
A MODEL-DRIVEN ENGINEERING APPROACH TO
REQUIREMENTS ENGINEERING

How These Disciplines May Benefit Each Other

Begoña Moros
Dpto. de Informática y Sistemas, Facultad de Informática, Universidad de Murcia (UMU), 30100 Murcia, Spain

Cristina Vicente-Chicote
División de Sistemas e Ingeniería Electrónica, Universidad Politécnica de Cartagena (UPCT), 30202 Cartagena, Spain

Ambrosio Toval
Dpto. de Informática y Sistemas, Facultad de Informática, Universidad de Murcia (UMU), 30100 Murcia, Spain

Keywords: Model-Driven Engineering (MDE), Requirements Engineering (RE), Requirements Meta-Model (REMM),
Requirements Traceability

Abstract: The integration of Model Driven Engineering (MDE) principles into Requirements Engineering (RE) could
be beneficial to both MDE approaches and RE. On the one hand, the definition of a requirements
metamodel would allow requirements engineers to integrate all RE concepts in the same model and to know
which elements are part of the RE process and how they are related. Besides, this requirement metamodel
could be used as a common conceptual model for requirements management tools supporting the RE
process. On the other hand, this requirements metamodel could be related to other metamodels describing
analysis and design artefacts. This would align requirements to models and, as a consequence, requirements
could be more easily integrated into the current MDE approach. To achieve this, the traditional RE process,
focused on a document-based requirements specification, should be changed into a requirements modelling
process. Thus, in this paper we propose a requirements modelling language (metamodel) aimed at easing the
integration of requirements into a MDE approach. This metamodel, called REMM, is the basis of a
requirements graphical modelling tool also implemented as part of this work. This tool allows requirements
engineers to depict all the elements involved in the RE process and to trace relationships between them.

1 INTRODUCTION

It is well-known the importance of Requirements
Engineering (RE) in the software development
process. The most quoted study, the CHAOS Report
conducted by the Standish Group, revealed that
incomplete and changing requirements and
specifications are the leading cause of software
failures. Recent studies (Sommerville and Ransom,
2005; Damian and Chisan, 2006) have demonstrated
the benefits of effective requirements process to
software development organizations.

The RE process, as any other software
development activity, requires supporting tools.

Currently, commercial tools do not support the
whole RE process, but only requirements
management activities. A Requirements
Management Tool (RMT), such as Requisite,
Caliber, or DOORS (INCOSE, 2006), that stores
information in a multi-user database, provides a
robust solution to the restrictions of a plain text
requirements specification (Wiegers, 2003).
However, the conceptual models supported by most
RMTs are rather simple since they commonly
include only a general ‘Requirement’ concept and a
‘sub-requirement’ and ‘associated requirement’
relationships (Schätz et al., 2005). Conversely, a tool
supporting the whole RE process, should be able to
manage a lot of elements (i.e. stakeholders, external

296

Moros B., Vicente-Chicote C. and Toval A. (2007).
A MODEL-DRIVEN ENGINEERING APPROACH TO REQUIREMENTS ENGINEERING - How These Disciplines May Benefit Each Other.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 296-303
Copyright c© SciTePress

objects, different types of functional and non-
functional requirements, etc.), and relationships
between them. It is exactly in this point where
Model Driven Engineering (MDE) can offer a new
perspective to RE.

According to the MDE philosophy (Bézivin,
2005) models represent a particular view of the
system and they are described in terms of formal
metamodels. Thus, in order to describe a
requirements view of a system a requirements
metamodel must be defined. The definition of such a
metamodel would be useful not only for integrating
all the RE concepts in the same repository, but also
for providing requirements engineers with a
structured requirements reference model. As stated
in (Weber and Weisbrod, 2003), the different types
of requirements can become confusing and
therefore, there is an urgent need for a requirements
metamodel which formally defines the concepts and
the relationships involved in the RE process.

On the other hand, the Software Engineering
community has been paying attention to models as a
cornerstone of the software development process.
Models are refined from one abstraction level to
another by means of model transformation
techniques with the aim of automating the
development process as much as possible. In this
context of MDE, “requirements must be modelled
and we must have a continuity between requirements
and final system implementation model. Thus the
requirements traceability must be done of prime
necessity at the model element level” (Champeau
and Rochefort, 2003).

