
ITKBOARD: A VISUAL DATAFLOW LANGUAGE FOR
BIOMEDICAL IMAGE PROCESSING

Hoang D. K. Le, Rongxin Li, Śebastien Ourselin
BioMedIA, Autonomous Systems Laboratory

John M. Potter
Programming Languages & Compilers Group
School of Computer Science & Engineering

University of New South Wales, Sydney

Keywords: Dataflow programming, visual programming languages, image processing software, ITK, ITKBoard.

Abstract: Experimenters in biomedical image processing rely on software libraries to provide a large number of standard
filtering and image handling algorithms. The Insight Toolkit (ITK) is an open-source library that provides a
complete framework for a range of image processing tasks, and is specifically aimed at segmentation and
registration tasks for both two and three dimensional images.
This paper describes a visual dataflow language, ITKBoard, designed to simplify building, and more signif-
icantly, experimenting with ITK applications. The ease with which image processing experiments can be
interactively modified and controlled is an important aspect of the design. The experimenter can focus on the
image processing task at hand, rather than worry about the underlying software. ITKBoard incorporates com-
posite and parameterised components, and control constructs, and relies on a novel hybrid dataflow model,
combining aspects of both demand and data-driven execution.

1 INTRODUCTION

Segmentation and registration are two common tasks
that are conducted in processing biomedical im-
ages, such as those produced by Computed Tomog-
raphy Imaging (CT scanners) and Magnetic Reso-
nance Imaging (MRI scanners).Segmentationin-
volves identifying and classifying features of interest
within an image, andregistration involves the align-
ment of corresponding parts of different images or un-
derlying grids and meshes. A biomedical application
being explored in our BioMedIA laboratory at CSIRO
performs non-invasive modelling of the internal 3D
structure of an artery. Potentially this can be used to
customise the design of a good-fitting stent as used
in angioplasty procedures. Segmentation is used to
identify the arterial region of interest, and registration
used to align the 3D model of the stent.

Researchers working in this area typically exper-
iment with different image filtering algorithms, and
modify parameters of the algorithms in attempting to
achieve good images for diagnostic or other purposes.
Their concern is with the kind of algorithm and the
tuning process involved, in order to achieve accurate

reconstructions from the images. They do not, in gen-
eral, want to be concerned with the development of
the underlying software.

The Insight Toolkit(ITK) is an open-source soft-
ware toolkit for performing registration and segmen-
tation. ITK is based on a demand-driven dataflow ar-
chitecture, and is implemented in C++ with a heavy
reliance on C++ templates to achieve efficient generic
components. Only competent C++ developers can
build image processing applications using ITK in the
raw. Although the toolkit does allow Python, Java
or Tcl scripting of ITK components, the level of pro-
gramming expertise and time required is still too high
for convenient experimentation with ITK. In particu-
lar, experimenters working with scripted models, still
have a cognitive mismatch between the image pro-
cessing problems they want to solve, and the task of
writing scripts to run different experiments.

Our aim with ITKBoard is to provide a simpler
platform for biomedical researchers to experiment on,
leveraging the underlying strengths of ITK, but re-
quiring little or no programming knowledge to use.
More specifically, we aim to overcome some exist-
ing limitations such as a lack of efficiency in dataflow

13
D. K. Le H., Li R., Ourselin S. and M. Potter J. (2007).
ITKBOARD: A VISUAL DATAFLOW LANGUAGE FOR BIOMEDICAL IMAGE PROCESSING.
In Proceedings of the Second International Conference on Software and Data Technologies - PL/DPS/KE/WsMUSE, pages 13-21
DOI: 10.5220/0001339800130021
Copyright c© SciTePress



model construction, difficulty in customising filter’s
properties for running different experiments, and lack
of high-level constructs for controlling execution.

To this end, we have designed a visual dataflow
language which provides extra features above and be-
yond ITK. Thenovel contributionsof ITKBoard are:
visual constructionof ITK applications, by graphi-
cal manipulation of filtering models as reported else-
where (Le et al., 2005)); ahybrid dataflowmodel,
combining bothdemand-drivenexecution for images,
and data-drivenexecution for filter parameters; ex-
plicit visual parameterisationof filters, with graphical
input/output parameter dependencies between filters;
visual compositionof filters that can be saved and re-
deployed in other applications; explicitvisual control
flow with selection and repetition constructs; and ex-
plicit construction of expressions combining parame-
ters through the visual interface.

