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Abstract: The materialization of multidimensional structures is a sine qua non condition of performance for OLAP 
systems. Several proposals have addressed the problem of selecting the optimal set of aggregations for the 
centralized OLAP approach. But the OLAP structures may also be distributed to capture the known 
advantages of distributed databases. However, this approach introduces another term into the optimizing 
equation: space, which generates new inter-node subcubes’ dependencies. The problem to solve is the 
selection of the most appropriate cubes, but also its correct allocation. The optimizing heuristics face now 
with extra complexity, hardening its searching for solutions. To address this extended problem, this paper 
proposes a simulated annealing heuristic, which includes an adaptive mechanism, concerning the size of 
each move of the hill climber. The results of the experimental simulation show that this algorithm is a good 
solution for this kind of problem, especially when it comes to its remarkable scalability. 

1 INTRODUCTION 

The multidimensional vision, a main characteristic 
of On-Line Analytical Processing (OLAP) systems, 
makes their success. But the increasing complexity 
and size of the multidimensional structures, denoted 
as materialized views or subcubes, the support of a 
fast query answering, independently of the 
aggregation level of the required information, imply 
new approaches to their optimization, beyond the 
classical cube selection solutions, e.g. (Harinarayan 
et al., 1996), (Gupta & Mumick, 1999), (Liang et al. 
2001), using greedy heuristics, (Zhang et al., 2001), 
(Lin & Kuo, 2004), using genetic approaches or in 
(Kalnis et al. 2002), using randomized approaches. 
One of the new solutions is the distribution of the 
materialized subcubes, aiming to capture the known 
advantages of database distribution: a sustained 
growth of processing capacity (easy scalability) 
without an exponential increase of costs, and an 
increased availability of the system, as it eliminates 

the dependence from a single source and avoids 
bottlenecks. This distribution may be achieved in 
different ways; in this paper, we focus in one of 
them: distributing the OLAP cube by several nodes, 
inhabiting in close or remote sites, interconnected by 
communication links, generating a multi-node 
OLAP approach (M-OLAP). The traditional cube 
selection problem (the materialization of only the 
most beneficial subcubes) is now extended, as we 
have a new dimension: space. It’s not enough to 
select the most beneficial subcubes; they also have 
to be conveniently located. In the distributed 
scenery, we have n storage and processing nodes, 
named OLAP server nodes (OSN), with a known 
processing power and storage space, interconnected 
by a network, being able to share data or redirecting 
queries to other nodes.  

The authors in (Bauer & Lehner, 2003) 
introduced the distributed aggregation lattice and 
proposed a distributed node set greedy algorithm 
that addressed the distributed view selection 
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problem, being shown that this algorithm has a 
superior performance than the corresponding 
standard greedy algorithm, using a benefit per unit 
space metric. But they didn’t include maintenance 
costs into the general optimization cost goal and also 
didn’t include communication and node processing 
power parameters into the cost formulas. This 
distributed lattice framework is used in (Loureiro & 
Belo, 2006a), but including real communication cost 
parameters and processing node power, which led to 
heterogeneity in the nodes and the network. To this 
modified model, several estimation cost algorithms 
were proposed (Loureiro & Belo, 2006a), (Loureiro 
& Belo, 2006b), which used the intrinsic parallel 
nature of the distributed OLAP architecture and time 
as the cost unit. Framed on this model, in  (Loureiro 
& Belo, 2006c), a genetic co-evolutionary approach 
is applied to the selection and allocation of cubes in 
M-OLAP systems, where the genotype of each 
specie is mapped to the subcubes to materialize in 
each node. This problem is also addressed in 
(Loureiro & Belo, 2006d), using another heuristic: 
discrete particle swarm optimization. Globally, the 
reported tests’ results show that both genetic 
(especially in its co-evolutionary version) and 
swarm approaches (both normal and cooperative 
versions) have low complexity (lower for the normal 
Di-PSO), being shown that they have a good 
scalability, supporting easily an M-OLAP 
architecture with several nodes and also suited for 
moderate OLAP dimensionalities. Now, we use a 
simulated annealing meta-heuristic to this same 
problem, but using a more comprehensive cost 
model, that introduces non-linearities, a better 
support to maintenance cost estimation and different 
algorithms to estimate the costs, which include the 
use of a pipelining approach to simulate the parallel 
tasks’ execution  (Loureiro & Belo, 2006b). This 
new approach is expected to have a good scalability, 
regarding the results referred in (Kalnis et al. 2002), 
which also will be welcome in M-OLAP 
architectures. 