Now that the need of defining a requirements
metamodel has been justified, a metamodel
description language to describe it must be selected.
Three reasons make of MOF (Meta-Object Facility)
(OMG, 2004) the most suitable candidate nowadays:
(1) it is the OMG standard meta-metamodel
(metamodel description language), (2) it is widely
used by the MDE community, and (3) it is possible
to find a stable, free, and open-source distribution of
a reduced set of MOF provided by the Eclipse
platform. Actually, the Eclipse community is one of
the most active ones in MDE, as reflected in the
increseangly growing number of Eclipse projects
appearing around this new software development
trend.

The proposed Requirements Meta-Model
(REMM) is presented in the Section 2, and the
graphical modelling tool implemented to support it
is introduced in section 3. Then Section 4 outlines
some related works and, finally, Section 5 presents
the conclusions and future research lines.

2 REMM: THE PROPOSED
REQUIREMENTS
METAMODEL

The elements selected to be included in a
requirements metamodel, greatly depend on the
development context (Dahlstedt and Persson, 2003).
Since our experience is in the field of requirements
reuse (Toval et al., 2007) and, more specifically, in
the reuse-based RE method called SIREN (Toval et
al., 2002), the concepts and relationships included in
the proposed requirements metamodel have been
mostly taken from those used in SIREN, although
we think they are applicable to a general RE
approach.

The SIREN reuse-based RE method could be
considered both a document-based and repository-
based approach, since it revolves around a reusable
repository of catalogues. A catalogue contains a set
of related requirements belonging to the same profile
(Toval et al., 2002) —e.g. security or personal data
protection— or domain —e.g. the tele-operated
system domain (Nicolás et al., 2006). Requirements
engineers may use the repository: 1) to reuse
existing requirements in their current projects, or 2)
to improve the quality of the catalogue by adding
new requirements or improving the existing ones.

The proposed Requirements Meta-Model, called
REMM, is shown in Figure 1. The concepts included
in REMM are explained in section 2.1, while the
semantics of the relationships defined between them
is detailed in section 2.2.

2.1 Concepts Included in REMM

In REMM all requirements are stored in Catalogs
(in order to promote reuse) characterized by a name
and a type. Two different types of catalogs
(CatalogType) can be defined in REMM,
according to the meaning proposed in SIREN:
DOMAIN and PROFILE. A catalog contains different
types of Requirements, sharing the same set of
attributes: a unique identifier (ID), a textual
description (description), cost, priority
(taking values HIGH, MEDIUM or LOW) and type.
Currently, only two types of requirements are
considered: FUNCTIONAL and NON-FUNCTIONAL,
although we are working in a broader classification
according to the quality standard ISO/IEC 9126.

A MODEL-DRIVEN ENGINEERING APPROACH TO REQUIREMENTS ENGINEERING - How These Disciplines
May Benefit Each Other

297

Figure 1: The proposed requirements metamodel (REMM).

Requirements are classified into system
requirements (SystemReq) —representing a need of
the system— and software requirements
(SoftwareReq) —representing how a system
requirement is going to be carried out.

Each requirement is proposed by a
Stakeholder, and thus it is important to record
some information about them (name, position)
just in case the requirements engineers need to
contact them for further information about their
proposed requirements. Requirements could come
from a law, a standard, an organization policy or any
other source. To represent these external information
sources we have included the ExternalObject
concept in the metamodel. Any file, multimedia
resource, graphic, etc. used to complement or to
explain the requirement description, are also
considered external objects. Each external object is
characterized by its name and location (the way it
can be accessed).

Finally, to support the requirements validation
phase, it is important to check that requirements are
consistent and not ambiguous. A Glossary of terms
has been included in REMM to allow requirements
engineers to check if the concepts related to a certain
requirement have consistent definitions. The
glossary must include all the relevant concepts
(terms) and their synonyms, if any. To check that

requirements are not ambiguous it is well-known the
convenience of defining conceptual test cases
(TestCase), independent of the implementation, in
parallel to requirements specification (Wiegers,
2003). This enables detecting ambiguous
requirements when it is not possible to define a test
case for them. The level of abstraction associated to
a test-case depends on the requirement type.
Usually, a system requirement is linked to one or
more acceptance tests, while a software requirement
is linked to one or more conceptual test cases.

