
A CASE STUDY OF DISTRIBUTED AND EVOLVING
APPLICATIONS USING SEPARATION OF CONCERNS

Hamid Mcheick
Department of Computer Science and Mathematics, University of Québec at Chicoutimi, 555 Boul Université

G7H 2B1 Chicoutimi, Canada

Hafedh Mili
Department of Computer Science, University of Québec at Montréal, Case postale 8888 succursale Centre-ville

H3C 3P8 Montréal, Canada

Rakan Mcheik
Department of Computer Science, Institut des sciences appliquées, Beirut, Lebanon

Keywords: Distributed applications, separation of concerns.

Abstract: Researchers and practitioners have noted that the most difficult task is not development software in the first
place but rather changing it afterwards because the software’s requirements change, the software needs to
execute more efficiently, etc. For instance, changing the architecture of an application from a stand-alone
application, to a distributed one is still an issue. Generally speaking, we should encapsulate distribution
logic in components through the borders of aspects oriented techniques (separation of concerns) in which
we define an aspect as a software artefact that addresses a concern. Although, theses aspects can be offered
by the same object that changes its behaviour during lifetime. We investigate through a case study the
following ideas. Firstly, what we need like modifications to transform local application to distributed one,
using a number of target platforms (RMI, EJBs, etc.)? Secondly, we analyze aspects oriented development
techniques to detect what is the best technique that corresponds for changes requested to integrate a new
requirements such as distribution.

1 INTRODUCTION

Separation of concerns are attractive because they
exhibit long advocated software characteristics like
modularity and cohesion, and their impact on
software development has been described as another
computing revolution on a par with those of stored
programs and programming languages (Kiczales et
al., 1997), (Mili et al., 2002), (Constantinides and
Skotiniotis 2004). In the context of a distributed
application, different sites, and different users may
see different concerns/aspects of the same objects,
including different functionalities, different access
rights and privileges, different quality of service
parameters, and so forth. Addressing these concerns
means adding and changing code that crosscuts
normal modularization boundaries, i.e. typically
objects and methods.

The distribution has been considered by many
researchers and practices as a technical aspect that
can be handled independently of functional aspects
(e.g. (Soueid et al., 2005) and (Mcheick et al., 2007).
Consequently, we should encapsulate distribution
logic in components through the borders of aspects
oriented techniques. Firstly, the difference caused by
the distribution has to be showed in OO program,
i.e. what we need like modifications to transform
local application to distributed one? Secondly, we
should analyse aspects oriented techniques to detect
which the best technique corresponds for changes
requested to integrate the distribution.

Transform a stand-alone application to
distributed one is, in the most cases, a solved
problem. Indeed, existent distributed platforms use a
variation of patterns (for example, stubs proxy) and
various compilers provide automatically the majority
of code used in distributed objects (for example, IDL

393
Mcheick H., Mili H. and Mcheik R. (2007).
A CASE STUDY OF DISTRIBUTED AND EVOLVING APPLICATIONS USING SEPARATION OF CONCERNS.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 393-400
DOI: 10.5220/0001340803930400
Copyright c© SciTePress

compiler of Corba). Previously, researchers have
suggested the use of middleware approach to
distribute an application. Although, this middleware
(like pattern proxy) resolves the most of
circumstances, it stills some changes that need to be
integrated: i) Object lifecycle: remote object creation
is still different from local object creation. The
researchers propose to use object factory, which is
accessible using naming service, ii) The objects, that
become distributed, should implement the interface
needed by clients. Thus, the objects that should be
translated between clients and servers should
implement serializable interface, for example in the
case of RMI, and iii) the invocation to remote
methods can throw exceptions, which are linked to
remote objects of clients.

These changes imply modifications in clients
programs and in implementations classes programs
at server side. We will investigate theses
modifications using aspect oriented software
development techniques. Each technique was
developed with a set of problems in mind. Subject-
oriented programming (Harrison and Ossher, 1993),
and its incarnations (Tarr and Ossher, 2000), are
purported to support feature-oriented programming
and integration, favouring the separation of
functional concerns. Aspect-oriented programming
(AOP, (Kiczales et al., 1997) was built with
architectural, non-functional concerns in mind. Our
own view-oriented programming (VOP, (Mili et al.,
2002)) was developed to handle functional concerns.
Beyond the original intents of their designers, what
kinds of problems are these methods best suited for?