2 HILL CLIMBING WITH 
SIMULATED ANNEALING 

The hill climbing heuristic is simple: a hill climber 
moves randomly through the search space, trying to 
find good solutions to the problem, restricted only 
by constraints that may be imposed to the optimizing 
process. This heuristic may be improved only 
allowing moves ( Mov+ ) which improve the quality 
of the solution. This is called iterative improvement 

or local search. But if the hill climber falls into a 
local optimum, it cannot escape from there, and the 
search process ends abruptly. In (Kirkpatrick et al., 
1983) a simulated annealing meta-heuristic able to 
solve this problem was proposed: the hill climber 
could move to a worst place, jumping then out of the 
local minimum. This trick is good, but must be 
restricted, including an adaptive probabilistic 
mechanism: the probability of accepting “bad” 
moves ( Mov− ) decreases with the on-going process. 
The annealing schema explores the thermodynamic 
analogy of the cooling of a melted solid: T (the 
temperature) controls the probability of accepting 
Mov−  moves (and its extent). A simplified version of 
the simulated annealing algorithm is shown in 
Algorithm 1. As we can see, T (temperature) is a 
parameter that controls the possibility of allowing 
movements which degrade the solution. As Δ is the 
loss of solution’s quality (in terms of the objective 
function ), if Δ < 0, the new position is accepted 
(the referred local search heuristic), but with a 
probability  a movement with Δ > 0 (a 

f

/Te−Δ Mov−  
move)  will be possible, allowing the hill climber to 
escape from local optima. 

This probability has two immediate 
consequences: 
− Movements which imply low values of delta will 

be admitted more often than the opposite: jumps 
that imply a great loss in the solution’s quality 
will have a low probability of happening. 

− The value of T will be a factor which controls this 
probability. Its value controls the exploration 
versus exploitation trade-off: for the same delta’s 
value, a high T implies a higher probability of 
accepting moves which imply a higher 
degradation of the quality’s solution (accepting 
worst moves) and conversely.  

 

Simulated Annealing Meta-Heuristic 
Select a initial solution  and an initial temperature 
 T

s
0>0 

Begin 
 

0T T←  
 ←best
 While not achieved stop criterion  

s 0 

   ←'s solution in the neighbourhood of  s
  Δ ← −( ) ( ')f s f s  // f(s) defines the quality of s 

  if 0Δ <  then  ← 's  // the new solution is better s
−Δ

f s

  else if e  > rnd[0,1) then s s  /T ← '
  if f s  then s s  >( ) ( )best ←best
  T T *α←  
 WhileEnd 
 Return s  

best
End

Algorithm 1: Simulated annealing meta-heuristic. 
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This way, a high initial T value allows the hill 
climber to escape from local optima. However, if T 
remains the same for all the search process, the algorithm 
will keep the exploration, without seeking for a deep 
inspection in a particular region, what would be achieved 
if the probability of accepting Mov−  moves was low. We 
face then with two conflicting objectives. But if T had 
initially a high value which would decrease until a low 
value, the algorithm would have an initial phase where the 
exploration was favored, being the situation reversed at 
the end of the process, where almost (or even only) the 
exploitation was allowed. In fact, as T decreases with the 
iteration’s number, when T approaches zero, the 
probability of accepting Mov−  moves almost reaches 0: 

. Summarizing, T is set at an initial 
high value T

/0 TT e−Δ→ ⇒ → 0
0. After a pre-defined iterations’ number, it is 

reduced by an α  factor, 
1n nT −
, being 0 1*Tα← α< < . 

Other cooling mechanisms were possible, e.g. 1) 
decreasing T by a constant value, after a pre-defined 
number of iterations or 2) even the decreasing value could 
be successively lower as the end of the search process 
approached. 