The combination of features in ITKBoard is
unique, and designed to suit experimentation in
biomedical image processing. In particular, our hy-
brid dataflow model, incorporating both data-driven
and demand-driven computation, is novel. The con-
trol constructs in our language are also interesting,
being tailored specifically to cope with the underly-
ing ITK execution model, combined with our hybrid
model.

The paper is organised as follows. Section 2 pro-
vides a summary of the software architecture of ITK.
In particular we discuss how the uniformity in the ITK
design allows dataflow models to be “wired up”, and
filters to be executed on demand. The user-based per-
spective of ITKBoard, presented in Section 3, gives
an indication of the ease-of-use that we achieve with
the interactive visual layer that we place on top of
the ITK model. In Section 4 we focus on the hybrid
dataflow model that we employ in ITKBoard. Here
we extend the demand-driven dataflow model of ITK,
in which image data is cached at filter outputs, with a
data-driven model for handling filter parameters. This
adds a uniformity to handling parameters which is
not directly provided in the ITK model. Further de-
tails of the ITKBoard architecture are outlined in Sec-
tion 5: we consider wrapper and plug-in mechanisms
for ITKBoard, composite filters, a simple way of ex-
pressing combinations of parameters, and explicit vi-
sual control flow constructs for selection and repeti-
tion. In Section 6 we discuss the contribution of our
work, and compare it with other related work, before
a brief conclusion in Section 7 where we also point to
possible future work.

2 ITK: THE INSIGHT TOOLKIT

We provide a brief summary of the features of ITK
which are relevant for the design of ITKBoard. There
is a comprehensive software guide (Ibáñez et al.,
2005) which should be consulted for further informa-
tion.

ITK is based on a simple demand-driven dataflow
model (Johnston et al., 2004) for image processing.
In such a model, the key idea is that computation is
described within process elements, orfilters, which
transform input data into output data. Data pro-
cessingpipelinesform a directed graph of such ele-
ments in which the output data of one filter becomes
the input for another. In a demand-driven model,
computation is performed on request for output data.
By caching output data it is possible to avoid re-
computation when there have been no changes to the
inputs. Image processing is computationally inten-
sive, and so redundant computations are best avoided.
ITK has therefore adopted this lazy, memo-ised eval-
uation strategy as its default computational mecha-
nism.

ITK is implemented in C++ and adopts standard-
ised interfaces for the constituent elements of the
dataflow model. In particular it provides a generic
interface forprocess objects(filters). In ITK images
and geometric meshes are the only types of data trans-
formed by filters. They are modelled as generic data
objects, which can be specialised for two and three
dimensional image processing. Typically output data
objects for a filter are cached, and only updated as
necessary.

When inputs are changed, downstream data be-
comes out-of-date. Subsequent requests will cause
re-computation of only those parts of the model which
are out-of-date. As well as tracking the validity of the
cached output images, ITK provides a general event
notification mechanism, based on theObserverde-
sign pattern (Gamma et al., 1995) for allowing ar-
bitrary customisation of behaviours that depend on
the state of computation. This mechanism makes it
feasible for us to trap particular events in the stan-
dard ITK execution cycle, and intersperse the stan-
dard behaviours with further updating as required by
our ITKBoard model.

ITK uses data other than the objects (image data)
that are transformed by filters. This other data is con-
strained to be local to a particular filter. Such data
is usually used to parameterise the behaviour of the
filters, or in some cases, provide output information
about a computation which is distinct from the image
transformation typical of most filters. Such paramet-
ric data are treated as properties of a filter, and there

ICSOFT 2007 - International Conference on Software and Data Technologies

14



is a standard convention in ITK for providing access
to them with get and set methods. There is however,
no standard mechanism in ITK to model dependen-
cies between the parameters of different filters in ITK.
This is one of our contributions with ITKBoard.

