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Abstract: Faults can be inserted into the software during development or maintenance, and some of these faults may 
persist even after integration testing. Our concern is about quality assurance that evaluates the reliability and 
availability of the software system through analysis of failure data. These efforts involve estimation and 
prediction of next time to failure, mean time between failures, and other reliability-related parameters. The 
aim of this paper is to empirically apply a variety of software reliability growth models (SRGM) found in 
the CASRE (Computer Aided Software Reliability Estimation) tool onto real field failure data taken after 
the deployment of a popular billing software used in the telecom industry. The obtained results are assessed 
and conclusions are made concerning the applicability of the different models to modeling faults 
encountered in such environments after the software has been deployed. 

1 INTRODUCTION 

Test procedures should be thorough enough to 
exercise system functions to everyone's satisfaction: 
user, customer, and developer. There are several 
steps involved in testing a software system. They 
comprise unit testing, integration testing, acceptance 
testing, and installation testing. If the tests are 
incomplete, faults of various types may remain 
undetected, while on the other hand, complete and 
early testing can help not only to detect faults 
quickly, but also to isolate causes more easily 
(Pfleeger, 2001).  

This paper presents a case study, in which 
software failures were analyzed after the completion 
of the software development and testing phases 
before deployment at the customer premises. This 
study is different from the traditional software 
reliability analysis in the sense that most reported 
cases were based on the development and testing 
phases or the operational phase, but seldom 
considered the software installation and 
implementation phases at the client site. Another 
important aspect that is taken up in this work is the 
examination of the applicability of known software 
reliability models to the considered system, given 
that such models were primarily developed to handle 

reliability analysis during the software testing phase 
(typically at the vendor’s site) while assuming fast 
error removal. 

The studied product is a multi-component billing 
software used by a reputable GSM operator. It 
interacts with an Oracle database and with Siemens’ 
HLR telecommunication systems, and includes 
components that use the client/server model to serve 
more than 1300 users who access the server from 
their Java based client interfaces. It is worth noting 
that the vendor’s support team has prior experience 
with the implementation of such products in similar 
environments, but never with the same combination 
of client profile and third party products.  

The presented research is based on collected 
real life failure data for a component of the software. 
A comparative analysis of the failure data using 
various statistical tests was executed in order to 
show the statistical model that best-fits this 
particular situation. A projection was then made 
regarding the underlying component reliability, or in 
other words, the maximum allowable execution time 
before failing again for a particular fault. 
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2 PREVIOUS WORK 

Since the characteristics of a software system cannot 
always be measured directly before delivery, indirect 
measures can be used to estimate the system’s likely 
characteristics. Several software reliability (SR) 
models with basic SR parameters were developed. In 
contrast to most reliability models that assume 
instantaneous fault removal, Jeske, Zhang, and Pham 
(2001) and then Zhang, Teng, and Pham (2003) 
stressed that a fault may be encountered more than 
once before it is ultimately removed and that new 
faults may be introduced to the software due to 
imperfect debugging. Mullen (1998) argued that 
there is a time lag which most conventional software 
reliability models ignore. They considered the fault 
removal process with different scenarios using the 
state space view of the Non-Homogeneous Poisson 
Process (NHPP). Teng and Pham (2002) considered 
the error introduction rate and error removal 
efficiency as the key measures for reliability growth 
across multiple versions of a software system that 
was subject to continuous fault removal. The 
classical reliability theory was extended in the work 
of Goseva-Popstojanova and Trivedi (2000) to 
consider a sequence of possibly-dependent software 
runs versus failure correlation. A model, suggested 
by Singpurwalla (1998), involved concatenating the 
failure rate function while assuming that the time to 
next failure was greater than the average of past 
inter-failure times. Fault removal, repair time, and 
remaining number of faults were handled using a 
non-homogeneous continuous time Markov chain. 

A criterion was proposed by Nikora and Lyu 
(1995) for selecting the most appropriate software 
reliability model from six models: Jelinski-Moranda, 
Geometric, Littlewood-Verral, Musa Basic, Musa-
Okumoto, and NHPP. The goodness-of-fit test based 
on the Kolmogorov-Smirnov distance was not 
sensitive enough to choose the best model, but it was 
used as a preliminary step for filtering unsuitable 
ones. Huang, Kuo, Lyu, and Lo (2000) verified that 
existing reliability growth models can be derived 
based on a unified theory of well-known means: 
weighted arithmetic, geometric, and harmonic. 
According to Gokhale, Marinos, Lyu, and Trivedi 
(1997), commercial software organizations focus on 
the residual number of faults as a measure of 
software quality. A model was proposed to address 
the number of residual defects during the operational 
phase. Minyan, Yunfeng, and Min (2000) stressed 
that neither practitioners nor experts could choose a 
model beforehand since the assumptions of each 
model were difficult to prove. 