The case study consists of taking a sample
application, and submitting it to one maintenance
scenario, consisting of adding a new architectural
requirement, namely, distributing (or “remoting”)
some objects. Through this experiment, we would
like to, 1) gain some insights into the classes of
problems that each method is best suited for, and 2)
to explore whether distribution is a separable
concern that can be added to an existing application
after it has been built, using one of the three aspect-
oriented development techniques.

The next section includes a brief overview of the
aforementioned techniques and describes a
distributed view-based model. Sections 3 and 4
describe the case study aimed at comparing three
aspect methods where a distributed software
requirement is investigated.

2 BACKGROUNG

We describe the various methods of separation of
concerns and then distribution issues with aspects.

2.1 Aspect-oriented Techniques

Subject-oriented Programming. It views object
oriented applications as the composition of several
application slices representing separate functional
domains or add-ons (features) to existing functional
domains. Such a slice is called a subject and consists
of a self-contained, declaration-wise, object-oriented
program, with its own class hierarchy.

Subject-oriented programming enables us to
compose these two hierarchies (subjects) into one
that, generally speaking, consists of, i) the union of
the interfaces (signatures) emanating from the two
subjects, and i) the composition of the
implementations of the methods that are defined in
more than one subject (Ossher et al., 1995). A major
limitation of SOP is the compile-time binding of the
various subjects. Also, because the granularity of
composition is the method, composability requires
some pre-planning (Mili et al., 1996).

Aspect-oriented programming. It recognizes
that the programming languages that we use do not
support all of the abstraction boundaries in our
domain models and design processes. Aspect-
oriented programming requires three ingredients: i)
general purpose programming language for defining
the core functionalities of software components, ii)
An aspect language for writing aspects, i.e. code
modules that address a specific concern and that
cross-cut various components in the general-purpose
language, and iii) An aspect weaver, which is a pre-
processor that “weaves” or “injects” aspects into the
base software components to yield vanilla flavour
components, coded in the general purpose
programming language. The output of the aspect
weaver is next fed into regular programming toolkit
(compiler, linker, etc.) to yield the application.

View-oriented programming. We view each
object of an application as a set of core
functionalities that are available, directly or
indirectly, to all the users of the object, and a set of
interfaces that are specific to particular uses, and
which may be added or removed during run-time.
The interfaces may correspond to different types of
users with similar functional interests or to different
users with different functional interests. We set out
to provide support for the following: i) enable client
programs to access several functional areas or views
simultaneously, ii) support the addition and removal
of views (functional slices) during run-time, making

ICSOFT 2007 - International Conference on Software and Data Technologies

394

objects support different interfaces during run-time,
and iii) have a consistent and unencumbered
protocol to address objects that support views.
Accordingly, our implementation is based on: i)
providing an API for manipulating views during run-
time (adding and removing, activating and
deactivation), ii) transforming code that uses views
by replacing simple (core object) references by
references to the wrapper, when needed.

2.2 Distribution Objects with Aspect

The combination of aspects and distribution is
interesting for three reasons: i) distribution (garbage
collector) is, itself, one of those design aspects that
crosscut implementation classes, and that clutter the
code without bringing in any new user-defined
functionality. It would thus seem to be a perfect fit
for a technique such as aspect-oriented
programming, which appears to be particularly well
suited for separating design-level concerns, ii)
depending on the separation of concerns technique,
objects that embody several concern may be
fragmented, which may raise a number of issues for
distribution, and iii) considering that different
functional areas usually imply different data
ownership and use privileges, to what extent can
aspect, role, or view boundaries can be used as units
for distribution—and possibly for duplication—in a
distributed application context (see more details in
Mili et al., 2006).

View-oriented programming deals with the
distribution of object views mainly for two reasons:
i) different clients need to share various
combinations of different core object views, ii)
object views can change behaviours during lifetime
(see for example, (Mcheick, 2006)). Figure 1 depicts
the case where an object implementation consisting
of a core object and its views residing on the same
server and where several clients have access to
different sub-sets of the core object views. For
instance, clients can have access to a combination of
views (V1, V2 and V3). Client1 has access to views
V1 and V2 when client2 has access to V2 and V3. It
is important to note that the functionalities of V1 and
V2 are not always available to client1 and similarly
for V2 and V3 with respect to client2. In fact, the
availability of the functionalities of theses views to
their respective clients depends on the attachment
operations invoked on the core object from the
respective client. In this respect, the following
requirements have to be satisfied: the core object
must provide the implementation of the different
view combinations required by clients.