To build an ITK application, the basic approach
requires all elements of the model to be instantiated
as objects from the C++ classes provided by ITK. The
toolkit does encourage a particular idiomatic style of
programming for creating filter instances and con-
structing filter pipelines by hard-wiring the input-
output connections. Nevertheless, programming in
any form in C++ is not for the faint-hearted.

Consequently, to escape from the complexities of
C++, there is a wrapper mechanism which allows ITK
filters to be accessed from simpler, interpreted lan-
guages. Currently those supported are Java, Python
and Tcl. Image processing applications can be writ-
ten in any of these languages, using standard ITK fil-
ters as the primitive components. However, even with
such high-level languages, the text-based program-
ming task still slows down the experimenter who sim-
ply wants to investigate the effect of different image
processing algorithms on a given image set.

3 A USER’S PERSPECTIVE OF
ITKBOARD

ITKBoard is a system that implements a visual
dataflow language, providing a simple means of inter-
actively building a dataflow model for two- and three-
dimensional image processing tasks. Unlike the un-
derlying ITK system, outlined in Section 2, ITKBoard
requires no knowledge of programming. It provides
a much less intimidating approach to the image pro-
cessing tasks that ITK is designed to support. To ex-
ecute an image processing task simply involves click-
ing on any image viewer element in the model. By
offering a single user interface for both model con-
struction and execution, ITKBoard encourages exper-
imenters to try out different filtering algorithms and
different parameter settings.

We summarise the key features that are evident
from the screenshot displayed in Figure 1. This shows
a small example of an image processing task to illus-
trate the key concepts behind our design of ITKBoard.
The simplicity and ease-of-use of the interface and the
intuitive nature of the way in which tasks are mod-
elled should be evident from the figure. The panel
on the left shows the palette of available elements,
which are typically wrapped versions of ITK process
objects. This provides the interface with the library of
components that ITK provides—no other exposure of

ITK functionality is required in ITKBoard.
The main panel displays a complete filtering ap-

plication mid-way through execution, as suggested by
the execution progress bar. To construct such an ap-
plication, the user selects elements from the left panel,
placing them in the application panel, and connecting
outputs to inputs as required. We visually distinguish
between image data, the thick dataflow edges, and
parametric data, the thin edges. Image inputs are pro-
vided on the left of filter elements, and outputs on the
right. Parameter inputs are via pins at the top of filters,
outputs at the bottom. ITKBoard uses colour coding
of image dataflows to indicate when image data is up-
to-date. In the colour version of Figure 1, red image
dataflows indicate that the data is out-of-date, yellow
flows indicate that data is being updated, and green
ones indicate up-to-date data.

Viewer elements act as probes, and provide the
mechanism for execution. The user may request any
particular view to be updated. This demand is propa-
gated upstream, just as in ITK, until the cached image
data is found to be up-to-date. Viewers cache their im-
age data. This allows experimenters to attach multiple
viewers to a given filter output, and update them inde-
pendently. This is an easy-to-use device for simulta-
neously observing images produced before and after
changes to the upstream model which is particularly
helpful for experimenting with filtering models. Fig-
ure 2 illustrates the display for a viewer, in this case
one that compares two-dimensional cross sections of
three-dimensional images.

Parameters of a filter are interactively accessible
via property tables, which can be displayed by click-
ing on the filter icon. Input parameters can be set in
one of three ways: at initialisation, with some default
value, by explicit user interaction, or by being con-
figured as being dependent on some other parameter
value. For example, in Figure 1, inputs of theBi-
nary Thresholddepend on output parameters of the
upstreamStatisticsfilter. We will discuss how param-
eter data propagation works in Section 4.

Our example illustrates a simpleif-then-elsecon-
trol construct. To update its output image, it chooses
between its two image data inputs, according to the
current value of its selection condition, which is sim-
ply some expression computed from its parameters.
One key design consideration is apparent here: in
order to prevent image update requests being propa-
gated upstream via all inputs, the condition is eval-
uated based on current parameter settings. Other-
wise, propagating the request on all inputs would
typically involve expensive image processing com-
putations, many of which may simply be discarded.
This will be discussed further in the following sec-

ITKBOARD: A VISUAL DATAFLOW LANGUAGE FOR BIOMEDICAL IMAGE PROCESSING

15



Figure 1: Screenshot of ITKBoard.

tions. The bottom panel of Figure 1 simply displays
a trace of underlying configuration actions for debug-
ging purposes during development of ITKBoard.