2.2 Traceability Relationships Included
in REMM

The taxonomy of traceability modes defined in
(Pinheiro, 2003), includes the following
classification criteria:

 Requirements evolution: a requirement may be
traced to aspects occurring before (Pre-RS
traceability) or after (Post-RS traceability) its
inclusion in the requirements specification.

 Types of the involved objects: a requirement
may be traced to other requirements (inter-
requirements traceability) or to other artefacts
(Extra-requirements traceability).

 The tracing direction: a requirement may be
traced forward (to design or implementation
components) or backward (to its source).

ICSOFT 2007 - International Conference on Software and Data Technologies

298

Figure 2: Inter-requirements relationships examples. The properties of the Influences relationship are shown in the tab
below.

At the moment, the REMM metamodel proposed in
Figure 1 covers: pre-RS traceability, inter- and
extra-requirements traceability. We have focused on
requirements traceability relationships needed to
support a general RE process including the
elicitation, negotiation, validation and
documentation phases. We think this is the
necessary first step towards the definition of forward
traces. The traces included in REMM are explained
in the following sections.

2.2.1 Inter-Requirements Traceability

One or more software requirements refine the
information provided by a system requirement. This
is the only relationship that enables the association
between requirements defined at different
abstraction levels (see Figure 2).

Given two requirements named R1 and R2,
belonging to the same requirement subclass, the
following dependences can be traced between them:

 R1 REQUIRES R2, means that R2 is needed to
fulfil R1, i.e. R2 is a precondition for R1 (see
Figure 2).

 R1 EXCLUDES R2, means that R1 and R2 are
alternative and only one of them could be
selected to appear in each requirements model.

 R1 INFLUENCES R2, means that the inclusion
of R1 in the requirements specification causes
a change in the cost or in the priority of R2.
For instance, in Figure 2, the inclusion of
SoftReq_587 implies a cost reduction of 2
(value) person-months (valueUnit) in
SoftReq_234.

 R1 DEPENDS R2, means that there exists some
kind of relationship between them that is
neither requires, nor excludes nor influences.
It is just the way to explicitly show that R1 is
related to R2.

Given a requirement R1 and two requirements
R1.1 and R1.2, all of them belonging to the same
requirement subclass, the following parent-child
traces can be created between them (see Figure 2):
 R1 AND R1.1 means that to fulfil R1, R1.1 has

to be fulfilled too. The requirement R1.1
refines the specification of R1.

 R1 OR R1.2 means that to fulfil R1, R1.2 could
be fulfilled but is not mandatory. R1.2 gives
some alternative way (not exclusive) to fulfil
R1.

2.2.2 Extra-Requirements Traceability

The relationships between requirements and other
artefacts (extra-requirements traces) include:

 A requirement is proposedBy a stakeholder.
 A requirement is complementedBy the

information included in an ExternalObject
(file, graphic, multimedia resource, etc.).

 A requirement could come from an
ExternalObject (law, standard, policies, etc.)
that is its source.

 Both, system and software requirements, should
be traced to one or more test cases
(validatedBy) where it is explained how to
check if the requirement is fulfilled or not.

 The terms defined in the glossary are usedIn
some system or software requirements. These

A MODEL-DRIVEN ENGINEERING APPROACH TO REQUIREMENTS ENGINEERING - How These Disciplines
May Benefit Each Other

299

relationships allow requirements engineers to
check if all the requirements using the same
term are doing it consistently.

All the examples shown in Figure 2 have been
extracted from (Davis, 2005). These examples have
been developed using one of the two graphical
modelling tools develop on top of REMM. These
tools are presented in the following section.

3 A GRAPHICAL MODELLING
TOOL FOR REMM

Before we can build a graphical modelling tool for
REMM, there are some previous questions which
must be addressed. First of all, Section 3.1 analyses
the two main trends in MDE: UML profiling and
domain-specific language design. The selection of
one meta-modelling technique or the other, will
determine which kind of development environment
must be used. The selected environment will be
described in Section 3.2. Finally, in section 3.3 the
two graphical modelling tools implemented on top
of REMM are presented.