Figure 1: Architecture of distributed object with views:
One server and many clients.

Two issues need to be addressed: i) how to make
the same server object implement two or more client
interfaces, and ii) where to handle the dispatch of
multiply implemented methods (methods
implemented by several views or by the core class
and one or more views). Distributed platforms such
as (CORBA, RMI, and EJB) typically ensure
location transparency by providing proxy objects for
the current objects residing on remote servers. These
platforms use stub and skeleton classes, which are
automatically generated to support the
communication and the transparency. In this respect,
a server object can offer different interfaces to
several clients. We use the delegation approach
which defines a tie subclass of the skeleton class.
These classes (stub, skeleton, etc.) are modified to
support view programming and include object
lifecycle that is not standardized by CORBA (OMG,
2005). To offer multiply-implemented methods, we
have the option of simply forwarding method calls
to the server, and let the server side dispatch method
calls or raise exceptions if a method is not currently
supported. Alternatively, we could handle the
dispatch on the client side, and then ensure that any
call that goes to the server will get answered (see
(Mcheick, 2006) or (Mili et al., 2002)). In terms of
code transformations, this means: i) client side view
management, ii) client side dispatching, and iii) a
call is made locally or remotely.

3 A CASE STUDY OF
DISTRIBUTED AND
EVOLVING APPLICATION
WITH ASPECT TECHNIQUES

3.1 Issues

The three methods described in sections 2.1 propose
different modularisation boundaries for aspects:

A CASE STUDY OF DISTRIBUTED AND EVOLVING APPLICATIONS USING SEPARATION OF CONCERNS

395

� With subject-oriented programming, a subject
is a class hierarchy which is definitionally
self-sufficient, i.e. all the methods and
attributes that are referenced are either locally
defined or declared.

� With view oriented programming, a view is an
object fragment, which is also definitionally
self-sufficient, but that needs the core object
to execute.

� With AspectJ™, the original “aspect-oriented
programming” language (for example,
AspectJ), an aspect is an amorphous construct
that can take many forms, but essentially, an
aspect is meant to implement cross-cutting
concerns, i.e. concerns that pertain to several
objects in a collaboration.

Generally speaking, the aspect-oriented software
development (AOSD) community associates
subject-oriented programming—and its descendant,
HyperJ™—with functional concerns, whereas
AspectJ™ is associated with non-functional ones,
including architectural aspects, error handling,
security, etc. That may have been the original intent
of its developers, but as these methods are being
appropriated by their users, new unanticipated uses
are being found regularly.

This raises a number of related questions. First,
can we use HyperJ™ to implement non-functional
concerns, and conversely, can we use AspectJ™ to
implement functional concerns? Second, assuming
that HyperJ™ is more appropriate for functional
concerns and AspectJ™ is more appropriate for non-
functional concerns, what is it about these concerns
that would make them require different
modularisation boundaries. Tarr et al. hinted at the
answer by noting that developers usually use a
dominant decomposition to handle a first set of
concerns, and then try to « slap » the other concerns
on top of that (Tarr, Ossher, 2000). If that is the
case, then the dominant decomposition is likely to be
functional, which could explain why non-functional
concerns tend to be cross-cutting. A more
fundamental question is, are all concerns separable
(see (Mili et al., 2006))? Aspect-oriented software
development methods have been able to separate and
package concerns that were thought non-separable
with the object paradigm, but are all aspects
separable, theoretically, and it is just a matter of
finding the right packaging, or are some aspects
inherently non-separable? In (Mili et al., 2006), Mili
et al. have attempted to lay the foundations for
answering such a question.

For our purposes, a subsidiary question is
whether distribution is separable concern?
Distribution is an architectural concern, not a

functional one, and one is led to wonder whether it
can be isolated into an “aspect”, be it an AspectJ™
aspect, or a HyperJ™ subject, or a JavaViews view?
The answer to this question is not only theoretical: if
we are able to separate distribution, as a concern,
into an aspect, that means that we can take a simple
single-process or single-virtual machine application,
and make it distributed by composing it with
distribution aspects (or subjects or views). This has
important practical implications, both from the point
of view of application development, as well as from
the point of view of re-engineering or scaling up
existing applications.