Figure 2: Comparing images with a Viewer.

4 THE HYBRID DATAFLOW
MODEL

In ITK there is a clear distinction between image data
which participates in demand-driven dataflow compu-
tations, and parametric data used to configure filters.
Image data is large and must be managed with care,
whereas parameters are usually simple scalars or vec-
tors that consume negligible memory. Sometimes in

image processing tasks, parameters do need to be log-
ically shared between different filters. With ITK, any
such sharing must be configured explicitly by the user
when they set the parameters for individual filters. For
ITKBoard we introduced a design requirement that
sharing of such data between filters must be made ex-
plicit in the model that a user builds.

A couple of design alternatives presented them-
selves to us. First, instead of treating parameters as
local to individual filters, we could simply take them
to be global variables for the whole model. This
solution is certainly implementable, but requires a
global namespace for the parameters, and binding of
the global parameter names to the local names used
within each of the individual filters. On the down-
side, this approach requires the user to invent a global
name and keep track of its local variants, in order to
understand what parameters are shared where. With
the ability to form composite models, we must also
deal with the added complexity of nested namespaces.
Furthermore, we want parameters of some filters to be
able to determine those of other filters. This would re-
quire the user to distinguish between those parameters
which had to be set externally by the user, and those
which would be the responsibility of a filter to set.

Instead of using global variables for handling

ICSOFT 2007 - International Conference on Software and Data Technologies

16



parametric data, we have opted for a dataflow solu-
tion. In our ITKBoard model, we deem this appropri-
ate because we are already using a dataflow model
for image data, and because it avoids some of the
problems mentioned above in treating parameters as
global variables. First, with a visual dataflow lan-
guage, there is no need to provide global names for
the dataflow parameters; second, the dataflow connec-
tions make apparent any dependencies between pa-
rameters, and who is responsible for setting the data
values, by distinguishing between input and output
parameters—more on this soon; third, with a com-
posite model, it is a relatively simple matter to choose
which internal parameters to expose at the composite
level, with external inputs mapping to internal inputs,
and internal outputs mapping to external outputs.

Perhaps the most interesting design choice in ITK-
Board has been to opt for adata-driven propagation
scheme for data parameters. Given that ITK already
supports a demand-driven model of computation for
image data, why not instead just go with the flow,
and make the update of parameters demand-driven as
well? There are three main reasons for making pa-
rameter updates data-driven.

The first reason is implementation biased—it is
simpler to extend ITK with a data-driven propagation
scheme for parameter updates. Whenever a parameter
is updated, we simply ensure that any downstream de-
pendants are immediately notified of the change, and
correspondingly updated. This mechanism works for
output parameters of a filter as well. Normally when
an ITK filter completes its (demand-driven) compu-
tation of its output image, the downstream filters are
notified of completion, so they may proceed with any
pending computation. In ITKBoard, our implemen-
tation simply catches this notification event, and up-
dates downstream parameters with the new output pa-
rameter values which can be gotten from the underly-
ing ITK filter, before proceeding with the interrupted
demand-driven computation downstream. If, alterna-
tively, we implemented demand-driven parameter up-
date, we would have to track when output parame-
ters are out-of-date, and this would presumably be
delegated to the ITK mechanism which is based on
checking whether the output images are out-of-date;
whatever the implementation trick used, the demand-
driven approach implies that requests for parame-
ter updates will trigger (potentially expensive) image
processing computations. With the data-driven ap-
proach, (cheap) parameter updates are propagated im-
mediately, and never trigger image processing with-
out a separate request for an up-to-date image.

The second reason for adopting the data-driven
scheme for parameter propagation is more user fo-

cused. Our scheme implies that all image process-
ing computations are driven by requests for up-to-date
images, and nothing else. These requests are propa-
gated upstream, and the state of computation is solely
determined by the current validity of image data and
the current thread of incomplete requests. In partic-
ular, a dependency of an input parameter on an up-
stream filter’s output parameter will not trigger com-
putation for the upstream filter, even if that filter is not
up-to-date.