3 PROBLEM DEFINITION AND 
ALGORITHM’S APPLYING  

The problem that we must solve may be defined like 
this: 

Definition 1: Selection and allocation of 
distributed M problem. Let Q={q1, …, qn} be a set of 
queries with access frequencies {fq1, …, fqn}, query 
extension {qe1,…,qen}; let update frequency and 
extension be {fu1, …, fun} and {ue1,…,uen}, 
respectively, and let SNi be the amount of 
materializing space by OLAP node i. A solution to 
the selection and allocation problem is a set of 
subcubes M={s1,…,sn} with a  constraint,  

 
where  
 

is the materializing space of all subcubes Sj in node 
Ni, so that the total costs of answering all queries Q 
and maintaining M, Cq(Q, M)+Cm(M) are minimal.  

To use the simulated annealing meta-heuristic we 
must, as we can see, referring to Algorithm 1: 
1. find a way to code the problem; 
2. generate the initial position of all hill climbers;  
3. define the neighborhood of any position s;  
4. define the hill climber’s movement scheme; 
5. know how to evaluate the quality of each 

solution (delta computing);  
6. define   and 

0T α  (or any other cooling 
mechanism). 

Figure 1 shows a functional presentation of Hill 
Climber with Simulated Annealing M-OLAP (HC-
SA M-OLAP) algorithm. 

Concerning to the first referred issue, as we have 
a space paradigm of the solutions, we must map 
each possible M into the position of a hill climber. 
As M may have a maximal number of subcubes 
nS=n.Ls (where n is the number of OSNs and Ls is 
the number of subcubes into the lattice), we must 
have a multidimensional space of d=nS dimensions, 
being each dimension mapped to a possible subcube 
in M (in right lower corner of Figure 1, we have 
shown the multidimensional space for a node with 8 
possible subcubes). A position=1 for a dimension di, 
means that the corresponding subcube in M is 
materialized and conversely. E.g., in Figure 1, 
subcube S0 is mapped into the X dimension: as S0 is 
materialized, the HC is at a 1 position. Summarizing, 
as the search space has d dimensions, the position of 
the hill climber is coded by a binary string where 
each bit is then mapped to a subcube that may be (or 
not) materialized into each node.  

Relating to the second issue, as for the 
generation of the initial genome in genetic 
algorithms or the generation of the initial position of 
a particle in particle swarm algorithms that we tested 
in other research works, we opted for the random 
generation of the initial position of each hill climber. 

Concerning to the definition of the neighborhood 
of a given position, as , any other s M=

' 's M M= ≠  will be a new solution in the ’s 
neighborhood. We may define a maximal Hamming 
distance, mhd, which will limit the range of the 
move of each step for any hill climber. Viewing this 
scheme under the spatial paradigm, this will imply 
that each journey of the HC is limited to a given 
maximal range. In terms of the problem to solve, this 
implies that the number of subcubes to dematerialize 
or materialize in each iteration is limited and may be 
changed, by specifying a different value.  

s

The forth item, the hill climber’s movement 
scheme (shown in the second round cornered 
rectangle of Figure 1), is directly related to the 
former definition of neighborhood: in each iteration 
the dematerialization of dsc subcubes is allowed, 

min
, as is the rematerialization of rsc 

subcubes 
min maxrdh rsc rdh

maxddh dsc ddh≤ ≤
≤ ≤ ,  selecting both values  

randomly inside the specified interval. Once again, 
the balance of the relation exploration versus 
exploitation is changed along the search process, by 
decreasing dsc and rsc range (at each fudri – update 
frequency of dematerialization and rematerialization 
interval). In practice, the algorithm randomly selects 
a node and subcube to dematerialize, changing the 
corresponding position of the HC from 1 to 0. This 
operation is repeated dsc times, as long as there are 
subcubes to dematerialize. 

| |
i ijN Nj

s S≤∑ | |
ijNj

s∑
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Figure 1: Functional scheme of HC-SA M-OLAP algorithm. 

The process of rematerialization is made in an 
identical way. The algorithm selects randomly a 
dimension where the HC is at a 0 position and 
changes its position to 1. In practice, the 
corresponding subcube is materialized.  All 
parameters concerning this issue are user specified, 
allowing the tuning of the algorithm. 