Accordingly, we devised a case study that would
enable us to gain some understanding into these
issues. This case study consists of a simple
computerized sales application that manages
customers, orders, products, and inventory. To
compare the three methods described in section 2,
we consider an evolution scenario for the
application, which is consisting of adding a non-
functional requirement.

3.2 A simple Application

Our application supports a range of behaviours,
including: 1) managing customers: this includes
CRUD (Create, Read, Update, Delete) operations on
customers, as well as account management 2)
managing orders: this includes CRUD operations on
orders, as well as order follow-up (e.g., figuring
which fraction of an order has been processing), and
invoicing, 3) managing deliveries, and 4) managing
inventory: CRUD operations on products, as well as
ordering more products from suppliers.

As mentioned above, we considered two
evolution scenarios, one adding a functional
requirement, and the other dealing with an
architectural requirement.

As for the non-functional requirement, we
initially thought of reproducing a variant of the
architectural requirement implemented in the case of
the ATLAS case study reported by Kersten &
Murphy (Kersten & Murphy, 1999). However, those
requirements did not apply to our case. Accordingly,
we looked at the problem of turning a simple
application into a distributed one.

4 ASPECTIZING DISTRIBUTION

4.1 Issues

As we mentioned before, turning a regular
application into a distributed one is, for the most

ICSOFT 2007 - International Conference on Software and Data Technologies

396

part, a solved problem. Existing distribution
frameworks all use a variant of the proxy pattern,
and various compilers will automatically generate
most of the code involved in “distributing” objects.
However, this code is typically generated before the
application domain code is written. The sequence
generates then edits works for forward engineering
development but not for re-engineering or
distributing existing applications.

With existing applications, the classes that
represent objects that are to be distributed need to
undergo some changes, and we will explore what
those changes are. More problematic changes need
to occur within programs that use those classes.
Those concerns are i) Creation of remote objects
(lifecycle) is different from that of local objects, and
ii) Handling remote exceptions: remote method
invocations may raise a number of exceptions that
may either be related directly to the remoteness of
objects, or that may be remote re-castings of user-
defined exceptions. These can occur anywhere
within a method in the client program.

Both subject-oriented programming and view-
oriented programming allow composition only at the
method level. Only aspect-oriented programming
supports composition at sub-method levels, with
some restrictions (entry and return points,
exceptions, etc.). Thus, aspect-oriented
programming seems to be, a-priori, the best fit for
handling these kinds of aspects, on demand.

In the next section, we discuss the required
changes that we need to make to an existing program
to distribute some of its objects. We will discuss
these changes in the context of specific technologies:
Java RMI, and the EJB architecture. The CORBA
distribution framework shares many characteristics
with Java RMI and EJB, and will not be discussed.

4.2 Required Changes

If we want to distribute objects, we need to make
changes to both the classes that implement the
objects, and the code that uses them. To get a grasp
on the kinds of changes that need to happen to client
code, we show excerpts of a program that creates an
object, and invokes methods on it (figure 2):

1. public class Main {
2. public static void

main(String[] args) {
3. Company retailer = new

Company("Home Depot");
…

4. Order newOrder = new
Order(aCustomer);

5. // fill up the order
…

6. retailer.processOrder(newOrder
);

7. …}}

Figure 2: A program that creates an object and invokes
processOrder() method.

We considered the changes that needed to be
made for three distribution frameworks: Java RMI,
CORBA, and EJB. The EJB framework is the most
complete—also, the most complex—and the most
widely used. Thus, we will look at the changes
required to deploy an existing class as an EJB.

4.2.1 Domain Classes

For illustration purposes, we look at what needs to
be done for an entity bean, and we don’t distinguish
between local and remote interfaces. Thus, given a
java class that we want to distribute, we need to
make the following changes:
� Extract an interface (Remote) containing all of

the application domain methods of the class,
and make sure that all of the methods raise
either RemoteException or EJBException.
Also, make sure that all of the arguments are
either serializable, or are themselves
references to other distributed objects

� Create a class that represents a unique identifier
for objects of this EJB: this is the primary key
class. It can be any java class, as long as it is
serializable.