The third reason for not applying the demand-
driven scheme to parametric data is to allow a richer
class of models, while still avoiding recursion caused
by cycles between image data and parameter depen-
dencies. In a standard demand-driven model, down-
stream output parameters cannot connect to upstream
filters without causing a feedback loop. By separat-
ing the image demands from the data-driven param-
eter updating mechanism, ITKBoard can handle such
dependencies. So, ITKBoard allows cyclic dependen-
cies that involve at least one image and one parame-
ter data dependency. ITKBoard does not allow cy-
cles of image dataflow, or of parameter dataflow; only
mixed cycles are allowed. ITKBoard provides built-in
support for iterative filters, so image feedback is not
needed for expressing repetitive processing.

Because the user interface gives visual cues about
which data is not up-to-date, and where parameter de-
pendencies lie, it is a simple matter for a user to ex-
plicitly request that an output parameter for a partic-
ular filter be brought up-to-date by requesting an up-
dated view of the output image for that filter. The
rationale for this is to give the user better control over
which parts of the model are actually re-computed
after changes are made, thereby avoiding potentially
expensive but unnecessary image processing. For
biomedical experimenters, we decided this finer gran-
ularity of control over where image processing occurs
was a worthwhile feature.

Input parameters can be set in a number of ways.
Unconnected parameters have a default value. Input
parameter pins are positioned along the top of the fil-
ter icon, and outputs at the bottom. Connections can
be made from either input or output pins to other in-
put pins. When a connection is made between two
input parameters, the downstream input parameter is
overridden by the value of the upstream input. For all
parameter connections, whenever the upstream value
is updated, the connected downstream value is corre-
spondingly updated. Users may directly override the
current value of an input parameter associated with a
filter; in this case, any downstream dependants will
be updated, but upstream parameters will retain their
old value—again, this gives experimenters some ex-

ITKBOARD: A VISUAL DATAFLOW LANGUAGE FOR BIOMEDICAL IMAGE PROCESSING

17



tra flexibility. They have the opportunity to test lo-
cal parameter changes in a model, without restructur-
ing the dependencies in the model. This is similar to
the way some program debuggers allow the values of
variables to be set externally. Note that the value of
a user-modified input parameter will be retained un-
til there is some other upstream variation causing the
parameter to be modified via some inward parameter
dataflow, if such a connection exists.

Our design choice in opting for a hybrid dataflow
model does have an impact on the behaviour of con-
trol constructs as described later in Section 5.

5 MORE DETAILS OF ITKBOARD

We detail some of the more useful features of ITK-
Board: auto-wrappers for ITK filters and a plug-
in mechanism, ITKBoard’s take on composite fil-
ters, support for expressing parameter-based compu-
tations, and finally control constructs.

5.1 Wrappers and Plug-ins for
ITKBoard

The main goal of ITKBoard has been to present an
easy-to-use interface for experimenters who want to
use ITK without worrying about programming de-
tails. To this end it is critical that ITKBoard can eas-
ily access all of the ITK infrastructure and that new
pre-compiled components can be easily added to ITK-
Board.

The first mechanism is an auto-wrapper for ITK
filters so that ITKBoard is easily able to leverage all
of the filtering functionality provided by ITK, or by
any other C++ code implementing similar interfaces.
Our auto-wrapper parses the C++ code for a filter,
and generates C++ code that wraps the filter so that it
can be used within ITKBoard. In particular, the auto-
wrapping process is able to extract input and output
parameters for an ITK filter, assuming the convention
that input parameters are those defined with get and
set methods (or macros), and output parameters those
just with get methods. The auto-wrapper allows a user
to intervene to adapt the auto-wrapper’s translation as
required.

The second mechanism provides support for plug-
ins. This allows us to include newly developed fil-
ters into the ITKBoard system without recompiling
the source code for the system. This is important for
effective sharing and distribution of extensions. We
rely on a shared library format (.so or .dll) to achieve
this. Every shared library can provide a collection of

filters, and must provide a creation routine for instan-
tiating the filters implemented by the library.

Details of both the auto-wrapper and plug-in
mechanisms for ITKBoard have been presented else-
where (Le et al., 2005).