3.1 Meta-Modelling Techniques

As stated in (Abouzahra et al., 2005), nowadays
there are two main trends in MDE. The first one
promotes the use of standard modelling languages
such us UML 2.0 (OMG, 2005) or SysML (OMG,
2006), while the second one advocates the benefits
of Domain-Specific Languages (DSLs). UML 2.0
provides a rich set of modelling notations and offers
some restriction and extension mechanisms
(stereotypes, tagged definitions and constraints)
which allow developers to adapt it to their particular
domains. These customized versions of UML are
commonly known as profiles.

On the other hand, DSLs commonly provide a
reduced and well-focused set of concepts and
tailored notations for describing specific domains.
DSLs commonly offer the following advantages
when compared to UML or UML profiles: (1) they
are often much simpler and thus, easier to
understand and use, (2) they better fit the designer
modelling needs, and (3) currently, it is possible to
find new tools that enable the definition,
transformation and validation of models built not
only using UML but also self-defined metamodels
(e.g. MOF-based Eclipse metamodels).

All these reasons led us to the conclusion that,
for the shake of simplicity and expressivity, it was

worth to define a new metamodel which could
include exactly the concepts we were interested in
from the RE domain.

3.2 Selected Development Environment

We have selected to use the Eclipse platform to
implement both the REMM metamodel and the
supporting graphical modelling tool. To achieve this,
the following Eclipse plug-ins have been used:

 The Eclipse Modelling Framework (EMF)
(Budinski et al., 2003) which implements a
reduced set of MOF, called Essential MOF
(EMOF). Actually, REMM (see Figure 1) has
been depicted using a graphical EMF
modelling tool which produces an equivalent
textual representation in EMOF (.ecore file).

 The Eclipse Graphical Modelling Framework
(GMF), which allows designers: (1) to create a
graphical representation for each domain
concept included in the metamodel, (2) to
define a tool palette for creating and adding
these graphical concepts to their models (see
Figure 3), and (3) to define a mapping
between all the previous artefacts, i.e.
metamodel elements, their graphical
representations, and the corresponding
creation tools.

 The OCL (Object Constraint Language) plug-
in, developed in the context of the Model
Development Tools (MDT) project, is an
implementation of the OCL OMG standard
(OMG, 2006) for EMF-based models. The
definition of OCL constraints enables the
validation of the models further than just
checking the conformance with the metamodel
(cardinality and static properties). An example
OCL restriction, regarding the dependence
trace is shown in Table 1).

Table 1: One of the OCL constraints added to the REMM
graphical modelling tool.

Description Only one DepenceTrace is allowed from
each requirement.

OCL
constraint

self.dSource.owner.dependences
->
one (d |
 (d.dSource=self.dSource
)
 and
 (d.dTarget=self.dTarget
)
)

ICSOFT 2007 - International Conference on Software and Data Technologies

300

Figure 3: A graphical requirements model depicted using the CatalogTool.

3.3 The REMM-Studio Graphical
Modelling Tools

This section presents the two graphical modelling
tools implemented as part of this work, both of them
based on the REMM metamodel, and integrated in a
common environment called REMM-Studio.

For the sake of simplicity, each tool has been
designed to support part of the metamodel,
considerably simplifying the resulting diagrams. On
the one hand, the RequirementsTool enables the
graphical description of system and software
requirements, and the relationships existing between
them, i.e.: dependence, influence, and parent-child
traces (see Figure 2). On the other hand, the
CatalogTool allows requirements engineers to depict
the rest of the elements included in the metamodel,
i.e.: stakeholders, test cases, external objects, and the
glossary and its terms (see Figure 3). Both tools
jointly used support the whole metamodel.

The models generated from each tool can be
loaded and used from the other. For instance, in the
catalog model shown in Figure 3, in order to specify
the requirements proposed by the secretary, Diana
Johns, the user can load the requirements model
shown in Figure 2 and select some of them, i.e. 873,
873.1 and 873.2 software requirements. The
information is automatically updated in the
requirements model, that is, the proposedBy field of
the three requirements is set to the stakeholder Diana
Johns, thus assuring inter-model consistency.

4 RELATED WORK

There are a variety of approaches regarding RE and
MDE integration. They differ not only in the focus
but also in the selected meta-modelling technique
and in the concepts included in different
requirements metamodels.