� Extract an interface (Home) containing one
create method for each public constructor the
class has. This interface also needs to support
a findByPrimaryKey(…) method that takes an
argument that is an instance of the primary
key class just mentioned.

Modify the existing java class to: i) make the
class implements EntityBean, ii) add the appropriate
exceptions to method signatures, iii) add lifecycle
management callback methods (ejbPassivate(),
ejbActivate(), ejbPostCreate(), etc.), iv) Implement
the methods of the home interface (modulo some
renaming), and v) in case of bean managed
persistence, implement the load and save methods.

A CASE STUDY OF DISTRIBUTED AND EVOLVING APPLICATIONS USING SEPARATION OF CONCERNS

397

4.2.2 The Code that Uses Domain Classes
Remotely

In the context of distributed objects, a client program
cannot create an instance of the remote object using
the traditional “new”: it needs an object “creator”
that it can ask to create a remote object on its behalf.
That object creator is often also a distributed object,
and we either need a way to create it remotely, or to
locate it on the remote server. With EJBs, it is the
“Home” object that has a global identifier (JNDI
name). For CompanyHome, that name is
ejb/HomeImprovementRetailers (figure 3):

1. public class Main {
2. public static void main(String[]

args) {
// Company retailer = new
Company(“Home Deport”);

3. Context initial = new
InitialContext();

4. Object ref =
initial.lookup("ejb/HomeImproveme
ntRetailers");

5. CompanyHome companyHome =
(CompanyHome)PortableRemoteObject
.narrow(ref,<home interface
class>);

6. Company retailer =
companyHome.findByPrimaryKey(“Hom
eDepot");

 …
//Order newOrder=new
Order(aCustomer)

7. Order newOrder =
retailer.createOrder(aCustomer);

8. // fill up the order
…

9. retailer.processOrder(newOrder);
10. … }}

Figure 3: An object creator that creates a remote object
using EJB Home.

4.3 Implementing the Changes

4.3.1 Changes to the Domain Classes

The changes that need to be made to the domain
classes are of two kinds:

Creating new interfaces (and a class) based on
the existing one. This operation can be done by
parsing the domain classes and getting the important
information out, or by using the Java reflection
package to extract the desired information. We are
not really extending the behaviour of the base
classes here, and we should not interpret the aspect-
oriented programming techniques as code
manipulation tools: they are first and foremost
techniques for changing the behaviour of programs
regardless of how that modification takes place.

Modifying the existing class. As we saw in
section 4.2.1, those changes consisted of changing
some of the type information of the class, and
adding methods. The added methods are of two
kinds: i) lifecycle callback methods which are added
as-is to all domain classes, and ii) class specific
methods, which implement the methods of the home
interface.

Adding the type EntityBean to domain classes
(with the statement “implements EntityBean”) can
be done in both AspectJ™ and HyperJ™. In
HyperJ™ all we need to do is to combine the
existing subject with another one that defines the
domain class as implementing the interface
EntityBean. If we merge the two subjects by name,
we get the desired behaviour. However, HyperJ™
creates a new subject to combine both subjects. This
implies that we should modify the code clients that
use the existing subject if this code needs to use the
new composition subject. With AspectJ™, we can
get the desired behaviour by using the so-called
inter-type declarations. This is not possible in
JavaViews. With JavaViews, we can add the desired
behaviour (EntityBean) as a view, if we wish, but it
does not change the static type of the domain class.

With regard to the addition of the lifecycle
management callback methods, all three methods
support it. The most elegant solution is, in our
opinion, the HyperJ™ solution because it involves
merging the existing domain class with a class
definition that includes the lifecycle management
methods. AspectJ™, again using inter-type
declarations, can do the same thing.

The following shows an aspect that uses inter-
type declarations to add the “implements
EntityBean” directive, and (some of) the new
lifecycle management methods (figure 4).

1. public aspect
ejbCompanyEntityBean {

2. declare parents : Company
implements EntityBean;

3. …
4. public void

Company.ejbActivate()throws
RemoteException,EJBException{

5. }
6. public void

Company.ejbPassivate()throws
RemoteException,EJBException{

7. }
8. public void

Company.ejbPostCreate()throws
RemoteException,EJBException{

9. }
 …}

Figure 4: An aspect shows how we can add a directive and
methods.