5.2 Composite Filters

Although ITK itself can support the construction of
composite filters made up of other filters, we pro-
vide a separate mechanism in ITKBoard. The rea-
son for doing this is that we wish to distinguish
between primitive filters (typically ITK filters), and
those which can be composed of sub-filters.

So we simply provide an ITKBoard implementa-
tion of theCompositedesign pattern (Gamma et al.,
1995). TheComponentinterface is the standard ITK-
Board abstraction for representing a filter.Leaf com-
ponents are ITK filters with their standard ITKBoard
wrapper. What perhaps is interesting here, is that the
composite structure is not hard-coded, as it is in ITK.
The definition of the composite is simply an XML-
based description of the structure of the composite fil-
ter which describes the individual components of the
composite, together with their data dependencies (the
“wiring”). When a composite filter is instantiated by
the user, the actual internal structure of the composite
is dynamically configured by interpreting the XML
description.

Figure 3: A Composite Filter: collapsed form.

Figure 4: A Composite Filter: expanded form.

At the user interface level, composites can either
be collapsed, appearing as a single filter icon, or ex-
panded, showing the internal structure of the compos-
ite. For example Figure 3 displays a composite fil-
ter in collapsed form, which can be used just like any
other filter. The expanded form of the same composite
filter, Figure 4 shows both the internal data dependen-
cies and the distribution of parameters amongst the
internal components.

ICSOFT 2007 - International Conference on Software and Data Technologies

18



5.3 Parameter Expressions

Most filter parameters are simple scalar or vector val-
ues used to customise filters, such as the threshold
level for a simple filter. In some cases we may wish
to combine parameters in simple ways. To that end
we define a simple expression interpreter for defining
arithmetic and comparison operations on data values.
These expressions can be entered into the property ta-
bles that define the parameters for a component. Al-
though a more elaborate mechanism could be built
in, we think that a simple expression interpreter is
likely to suffice for most kinds of applications; any-
thing more complex can easily be implemented

5.4 Control Constructs

Structured control flow has three aspects: sequenc-
ing, choice and repetition.The dataflow model natu-
rally supports sequencing of computations through its
directed graph of data dependencies. Given that fil-
ters may have multiple inputs, it is apparent that we
can encode choice and repetition within the imple-
mentation of a filter. In fact, some of the standard
ITK components have optimising filters which may
already implement repeated filtering behaviour until
some criterion is met. However, our goal with ITK-
Board is to provide a visual language to allow users
to specify selective and repetitive behaviour.

Selection. Conditional selection of inputs is
achieved with theIf-*-Else construct, as depicted in
Figure 5. Each image data input is guarded by a

Figure 5: Conditional construct.

boolean expression. The first of these to be true,
starting from the top, is selected for input. Given in-
putsIni for i = 0. . .n, with boolean guardsCondi for
i = 0. . .n−1, we can define the outputOut by:

Out = In0, ifCond0
= . . .

= Inn−1, ifCondn−1
= Inn, otherwise

The guard expressions are defined in terms of the
input parameters, as properties of theIf-*-Else con-
struct. With the data-driven policy for parameters, it
is clear that the guards do not directly depend on the

input image data. So, with demand-driven computa-
tion, we find that each request for output is propagated
to just one input, at most. In other words, the selection
of the input dataflowIni only depends oni, which, in
turn only depends on the input parameters.

This deterministic behaviour for conditional input
selection, which may seem somewhat unorthodox on
first sight, is in fact, one of the main reasons for opting
for the hybrid dataflow model, as already discussed in
Section 4. If instead, we had opted for a demand-
driven model for input parameters, then this condi-
tional expression could generate multiple upstream
requests until a true condition was found. In Figure 1,
for example, the parameters for the conditional block
are only dependent on the input parameters of the pre-
cedingConnected Thresholdfilter. So, while those
parameters remain unaltered, theIf-*-Elsewill always
select the same input when the right-most viewer is
updated—the selection does not depend on the input
image data. If we want downstream choices to de-
pend on upstream images, then we must make it ex-
plicit in the model, by arranging for some filter to pro-
cess the upstream image, generating output parame-
ters which can then be used as inputs to anIf-*-Else.
When such a dependency is modelled, the actual be-
haviour for the conditional selection can depend on
where the user makes update requests. If the user
guidesthe computation downstream, by ensuring that
all upstream image data is up-to-date, then any con-
ditional selections made downstream will be up-to-
date. However, if the user only requests updates from
the downstream side, it is possible that, even with re-
peated requests, that some of the upstream data re-
mains out-of-date.