Concerning to the fifth issue, the fitness function 
(fa) of Figure 1, referring to definition 1, the 
objective function is the minimizing of Cq(Q, 
M)+Cm(M). We used the algorithms Multipipelining 
Parallel Query Cost Calculation Algorithm with 
Node Allocation by Constrained Reordering (PQA) 
(Loureiro & Belo, 2006b) and Two Phase 
Hierarchical Sequence with Multipipelining Parallel 
Processing (2PHSMPP) (Loureiro & Belo, 2006b) 
for estimating query and maintenance costs, 
respectively. 

Finally, for 
0T  and the cooling mechanism, we 

decided for its setting by the user, implying a 
preliminary tuning, having adopted a type 1 cooling 
mechanism (as referred in section 2). 

4 HC-SA M-OLAP ALGORITHM 

Algorithm 2 presents the formal definition of the 
proposed algorithm. As we can see, it uses the 
solutions for the issues described in the last section. 
The algorithm is divided into four main sections:  
1. the initialization of parameters and objects, e.g. 

the expedition of HCs; 
2. the generation of the initial position of each HC, 

its repairing to obey to the space constraint, the 
computing of its fitness and the display of the 
state; 

3. the iterative module, where the moves of the HCs 
are performed, as well as the evaluation of its 
fitness, the updating of move’s control 
parameters and the display of the state; 

4. the returning of the best solution achieved. 
Given the comments included, the algorithm 

auto-explainable, and then we choose not to add any 
further discussion. Among all rules, we highlighted 
the one which accepts or rejects the movement of the 
HC and the one which implements the movement. 
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Algorithm 2. HC-SA M-OLAP algorithm. 

As we apply a per node space constraint, the hill 
climbers’ moves may produce invalid solutions, as 

when the materializing space is higher than the 
maximal allowed space. In this work, we employ a 
repair method, with the reposition of the HC by 
randomly turning 1 positions to 0 until the HC’s 
proposal is valid.  

 
Input: L // Lattice (all granularity’s combinations and subcubes’ dependencies) 
 S=(S1... Sn.) ; Q=(Q1... Qn) // Max. storage nodes’ space, query set (freq., dist.)  
 Pb // Base Parameters: Tf (type of Hc fixing), nOSN (number of OSNs), 
  MaximalSizeMaintWindow 
 Psa // Parameters of simulated annealing algorithm (NumHC, NumIter,  
  DefMovim, T0, α, tpGerac) 
 Mt // maintenance costs’ dependencies 
 P=(P1... Pn.); X=(X1... Xn.)  // Nodes’ processing power; connections’ param. 
Output: M // Materialized subcubes selected and allocated 
Begin  
1. Initialization: 
 M← { c0 } // initialize with all empty nodes; node 0 has the base virtual relation 
 E← {  };  d← NSCubes * nOSN // HC’ expedit. empty; d=dim. of search space  
2. Generation, repairing, evaluation and showing the state of the  initial HC’ 
expedit. 
 Repeat NumHC Times: // NumHC is the number of HCs of the expedition 
  While (MaintCost(hc))>MaximalSizeMaintWindow Do: // while position of   
   // generated hill climber (HC) doesn’t satisfy the maintenance constraint 
   hc ← GenerateHC(d) // generates the HC into a random position in d 
   For Each n Into MOLAP, Do: // for each OSN in MOLAP architecture 
    If (size(pos(hc),n)) >Sn Then // if size of materialized subcubes proposed 
     // by solution of HC for node n > available mat. space in node n (Sn) 
     Reposition(hc); // relocate HC into the dimensions mapped to node n  
      // to observe the space constraint 
   Next n 
  End While 
  E ←E ∪ hc; // add the hill climber to the expedition 