ICSOFT 2007 - International Conference on Software and Data Technologies

398

The issue of adding exceptions to method
signatures is a tricky one. First of all, note that none
of the aspect-oriented techniques enables us to
modify the signature of existing methods to add
exceptions. However, all methods can help us extend
the behaviour of a method with a given signature,
and that can include throwing an exception.

To understand how we deal with these
exceptions, we need to understand the rationale
behind EJBException and RemoteException. First,
the RemoteException signals to the client that an
exception occurred on the server side, but the client
does not necessarily has access to the details of the
exception that occurred on the server side: the server
side exception class may not even be in the client’s
class path. An EJBException is an exception that
occurs within the EJB container. Because it is an
unchecked exception, developers need not include it
in the methods Home and Remote interfaces: if one
such method raises the exception, the container will
catch it, wrap it inside a RemoteException and sends
it over to the client. The container will not wrap a
business/application exception: it will be raised on
the client side as is. This means that if containers
weren’t sticklers about types ☺, we could emulate
the effect of having the exceptions in the signatures
by actually throwing them in wrappers put around
the bean class methods using what AspectJ™ and
JavaViews calls before and after advices/methods,
and what HyperJ™ calls brackets.

4.3.2 Title Changes to the Code that Uses
Domain Classes

The client code shown in previous section shows the
kind of changes that we need to make to the classes
that use the application classes that I wish to
distribute. Method invocation on remote objects
works exactly the same way as with local objects,
and that is the beauty of the proxy model. However,
getting a handle on the first remote object, either
through creation or through look-up, is different.

Code excerpts such as the following lines taken
from previous section can occur anywhere within a
client program. HyperJ™ and JavaViews perform
behavioural composition at the method level.
Therefore, there is no way that we can redefine
object creation or access within client programs to
use the remote model. AspectJ™ can extend
behaviour at many join points: method call (from the
outside), method invocation (inside, upon entry),
method return (inside, before exiting), when we raise
exceptions, when we reference an instance variable,
etc. However, all of these joints have some meaning
for the virtual machine, i.e. they correspond to

specific operations of the virtual machine. We can
not extend a program at any instruction.

1. …
2. Context initial = new

InitialContext();
3. Object ref =

initial.lookup("ejb/HomeImprov
ementRetailers");

4. CompanyHome companyHome =
(CompanyHome)

5. PortableRemoteObject.narrow(re
f,<home interface class>);

6. Company retailer =
companyHome.findByPrimaryKey(“
HomeDepot");

7. …

If developers use factory patterns to create and

look for objects as a general practice, remoting
objects becomes much simpler because we localize
the changes to the methods of a single (or a handful
of) factory(ies). But for general-purpose
programming, we cannot “remote” the manipulation
of objects systematically using any of the aspect-
oriented techniques.

5 CONCLUSION

In wide-enterprise information systems, changing
the architecture of the application from a stand-alone
application, to a distributed application has been
investigated in this paper. Generally speaking, we
tried to encapsulate distribution logic in components
through the borders of aspects oriented techniques in
which we define an aspect as a software artefact that
addresses a concern. A number of techniques
collectively referred to as aspect-oriented
development techniques, have been proposed that
offer new artefacts (beyond method, class, or
package) that can separate new kinds of concerns
that tend to be amalgamated in object-oriented
programs. As users adopted and appropriated these
methods, new unanticipated uses appeared and
raised the question: which method is best suited for
which class of problems?

In this paper, we reported on a case study that
submitted an application to evolution scenarios: 1)
adding functional features to the base application,
and 2) changing the architecture of the application
from a stand-alone application, to a distributed
application. In that scenario, we evaluated the
impact of the change, and explored ways to
implement it using each one of the techniques. This
experiment has important practical applications for
distribution: if we are able to encapsulate the act of

A CASE STUDY OF DISTRIBUTED AND EVOLVING APPLICATIONS USING SEPARATION OF CONCERNS

399

remoting an object, into a separate software
component (or aspect) that we can compose or
weave into simple Java object, we would have
solved an important (re)engineering problem. We
argue that if there are many object types that need to
be modified, AOP allows to gather the modification,
in a modular way, into a unique entity (aspect). That
is not always easy to do it with SOP that changes the
name of existing class and the client code.