Two main research directions can be found in the
literature regarding combined MDE and RE
approaches. On the one hand, some authors try to
define a UML Profile for integrating requirements
specifications into UML models (Letelier, 2002;
Heaven and Finkelstein, 2004; Supakkul and Chung,
2005; Berenbach and Gall, 2006; Escalona and
Koch, 2006; Vogel and Mantell, 2006). Most of
them integrate non-functional requirements into
UML uses cases (Supakkul and Chung, 2005;
Berenbach and Gall, 2006), taking for granted that
functional requirements are defined using uses cases.
Sometimes, the defined UML profiles include
concepts of new requirements models to be depicted
using the UML notation. This is the case of WebRe
(Escalona and Koch, 2006) and KAOS (Heaven and
Finkelstein, 2004) profiles.

Regarding RE domain-specific metamodels,
some proposals formalize the requirements
specifications language (Beeck et al., 2002; Videira
and Silva, 2005), while others try to model textual
requirements (Marschall and Schoenmakers, 2003;
Schätz et al., 2005).

A MODEL-DRIVEN ENGINEERING APPROACH TO REQUIREMENTS ENGINEERING - How These Disciplines
May Benefit Each Other

301

It is worth emphasizing the OMG SysML
(Systems Modelling Language) standard (OMG,
2006) [9]. This metamodel can be considered a
domain-specific modelling language for systems
engineering applications. Unlike other metamodels,
SysML allows designers to model text-based
requirements, which can be integrated with other
development artefacts. Nevertheless, it is questioned
if the set of inter-requirements relationships
provided is enough (Herzog and Pandikow, 2005).

5 CONCLUSIONS

The work presented in paper has demonstrated how
a MDE approach to RE can be advantageous to both
disciplines. The REMM requirements metamodel
and the graphical modelling tools implemented to
support it, provide requirements engineers with a
new way of describing most of the elements
involved in a RE process.

In the future we plan to extend REM in order to
include different types of non-functional
requirements. We are also interested in the inclusion
of some variability mechanism to enable the
definition of parameterized requirements in order to
promote their reuse.

Currently we are working in the automated
generation of textual requirements specifications
according to predefined templates (e.g. IEEE 830) or
to user defined queries (e.g. retrieve all the
requirements proposed by a certain stakeholder).

ACKNOWLEDGEMENTS

This work has been partially funded by the Spanish
CICYT projects DEDALO (TIN2006-15175-C05-
03, University of Murcia) and MEDWSA (TIN2006-
15175-C05-02, Technical University of Cartagena).

REFERENCES

Abouzahra, A., J. Bézivin, et al., 2005. A Practical
Approach to Bridging Domain Specific Languages
with UML profiles. OOPSLA Workshop Best
Practices for Model Driven Software Development
San Diego, California, USA.

Beeck, M. v. d., P. Braun, et al., 2002. Model based
Requirements Engineering for Embedded Software.
In: IEEE International Requirements Engineering
Conference, Essen, Germany.

Berenbach, B. and M. Gall, 2006. Toward a Unified
Model for Requirements Engineering. In:
International Conference on Global Software
Engineering (ICGSE 2006), Costão do Santinho,
Florianópolis, Brazil, IEEE Computer Society.

Bézivin, J., 2005. On the Unification Power of Models
Software and Systems Modeling (SoSym). 4(2): 171-
188.

Budinski, F., D. Steinberg, et al., 2003. Eclipse Modeling
Framework, Addison-Wesley Professional.

Champeau, J. and E. Rochefort, 2003. Model Engineering
and Traceability. In: UML 2003. SIVOES-MDA
Workshop, San Francisco. California.

Dahlstedt, A. G. and A. Persson, 2003. Requirements
Interdependencies- Moulding the State of Research
into a Research Agenda. In: Ninth International
Workshop on Requirements Engineering: Foundation
for Software Quality (REFSQ '03) In connection with:
CAiSE'03, Klagenfurt/Velden, Austria.

Damian, D. and J. Chisan, 2006. An Empirical Study of
the Complex Relationships between Requirements
Engineering Processes and Other Processes that Lead
to Payoffs in Productivity, Quality, and Risk
Management. IEEE Transaction on Software
Engineering. 32(7).

Davis, A., 2005. JERM: Just Enough Requirements
Management, Dorset House Publishing.

Escalona, M. J. and N. Koch, 2006. Metamodeling
Requirements of Web Systems. In: International
Conference on Web Information System and
Technologies (WEBIST 2006), Setúbal, Portugal.