 
 

  fitness(hc)= f (hc, Q, M, X); 
  If fitness(hc)>hcBest Then hcBest ←fitness(hc); // updates hcBest (not really 
   // necessary, but interesting to show the initial best position) 
 End Repeat 
 ShowState(E); // shows the instant state of all hill climbers and hcBest 
3. Expedition’s movement, fitness evaluation of each solution and state show: 
 Iter  ←0; // iterations counter 
 While (Itr < NumIter) Do: // final condition is the number of iterations 
  T  ← update (T); // T varies from T0 until T→ 0 at each fuT iterations;  
  If iter>frozenI OR T<frozenT Then frozen  ← true; // after frozenI 
    // iterations or when T is lower than a given value, the system is frozen 
  interv_Max_Unmat ←update(interv_Max_UnMat); // updates maximal  
   // number of bits which represent the position of each HC that was allowed  
   // to change from 1 to 0 in each iteration 
  intervMaxRemat ←update(intervMaxRemat) ; // updates maximal number of  
   // bits which represent the position of each HC that was allowed to change  
   // from 0 to 1 in each iteration 
  wU←rnd(interv_Max_UnMat); // generates the number of bits 
   // to change from 1 to 0 (un-materialize) 
  wR←rnd(interv_Max_ReMat);  // generates the number of bits  
   // to change from 0 to 1 (materialize corresponding subcubes) 
  // Moves each HC according to the defined movement scheme 
  For Each hc Into E, Do: 
   While (MaintCost(hc))>MaximalSizeMaintWindow Do: // while new  
    // position of HC doesn’t verify the maintenance cost constraint 
    Repeat wU Times: // un-materilize wU sbcubes (changing bits - 1 to 0) 
     d ← select (D); // randomly selects node and subcube to un-materialize 
     hc(d) ← 0; // turns the bit (which represents the HC’s position) - 1 to 0  
    End Repeat 
    Repeat wR Times: // rematerilize wR sbcubes (changing bits - 0 to 1) 
     d ← select (D);// selects node and subcube to un-materialize with a  
      // prob. proportional to the available space into each node or to the 
      // relation available space x total space of each node; the subcube to 
      // rematerialize cannot imply the break of imposed space constraint 
     hc(d) ← 1; // turns the bit (which represents the HC’s pos. from 0 to 1)  
    End Repeat 
   End While 
   // Accepting or rejecting HC’s movement 
   delta  ← f (hc (iter-1), Q, M, X) – f  (hc (iter), Q, M, X); // computes the  
    // delta (loss of quality) concerning to HC movement, 
    // f is the fitness function 
   If delta > 0 AND frozen=true OR delta > 0 AND rnd([0,1))>e-Δ/T Then  
    hc(iter) ← hc(iter-1); // restore prev. pos. of the HC, reject. the new pos. 
   fitness(hc)= f (hc, Q, M, X); 
   If fitness(hc)>hcBest Then hcBest ←fitness(hc); // updates hcBest 
  Next hc;   
   ShowState(E); // shows the instant state of all hill climbers and hcBest 
  iter ← iter ++; // increments iterations’ counter 
 End While 
4. Returning of result: 
 Return M(hcBest) // ret. M corresp. to the best posit. ever achieved by any HC 
End 
    

5 EXPERIMENTAL 
PERFORMANCE STUDY  

To perform the experimental study of the algorithms 
we used the test set of Benchmark’s TPC-R (TPC-
R), selecting the smallest database (1 GB), from 
which we used 3 dimensions (customer, product and 
supplier). To broaden the variety of subcubes, we 
added additional attributes to each dimension, 
generating hierarchies, as follows: customer (c-n-r-
all); product (p-t-all) and (p-s-all); supplier (s-n-r-
all). Whenever the virtual subcube (base relation) is 
scanned, this has a cost three times the subcube of 
lower granularity.  

We have used a 3 and 6 nodes’ M-OLAP 
architecture (plus the base node), several randomly 
generated query sets (of different sizes), and we 
considered incremental maintenance costs. With this 
environment we intend to evaluate the impact of the 
following parameters onto the algorithm’s 
performance: 1) the number of iterations, 2) the 
value of T, 3) the number of HCs, 4) the number of 
queries, and 5) the scalability of the algorithm 
relating to the number of M-OLAP architecture’s 
nodes. Given the stochastic nature of the algorithms, 
all presented values are the average of 10 runs. 