3 CASE STUDY AND APPLIED 
RELIABILITY ANALYSIS 

Software reliability models can be largely 
categorized into two sets: static models where 
attributes of the software module are utilized to 
estimate the number of defects in the software, and 
dynamic models which utilize parametric 
distributions and defect patterns to evaluate the end 
product reliability. Musa and Okumoto classified 
dynamic models in terms of five attributes (Musa, 
2004): 1) time, 2) category (number of failures), 3) 
type (distribution of the number of failures), 4) class 
(functional form of failure intensity in terms of 
time), and 5) family (functional form of failure 
intensity in terms of expected number of failures). 

3.1 Considered Models 

The reliability models discussed in this paper are 
based on the time domain using either the elapsed 
time between failures or the number of failures over 
a given period of time. Musa (2004) identified two 
sets of reliability models in accordance with time 
between failure (TBF) and fault count models. The 
first group includes the Jelinski-Moranda, Non-
Homogeneous Poisson Process (NHPP), Geometric, 
Littlewood-Verral Quadratic, Littlewood-Verral 
Logarithmic, Musa Basic, and Musa Logarithmic. 
The second group comprises the Yamada S-Shaped, 
NHPP, Schneidewind, Generalized Poisson, and 
Brook and Motley’s models.  

3.2 System Description 

The field failure data are taken from error log files 
that date back to the month of February 2006, during 
the initial software implementation and integration 
of the BSCS version 7 billing software on a 
clustered Tru64 Unix platform with an Oracle 9i 
RAC database system. The components of the BSCS 
billing software are integrated with other third party 
interfaces like the HLR system of Siemens and the 
Oracle production databases, which include detailed 
information and billing data of GSM subscribers. 
The connection with Siemens HLR is crucial since it 
involves activation of many GSM subscriber 
services. The interface with the Oracle database is 
equally critical due to the fact that all data are kept 
inside various production and rating databases. 
Furthermore, these data are accessed from around 
1300 concurrent users using either an SQL interface 
or Java client programs through a LAN or a WAN.  
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  The failure data was examined for any 
inherent trend for applicability of software reliability 
growth models. This is an important step where the 
data content implies either a growth for time-
between-failures or decrease of failure counts as 
time progresses. Two data trend tests were used: 
running average test and Laplace test.  The former 
computes the running average of time between 
successive failures or count of failures per time 
interval. For time between failures, if the running 
average increases with failure number, a reliability 
growth is implied, while for failure count data, if the 
running average decreases with time then reliability 
growth is indicated. On the other hand, the Laplace 
test computation is based on the null hypothesis that 
occurrences of failures can be described as a 
homogeneous Poisson process. If the test metric 
decreases with increasing failure number, the null 
hypothesis is rejected in favor of reliability growth 
at an appropriate significance level. Otherwise, the 
null hypothesis is rejected in favor of decreasing 
reliability (Nikora, 2000).  

3.3 Raw Reliability Data Analysis 

The cumulative number of 39 failures against their 
respective execution times is shown in Figure 1, 
where a saturation-like curve behavior is observed. 
In the subsequent sections, we divide our execution 
time failure data into two sets: time-between-failure 
and failure-count sets. This allows for applying a 
different set of models for every data type and 
having a better view of the reliability of the software 
under study. Moreover, our analysis for every data 
type- reliability model combination is done using 
two estimation methods: maximum likelihood 
estimation (MLE) and least squares estimate (LSE). 

The choice of the best software reliability model 
that mostly fits a particular set of data type, time-
between-failures, or failures count is done using the 
following steps (Nikora and Lyu, 1995): 
1. Apply a goodness of fit test to determine which 

model fits the input data for a specified 
significance level. 

2. If more than one set of results are a good fit: 
a. Choose the most appropriate model(s) 

based on the prequential likelihood. 
b. In case of a tie, use the model bias trend. 

