of
adjunct size and effort spent. In both cases the same
class was modified. Additionally, the OOP
implementation impacted on two more classes.

The amount of time spent to enact this extension
is 15 minutes for the AOP intervention, and 20
minutes for the OOP intervention.

6 EVALUATION OF RESULTS

Concerning the maintenance intervention as a
whole:

• 61 SLOC for 5 new methods and 2 aspects,
and 135 minutes plus testing time are the
size and duration time data, respectively,
which characterize the AOP intervention.

• 28 SLOC for 1 new class and 6 new
methods; 721 SLOC for 49 modified
classes and 582 modified methods, and 530
minutes plus testing time are the size and
duration time data, respectively, which
characterize the OOP intervention.

Thus, in order to implement the same functional
changes in the given application, AOP needed 8% of
the OOP SLOC, and 25% of the OOP duration time,
in the average. This result shows a clear advantage
of AOP versus OOP, for structurally pervasive
maintenance interventions.

The efficiency is 27 SLOC/Hour for AOP, and
85 SLOC/Hour for OOP. Let us recalls that an OOP-
expert AOP-naive junior programmer was involved
to perform as subject in the case study. In practice,
the former efficiency is affected by the time that the
subject needed to learn AOP concepts and
programming language. These results might also tell
us that AOP requires more reflection time than OOP.

Additionally, we should take in account that the
added aspects are full reusable and, in practice, reuse
is quite for free; vice versa, in order to introduce the
same functionalities in another application, the OOP
programming should be mostly done again.

Moreover, it should be considered that this
maintenance intervention was specified to manage
and control just the video materials. The same
aspects that the AOP interventions introduced would
hold all the present and future types of medium.
Vice versa, changes to many classes and/or the
application structure should be enacted, in case of
OOP interventions.

Last but not least, structuring AOP has not been
yet in focus, e.g. introducing generalization and
specialization of aspects. It is reasonable to expect
that it would be easy for an aspect to subsume such
concepts and related constructs whenever they

should be included by AOP languages; vice versa, it
is reasonably without hope any tentative aimed to
give structure to code spreading application-wide.

Logging. For the FLM object, the following
advantages were observed for AOP vs. OOP: (i)
clear reduction of code-change diffusion (two very
small localized groups of instructions were sufficient
to enact the AOP intervention, while 705 SLOCS
spread through 46 classes, i.e. 100% of the OOP
application, in the OOP intervention), (ii) very large
reduction of the development time (60 vs. 480
minutes), (iii) full reusability of the added aspects.

Concerning productivity: it is 12 SLOC/Hour for
AOP, and 92 SLOC/Hour for OOP. Again, AOP
could be much more complex to use than OOP.
However, the AOP inexperience of the case-study
subject should be taken in consideration, hence the
time he employed to learn about that paradigm and
related techniques and tools.

In conclusion, based on this case, it seems that
using AOP rather than OOP should significantly
improve the return on investment.

Controlled access. For this use case, no
significant difference was observed between AOP
and OOP interventions. In fact, concerning the code
size, a very small advantage was observed for OOP;
concerning the development time, OOP needed 30
minutes less of AOP, which lasted 60 minutes. This
should confirm that AOP is much more complex to
comprehend and enact than OOP. It should be also
considered that the use case was just applied to
video media; the extension to other types of media
should come quite for free, when the aspect is taken
in consideration, but the effort should grow, when
OOP is considered. In fact, concerning the former,
it should be enough: (i) to extend the pointcut
usageLabel() so that it can intercept also
invocations of other media objects, and (ii) to
introduce a small change into the related advice.
Vice versa, in the OOP approach, the code already
written for videos should be replicated in the classes
of the other media or else the application should be
re-structured by introducing a further abstract class,
e.g. Medium, as the super class of all the media.

Insertion management: Also for this use case,
no significant difference was observed between the
AOP and OOP interventions. However, while both
the interventions did modify the same application
class, the OOP intervention also modified two
further classes. Such an OOP additional work should
give again advantage to AOP, in case the
enhancement is extended from video material to all
the library media: in fact, such a further extension
would utilize a common aspect.

ASPECT ORIENTATION VS. OBJECT ORIENTATION IN SOFTWARE PROGRAMMING - An Exploratory
Case-study

53

7 CONCLUSIONS AND FUTURE
WORK

After a brief recall of the Aspect Oriented (AO)
philosophy, concepts, and programming languages,
this paper has been presenting a case study aimed to
explore advantages, if any, that AO can return when
structurally pervasive maintenance interventions are
applied to an OO designed and implemented data-
management Web application.

Some results from the case study are very
interesting, but need confirmation. We are now in
the planning phase of confirmatory experiments to
conduct first with some decades of students, and
then with programmers.

Such prospective experiments should be also
aimed to investigate:

• Pros and cons of AO vs. OO, when both the
types of software requirements are
provided, which have, and respectively
have not, a transversal impact on the
software architecture, for development
from the scratch and maintenance
interventions, respectively.