5.1 Parameters Tuning 

Several preliminary tests were performed to tune 
some parameters, whose selected values are shown 
in Table 1. Other parameters, as fudri, the frequency 
of T updating, and the iteration of the freezing of the 
simulated annealing (when the simulated annealing 
mechanism stops acting, thus the algorithm starts 
behaving like a local search algorithm), are changed 
accordingly to the selected values, for the associated 
parameters. To make things clear, in this table, all 
parameters are described. 

As said above, the balance of the relation 
exploration versus exploitation is changed along the 
search process, by decreasing dsc and rsc range (at 
each fudri – update frequency of dematerialization 
and rematerialization interval). Reducing the range 
of each HC’s journey with the running of the 
algorithm implies that, in the beginning, the 
exploration is favored; in opposite, in the later 
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phases, the same is valid for the exploitation (as the 
range of the search is lower).  

Table 1: Specified values for several parameters of HC-SA 
M-OLAP algorithm. 

Parameter Description Value 

ddhmin
minimal number of 

subcubes to dematerialize  4 

ddhmax
maximal number of 

subcubes to dematerialize 9 

rdhmin
minimal number of 

subcubes to rematerialize 3 

rdhmax
maximal number of 

subcubes to rematerialize 8 

DecrD the decrease of  ddhmin and 
ddhmax

1 

DecrR the decrease of  rdhmin and 
rdhmax

1 

InitPosGen 
the way of generating the 
initial position of each hill 

climber 
Random 

5.2 Performed Tests 

The first test tries to evaluate the impact of the 
number of iterations over the quality of the achieved 
solutions and also on the run-time of the algorithm. 
We used 20 HCs and T0=30. Figure 2-a shows the 
evolution of the quality of the solutions proposed by 
the algorithm. As we can see, the quality of the 
solutions has an initial fast improvement till about 
100 iterations, followed by a slower evolution and 
an almost null improvement beyond 300 iterations. 
Moreover, another test, where 1000 iterations were 
allowed, revealed a small improvement of the 
quality of the solutions (3435 sec. for 500 iterations 
versus 3411 sec. for 1000 iterations). Moreover, as 
there is a linear relation between the number of 
iterations and the run-time execution (as we can see 
in Figure 2-b), the increase of the run-time doesn’t 
pay off. 

With the second test we tried to evaluate the 
impact of the initial T0 value over the quality of the 
solutions. We used a limit of 300 iterations 
(according to the conclusions of the last test). The 
results are shown in Figure 2-c. As we can see, we 
may say that the algorithm’s performance is almost 
independent of T0 (a difference of 1.2% on average 
fitness and 4% for final fitness). Also, the plots don’t 
allow deducing a behavior pattern, as they exhibit a 
non monotonic variation. Watching the plots and 
inspecting the relative values for the final solution’s 

quality and its average, the value T0=30 seems to be 
the one that ensures a better trade-off. Then, we 
adopted this value for the remaining tests. 

Another characteristic that is important to 
evaluate, concerning to the algorithm’s behavior, is 
the impact of the HCs’ number on the quality of the 
achieved solutions and on the run-time. The plots of 
Figure 2-d and 2-e show the obtained results. As we 
can see, the plot of Figure 2-d shows that the number 
of HCs has a reduced impact on the quality of the 
achieved solutions (only 2.7 %). This is something 
that was expected, given the absence of any 
competition or cooperation mechanisms. E.g. 
genetic algorithms are based on struggle for survival 
and genoma diversity is a condition for evolution. 
Also the learning process – through Pbest and Gbest 
– which rules the particles’ dynamics in particles 
swarm algorithm optimization, or stigmergy, in ants 
algorithms, need a population of solutions. Here, 
each HC acts independently of any other and there 
isn’t any learning process. On the other side, 
analyzing the plot of Figure 2-e, it is easy to 
understand that there is an almost linear increase of 
run-time with the HCs’ number. These two 
evidences allowed us to conclude that it is 
interesting to keep a low number of HCs, which 
induces good solutions in a substantially inferior 
time. 

Finally, it is mandatory, as scalability is at 
premium (recall the algorithm’s use to the M-OLAP 
architecture), to evaluate the impact of the number 
of queries and especially the nodes’ number (as we 
are using the algorithm for optimizing an M-OLAP 
system) on the run-time of the algorithm.  