We studied the Enterprise Java Beans
distribution pattern, because of its popularity and
complexity and not surprisingly, we found that some
changes cannot be modularized into a separate
aspect. Is this a problem with the distribution
solution (the EJB architecture) or with the
distribution problem? This, again, is not an idle
theoretical question. One of the premises of Model-
Driven Engineering is that architectural design and
the coding of business logic are fairly independent
activities, enabling us to “code once” and “deploy
everywhere”. The transition from platform-
independent model (PIM) to platform-specific model
(PSM) applies an architectural mould (e.g. the EJB
pattern) to a bunch of domain class. If we could
write the business logic in a way that is entirely
independent of the deployment infrastructure, we
can write it once in the PIM, and deploy it to
different platforms. In transformational systems
jargon, this is equivalent to saying that architectural
design and business logic elaboration (coding) are
two commutative activities (Baxter, 1992). This
experiment seems to suggest that they aren’t where
the biggest hurdle is lifecycle management. By
abstracting object lifecycle management, we will
probably succeed.

REFERENCES

Baxter, I., 1992. Design Maintenance Systems. CACM,
vol .35 no. 4, pp. 73-89.

Büchi, M., Weck, W., 2000. Generic Wrappers. In
ECOOP’00. LNCS 1850, pp. 201–225.

Constantinides, C., Skotiniotis, T., 2004. Providing
Multidimensional Decomposition in Object-Oriented
Analysis and Design. Proceedings of the IASTED
International Conference. Innsbruck, Austria, Fub.17-
19.

Harrison, W., Ossher, H., 1993. Subject-oriented
programming: a critique of pure objects. In Proc. of
OOPSLA’93. pp. 411-428.

Kersten, M., Murphy, G.C., 1999. Atlas: A Case Study in
Building a Web-Based Learning Environment using
Aspect-Oriented Programming. OOSPLA’99. Denver,
CO, USA.

Kiczales, G., Lamping, J., Mendekar, A., Maeda, C.,
Lopes, C.V., Loingtier, J.M., Irvin, J., 1997. Aspect-

Oriented Programming. Proceedings of the European
Conference on Object-Oriented Programming
(ECOOP07). Springer-Verlag, Finland, pp. 220-242.

Mcheick, H., Mili, H., Msheik, H., Sioud A., and
Bouzouane, A., 2007. ASPECTGC: Aspect Garbage
Collection for Object lifecycle management.
Proceedings of ACM (ICICIS’07). Cairo, Egypt.

Mcheick, H., 2006. Distribution d’objets en utilisant les
techniques de développement orientées aspect :
programmation orientée aspect, programmation
orientée sujet et programmation orientée vue. Thèse de
doctorat, 273 pages, Université de Montréal, Québec,
Canada.

Mili, H., Harrison, W., Ossher, H., 1996. SubjectTalk :
Implementing Subject-Oriented Programming in
Smalltalk. In proceedings of TOOLS USA 1996. Santa
Barbara, CA, July 29 - August 2nd, 1996, Prentice-
Hall.

Mili, H., Mcheick, H., Dargham, J., 2002. CorbaViews:
Distribting objects with several functional aspects.
Journal of Object Technology. USA.

Mili, H., Sahraoui, H., Lounis, H., Mcheick, H., Elkharraz,
A., 2006. Understanding separation of Concerns.
Fundamental Approsches to Software Engineering,
FASE’06. Vienna (Austria), March 27-29.

OMG:www.omg.org, 2005.
Ossher H., et al., Subject-oriented composition rules. In

Proc. OOPSLA ’95. Austin, TX, Oct. 15-19, pp. 235-
250.

Soueid, T., Yahiaoui, N., Seinturier, L., Traverson, B.,
2005. Techniques d’aspect pour la gestion de la
mémoire répartie dans un environnement CORBA-
C++. In Proceeding of NOTERE’05. Gatineau
(Québec), Canada.

Tarr, P., Ossher, H., 2000. HyperJ User and Installation
Manual. IBM Corporation.
http://www.research.ibm.com/hyperspace, USA, 2000.

ICSOFT 2007 - International Conference on Software and Data Technologies

400

http://www.research.ibm.com/hyperspace