• The impact of AOP on readability,
comprehensibility, efficiency, and
testability.

• Debugging and static analysis of AOP vs.
OOP software applications.

• In what extent, AOP extension points
can be utilized to implement and manage
dependence relationships between use
cases.

• In what extent, the application’s
characteristics, e.g. structure, naming
conventions, etc.) have influence on the
utility of applying AOP rather than OOP.

REFERENCES

Baccan M., 2004. Introduzione alla programmazione AOP
con AspectJ. In Webbit, (Slides), May 2004,
http://www.baccan.it/webbit2004/aspectj.pdf, last
access 7.04.2007 (in Italian).

Basili V., G. Caldiera, and D. Rombach, 1994.
Goal/Question/Metric Paradigm. Encyclopedia of
Software Engineering, John Wiley & Sons, Vol. 1, pp.
528-532.

AOP, 2007. Alliance, http://aopalliance.sourceforge.net/,
last access 7.04.2007

AOP, 2007. JavaWorld,
http://www.javaworld.com/javaworld/jw-01-2002/jw-
0118-aspect.html, last access 7.04.2007.

Bonin H. E. G. , 2002. Aspect-Oriented Software
Development: A Little Guidance to better Java
Applications, University of Applied Sciences,

Luneburg, Germany, May 2002-Nov. 2006.
http://as.uni-lueneburg.de/publikation/aosdall.pdf, last
access 7.04.2007.

RCOST, 2007. Aspect Oriented Software Development:
Analisi e Disegno. In Research Center On Software
Technology,Benevento,Italy,(Slides),
http://www.ing.unisannio.it/dilucca/LSISW/materiale0
506/aosd-aoad.pdf, last access 7.04.2007 (in Italian).

TAODS, 2003. Aspect Oriented Programming.
TAODS’03, Ed. Technerdokan B., DCE, Bilken
Univeristy, Amkara, Turkey,

http://trese.cs.utwente.nl/taosad/Papers/TAOSDProceedin
gs.pdf , last access 7.04.2007.

AOSD-Europe, 2007. http://www.aosd.net/, last access
7.04.2007.

AOSD-Europe Project, 2007. http://www.aosd-
europe.net/, last access 7.04.2007.

Eclipse org., 2007a. AspectJ Development Tools Project
(AJDT), http://www.eclipse.org/ajdt/, last access
7.04.2007.

Eclipse org., 2007b. AspectJ Documentation and
Resources, http://www.eclipse.org/aspectj/docs.php
7.04.2007.

Eclipse org., 2007c. AspectJ Project,
http://www.eclipse.org/aspectj/, last access 7.04.2007.

Eclipse org., 2007d. AspectJ Programming Guide,
http://www.eclipse.org/aspectj/doc/released/progguide
/index.html, last access 7.04.2007.

Keuler T., M. Naab, 2007. Supporting Architectural
Design by Early Aspects Identification, Fraunhofer
IESE, Kaiserslautern. Germany,
http://dawis2.informatik.uni-
essen.de/events/AOM_AOSD2006/Keuler.pdf, last
access 7.04.2007.

Kiczales G., Lamping J., Mendhekar A., Maeda ., Lopes .,
Loingtier J.-M., and Irwin J, 1997. Aspect-Oriented
Programming, Proceedings of the European
Conference on Object-Oriented Programming,
http://citeseer.ist.psu.edu/~
cache/papers/cs/1860/http:zSzzSzwww-
sal.cs.uiuc.eduzSz~
kaminzSzdslzSzpaperszSzkiczales.pdf/kiczales97aspe
ctoriented.pdf, last access 7.04.2007.

Laddad Ramnivas, 2002. Separate software concerns with
aspect-oriented programming, Java World, Jan. 2002,
http://www.javaworld.com/javaworld/jw-01-2002/jw-
0118-aspect.html

Merlo F., M. Miraz: Aspect-Oriented Programming, 2007.
www.elet.polimi.it/upload/ghezzi/_PRIVATE/AOP.pd
f, last access 7.04.2007 (in Italian).

Merlo F., M. Miraz, 2007. Aspect-Oriented Programming
(Slides),
www.diit.unict.it/~acalva/SE/slides/se2/aop_slides
.pdf, last access 7.04.2007.

ObjectWay Gruppo, Aspect-Oriented Programming and
AspectJ, (Slides),
http://it.sun.com/eventi/jc04/presentazioni/parallela2
/objectway.pdf, last access 7.04.2007 (in Italian).

ICSOFT 2007 - International Conference on Software and Data Technologies

54

http://www.baccan.it/webbit2004/aspectj.pdf
http://aopalliance.sourceforge.net/
http://www.aosd.net/
http://www.aosd-europe.net/
http://www.aosd-europe.net/
http://www.eclipse.org/ajdt/
http://www.eclipse.org/aspectj/
http://citeseer.ist.psu.edu/kiczales97aspectoriented.html
http://citeseer.ist.psu.edu/kiczales97aspectoriented.html