This way, for the first case, we used sets with 30, 
60 and 90 queries, randomly generated. The run-
times are shown in plot of Figure 2-f. Observing this 
plot, we may see that there is an almost null 
dependency of the run-time in face of the number of 
queries (the three lines are almost superposed). Also 
observing Figure 2-g, we may see that an increase of 
3 to 6 nodes in the M-OLAP architecture’s has 
motivated a reduced increase of the run-time: for the 
300 iterations there was only an increase of 10.6%. 
These two observations show that the HC-SA M-
OLAP algorithm evidences a very good scalability, 
being capable to deal with many queries and also 
with M-OLAP architectures with many nodes. 
Adding the easy scalability of hill climbing with the 
simulated annealing, algorithm concerning to the 
cube’s dimensionality (Kalnis et al. 2002), we have 
an algorithm capable to scale in all directions. 
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Figure 2: Plots that show the results of the performed tests. 

6 CONCLUSIONS AND FUTURE 
WORK 

This work proposes an adaptive simulated annealing 
algorithm to optimize the selection and allocation of 
a distributed cube for multi-node OLAP systems. 
This algorithm improves existent proposals in three 
distinct ways: 1) it uses a non-linear cost model to 
support the estimation of the fitness of each solution, 
simulating a parallel execution of tasks (using the 
inherent parallelism of the M-OLAP architecture) 
which deals with real world parameter values, 
concerning to nodes, communication networks and 
the measure value – time (Loureiro & Belo, 2006b); 
2) it includes the maintenance cost into the cost 
equation to minimize; 3) it also introduces simulated 
annealing meta-heuristic onto the distributed OLAP 

cube selection problem, extending the work of 
(Kalnis et al. 2002) into the distributed arena. Also 
concerning to this work, the HC-SA M-OLAP 
algorithm includes a mechanism which dynamically 
reduces the range of searched space in each iteration.  

The run-time execution results show an easy 
scalability of HC-SA M-OLAP in both directions: 
the cube’s complexity and the number of nodes, 
allowing to manage a distributed OLAP system, 
capitalizing the advantages of computing and data 
distribution, with light administration costs. 

Also, observing the results of figure 3-h, the HC-
SA M-OLAP algorithm is competitive face to 
standard genetic and particle swarm optimization 
algorithms for this kind of problem. Moreover, 
figure 3-i shows that the absolute run-time was also 
the shortest of the three tested algorithms.  
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In the near future we intend to include this 
algorithm into a general framework which includes 
also a genetic, a co-evolutionary and a discrete 
particle swarm algorithms. Any of these algorithms 
may be used in its individuality or combined, where 
each search agent may assume one of several forms 
(a particle, an individual or a hill climber), switching 
through a metamorphosis process. This mechanism 
is also life inspired, as, in nature, the individuals of 
many species assume different shapes in their 
phenotype in different life epochs or under different 
environmental conditions. Between each phenotypic 
appearance many transformations occur, during the 
so called metamorphosis, which many times 
generates a totally different living being. Assuming 
completely different shapes seems to be a way for 
the living being to have a better global adaptation, 
changing its ways to a particular sub-purpose. E.g. 
for the butterflies, the larva state seems to be ideal 
for feeding and growing; the butterfly seems to be 
perfectly adapted to offspring generating, especially 
increasing the probability of diverse mating and 
colonization of completely new environments (recall 
the spatial range that a worm could run and the 
space that a butterfly could reach and search). But 
all these states contribute to the main purpose: 
struggle for survival.  

While designing this algorithm and keeping in 
mind some knowledge about each meta-heuristics’ 
virtues and limitations that are somewhat disjoint, 
we figured that, if combined, they may generate a 
globally better algorithm. What is more, this schema 
could be easily implemented as a unified algorithm 
because of the similarities between the solutions’ 
evaluation scheme and the easy transposing of 
solutions’ mapping. This new meta-heuristic may be 
denoted as “metamorphosis algorithm”, which is 
expected to have an auto-adaptation mechanism.  
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