3. If no models provide a good fit to the data:  
a. Choose the most appropriate model(s) 

based on the prequential likelihood. 
b. Use techniques, such as forming linear 

combinations of model results or model 
recalibration to increase accuracy. 

c. Apply the goodness of fit test to the 
adjusted model results and identify those 
that are a good fit to the data. 

4. Finally, the models are ranked using the 
CASRE tool according to the following when 
applicable: prequential likelihood, Model bias, 
Bias trend, Model noise, and Goodness-of-fit. 

 

 
Figure 1: Cumulative number of failures of PIH 
component against processor execution time (hours). 

3.4 Time-Between-Failures (TBF) 

Figure 2 shows the actual time-between-failure data, 
filtered with a Hann window. A running arithmetic 
average test showed a reliability growth starting at 
failure point 27 and onwards. The Laplace test 
showed the software starting to exhibit reliability 
growth at the 5% significance level until about the 
34th failure, at which point the Laplace test statistic 
assumes a value less than -1.64495. The inserted 
failure data set into the CASRE software tool 
consisted of 38 data points. For the purpose of this 
test, the CASRE tool was set with a data range from 
27 to 35 time-between-failures data points with the 
models parameters estimation end point at 30, i.e. 
training the models parameters from data range 27-
30 before fixing them. The number of steps past the 
last data point in the modelling range, for which 
predictions are made, is selected to be 4. This way, 
one could see how close are each model’s first 3 
failure data predictions to the true ones and look into 
the next future failure time and reliability. 
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Figure 2: Filtered raw data plot for TBF. 

3.4.1 TBF Analysis with the MLE Method 

Table 1 is obtained after running the CASRE 
software tool with the selected models. The 
goodness of fit test is done first to determine which 
models are fit to the data. We consider the first three 
ranked reliability models and displayed their various 
estimates and predicted outputs. The top three fitting 
models in this case were: Musa-Okumoto, ULC, and 
Musa basic. They are ranked according to their 
Kolmogorov-Smirnov (KS) distance test value. 

Table 1: Model goodness of fit for TBF using MLE. 

Model -In PL Bias Trend Noise Distance Rank
Musa-Okumoto 39.28 0.52 0.34 1.27 0.42 1
ULC 39.51 0.48 0.36 1.13 0.38 2
Musa Basic 40.03 0.46 0.34 1.39 0.29 3
NHPP (TBE) 40.03 0.46 0.34 1.39 0.29 4
MLC 40.03 0.46 0.39 0.07 0.29 5
DLC/S/4 Did not fit data at given significance level
ELC Did not fit data at given significance level
Geometric Did not fit data at given significance level
Quadratic LV Did not fit data at given significance level
 
Figure 3 shows the fits of three top-ranked reliability 
models onto the actual TBF data, where the models’ 
estimates are plotted in the shaded region. 

3.4.2 TBF Analysis with LSE Method 

The information in Table 2 is obtained after running 
the CASRE software tool with the selected models. 
Out of the models that pass the fit test, we consider 
the Musa Basic, NHPP, and Musa-Okumoto models. 
As implied in the data in Table 2, the bias, 
prequential likelihood, and relative accuracy are not 
computed when employing the least squares 
estimation method. Figure 4 presents the fit of the 

three models onto the actual data points. Similar to 
the MLE case, the estimates of the software 
reliability models are plotted in the shaded region. 
 

 
Figure 3: Models' estimated and predicted reliability for 
TBF using MLE. 

 
Figure 4: Models estimated and predicted reliability for 
TBF using LSE. 

Table 2: Model goodness of fit for TBF using LSE. 

Model Distance Rank 
Musa Basic 0.29 1 

NHPP (TBE) 0.29 2 
MLC 0.29 3 
ULC 0.38 4 

Musa-Okumoto 0.42 5 
ELC Did not fit data at given significance level

Quadratic LV Did not fit data at given significance level
Geometric Did not fit data at given significance level

3.5 Failure Counts (FC) 

Figure 5 shows the Laplace test results illustrating 
reliability growth at the 5% significance level until 
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about the 13th failure, at which the Laplace test 
assumes a value less than -1.64495. 