Heaven, W. and A. Finkelstein, 2004. A UML Profile to
support requirements engineering with KAOS. IEE
Proceeding: Software. 151(1): 10-27.

Herzog, E. and A. Pandikow, 2005. SysML – an
Assessment. In: 15th INCOSE International
Symposium.

INCOSE, 2006. Requirements Management Tools Survey,
International Council on Systems Engineering, from
http://www.paper-review.com/tools/rms/ read.php.

Letelier, P., 2002. A Framework for Requirements
Traceability in UML-based projects. In: 1st
International Workshop on Traceability in Emerging
Forms of Software Engineering. (TEFSE'02),
Edinburgh, U.K.

Marschall, F. and M. Schoenmakers, 2003. Towards
Model-Based Requirements Engineering for Web-
Enabled B2B Applications In: 10th IEEE
International Conference and Workshop on the
Engineering of Computer-Based Systems (ECBS'03)
Huntsville, AL, USA.

Muller, P. A., P. Studer, et al., 2005. Platform Independent
Web Application Modeling and development with
Netsilon. Software & System Modeling. 00: 1-19.

Nicolás, J., J. Lasheras, et al., 2006. A Collaborative
Learning Experience in Modelling the Requirements
of Teleoperated Systems for Ship Hull Maintenance.
In: Learning Software Organizations + Requirements
Engineering (LSO+RE 2006), Hannover. Alemania.

ICSOFT 2007 - International Conference on Software and Data Technologies

302

OMG, 2004. Meta-Object Facility (MOF) Specification
v2.0, Object Management Group, from
http://www.omg.org/docs/formal/02-04-03.pdf.

OMG, 2005. Unified Modeling Language: Superstructure
v 2.0, The Object Management Group.

OMG, 2006. Object Constraint Language (OCL)
Specification v2.0, Object Management Group.

OMG, 2006. OMG Systems Modeling Language (OMG
SysMLTM) Specification, from
http://www.sysml.org/docs/specs/OMGSysML-FAS-
06-05-04.pdf.

Pinheiro, F. A. C., 2003. Requirements Traceability.
Perspectives on Software Requirements (Kluwer
Internation Series in Engineering and Computer
Science, 753), Kluwer Academic Publishers.

Robertson, J. and S. Robertson, 2000. Requirements
Management: a Cinderella Story. Requirements
Engineering Journal. 5(2): 134-136.

Schätz, B., A. Fleischmann, et al., 2005. Model-Based
Requirements Engineering with AutoRAID. In:
INFORMATIK 2005, Rheinische Friedrich-Wilhelms-
Universität Bonn.

Sommerville, I. and J. Ransom, 2005. An Empirical Study
of Industrial Requirements Engineering Process
Assessment and Improvement ACM Transactions on
Software Engineering and Methodology, . 14(1).

Supakkul, S. and L. Chung, 2005. A UML Profile for
Goal-Oriented and Use Case-Driven Representation of
NFRs and FRs. In: Third ACIS International
Conference on Software Engineering Research,
Management and Applications (SERA'05) Central
Michigan University, Mount Pleasant, Michigan,
USA.

Toval, A., B. Moros, et al., 2007. Eight key issues for an
effective reuse-based requirements process.
International Journal of Computer Systems Science
and Engineering. (accepted for publication).

Toval, A., J. Nicolás, et al., 2002. Requirements Reuse for
Improving Information Systems Security: A
Practicioner's Approach. Requirements Engineering
Journal. Springer. 6(4): 205-219.

Videira, C. and A. R. d. Silva, 2005. An overview of
ProjectIT-RSL metamodel and prototype. In: 6ª
Conferência da Associação Portuguesa de Sistemas de
Informação (CAPSI'2005), Portugal, Bragança.

Vogel, R. and K. Mantell, 2006. MDA adoption for a
SME: evolution, not revolution - Phase II. In:
European Conference on Model Driven Architecture
(ECMDA 2006), Bilbao, Spain.

Weber, M. and J. Weisbrod, 2003. Requirements
Engineering in Automotive Development: Experiences
and Challenges. IEEE Software. 20(1): 16-24.

Wiegers, K. E., 2003. Software Requirements, Second
Edition, Microsoft Press.

A MODEL-DRIVEN ENGINEERING APPROACH TO REQUIREMENTS ENGINEERING - How These Disciplines
May Benefit Each Other

303