 
Figure 5: Laplace trend test on raw data for FC 

The failure count data set into the CASRE software 
tool consists of 18 data points. For this test, the tool 
was set up with a data range from 1 to 15 failure-
count data points, with the models parameters 
estimation end point at 12. This implies that the 
models’ parameters were trained from the first 12 
data points before fixing them. The number of steps 
past the last data point in the modelling range, for 
which predictions are to be made, is selected to be 4. 
We can see how each model’s first 3 failure data 
predictions came close to the true ones and also look 
into the next future failure count and reliability. 

3.5.1 FC Analysis with MLE Method 

Table 3 is obtained after running the CASRE 
software tool with the selected software reliability 
models specific to the failures count case, which 
divides the x-axis into equal interval of time with a 
length of 1.389 hours. The fit test is done first in 
order to determine which models best fit the actual 
real field failure data. We then considered the three 
reliability models that passed the test, as shown in 
the table. It is noted that the ranking was done in 
accordance with the Chi-Square (χ2) value where by 
smaller values led to a higher ranking.  

As was done earlier, we illustrate the outcome 
of the fit test against the raw data in Figure 6. 

Table 3: Fit results for FC using MLE. χ2 denotes Chi-
Square and the fourth column stands for significance level. 

Model χ2 5% Fit? Sig. (%) Rank
Gen. Poisson 10.16 No 3.78 --
NHPP (intervals) 5.49 Yes 24.04 1
Schick-Wolverton 10.16 No 3.78 --
Schneid.-Cum. 1st 31.34 No 0.0 --
Schneidewind:all 5.49 Yes 24.04 2
Yamada S-Shaped 8.31 Yes 8.93 3
 

 
Figure 6: Estimated/predicted reliability for FC using 
MLE. 

3.5.2 FC Analysis with the LSE Method 

Table 4 applies to the failure count case that divides 
the x-axis into equal interval of time with a length of 
1.389 hours per interval. The three top passing 
models from the fit test are illustrated in the table: 
Generalized Poisson, Schick-Wolverton, and 
Schneidewind: all. The ranking was performed 
according to the value of the Chi-Square test value, 
with a smaller value leading to a higher ranking. 

Table 4: Goodness of fit results for FC using LSE. 

Model χ2 5% Fit? Sig. (%) Rank
Gen. Poisson 5.38 Yes 25.05 1
NHPP (intervals) 10.85 No 2.83 --
Schick-Wolverton 5.38 Yes 25.05 2
Schneid.-Cum. 1st 31.34 No 0.0 --
Schneidewind:all 5.93 Yes 24.04 3
Yamada S-Shaped 8.08 Yes 8.93 4
 
The fit of the three-ranked reliability models onto 
the actual failure data is illustrated in Figure 7, and 
where the models’ data point estimates are plotted in 
the shaded region. 
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Figure 7: Estimated/predicted reliability for FC using LSE. 

4 CONCLUSIONS 

Although some reliability models fitted well the 
time-between-failure data, all considered models 
with both maximum likelihood (MLE) and least 
squares (LSE) methods did not initially pass the 
goodness-of-fit test when applied to the whole range 
of the non-filtered data. Existing reliability models 
considered fault removal upon detection and hence, 
could not initially be suitable for our application 
since the detected faults were never removed during 
software installation and integration. The developers 
actually worked around these faults to decrease their 
frequency of occurrence, until it was time for the 
next patch that dealt specifically with these faults. 

Based on our findings, it is preferable to stick to 
the software reliability growth models (SRGM) 
dealing with failure counts and use the least square 
estimation (LSE) method. The prequential likelihood 
test can not be obtained when using the LSE 
method, so instead, the Chi-Square test was 
performed. The Generalized Poisson SRGM exhibits 
a better fitness over all the other models, like the 
Musa Okumoto, Musa Basic, and NHPP models. In 
fact, when comparing the predictions of the four 
reliability modules, we can see that the Generalized 
Poisson predicted more faithfully the software 
reliability than the other three models. For instance, 
to achieve a 30% reliability of the software, the 
implementation and integration phase should run for 
around 15.27 hours in case of both Musa-Okumoto 
and Musa Basic models, for around 22.5 hours in 
case of Non-Homogeneous Poisson Process 
(NHPP), and for around 26.39 hours in case of the 
Generalized Poisson model. Moreover, the LSE 
method performs much better when compared with 

MLE in the short data range. Hence, the least square 
estimation method adapts faster than the maximum 
likelihood estimation method on a small range of 
failure data points. However, on the long run, MLE 
performs better than LSE if the failure data range 
increases considerably. 
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