Although it may seem undesirable to allow differ-
ent results to be computed, depending on the order of
update requests, we claim this to be a benefit of our
hybrid model. As mentioned in Section 4, the user is
always given visual cues to indicate which image data
is not up-to-date. This gives the experimenter control
over which parts of the model are brought up-to-date,
and which parts may be ignored while attention is fo-
cused on another part of the model.

Repetition. In some dataflow languages that fo-
cus on stream-based dataflow, iteration is often pre-
sented in terms of a feedback loop with a delay ele-
ment. Although our implementation is indeed based
on this idea, we have chosen to keep this as imple-
mentation detail which need not be exposed to the
user. Instead we provide a simple way of wrapping an
existing filter in a loop construct, with explicit loop
control managed as a property of the loop construct.

In Figure 6 we illustrate the manner in which a
while loop can be expressed. Observe how the ini-

ITKBOARD: A VISUAL DATAFLOW LANGUAGE FOR BIOMEDICAL IMAGE PROCESSING

19



Figure 6: While Loop construct.

tial, test and update expressions are written in terms
of properties of the loop construct. Although logically
redundant, we also provide a countingfor loop.

6 RELATED WORK

A recent survey (Johnston et al., 2004) provides a
good account of dataflow programming, including
dataflow visual programming languages (DFVPLs).
The current state of play for DFVPLs with iteration
constructs is reviewed by (M. Mosconi, 2000).

Prograph (Cox et al., 1989) is a general purpose
DFVPL that uses iconic symbols to represent actions
to be taken on data. Its general-purpose features are
not ideal for supporting computationally intensive do-
mains such as signal processing and image analy-
sis. However, control flow in Prograph is implicitly
defined, forcing users to implement their own con-
trol constructs rather than directly use available con-
structs.

The Laboratory Virtual Instrumentation Engineer-
ing Workbench(LabVIEW) (LabVIEW, ) is a plat-

form and development environment for a VPL from
National Instruments. LabVIEW aims to provide de-
sign tests, measurement and control systems for re-
search and industry. It is not geared towards experi-
mental image processing like ITKBoard is. Two itera-
tive forms are supported in LabVIEW namely the for-
loop and the while-loop, with a square-shaped block
to represent the loop’s body.

Cantata (Young et al., 1995) is a language orig-
inally designed for image processing within the
Khoros system (Konstantinides and Rasure, 1994),
a visual programming environment for image pro-
cessing. It is also useful for signal processing and
control systems. In Cantata, icons (called glyphs)
represent programs in Khoros system. Unlike ITK-
Board, Cantata provides a coarse-grained computa-
tion model more suited to distributed computation,
where each glyph corresponds to an entire process
rather than to a process component. There are two
iterative forms provided in Cantata namely the count-
loop and the while-loop, similar to our approach.
VisiQuest (VisiQuest, ) is a commercial scientific
data and image analysis application that builds on the
foundation laid by Khoros and Cantata.

VIPERS (Bernini and Mosconi, 1994) is a
DFVPL based on the standard scripting language Tcl,
which is used to define the elementary functional
blocks (the nodes of the data-flow graph) which are
similar to Khoros programs in Cantata. Interest-
ingly, each block corresponds to a Tcl command so
VIPERS is less coarse-grained than Cantata. VIPERS
programs are graphs that have data tokens travelling
along arcs between nodes (modules) which transform
the data tokens themselves. VIPERS has some ba-
sic representations to allow node connections, ports
to link blocks into a network. However, the use of en-
abling signals in each block introduces a new boolean
data-flow channel on top of the main input-output
data-flow. VIPERS relies on enabling signals to sup-
port language control constructs. See (M. Mosconi,
2000) for examples and screen-shots.

MeVisLab (Rexilius et al., 2005) is a development
environment for medical image processing and visu-
alisation. MeVisLab provides for integration and test-
ing of new algorithms and the development of appli-
cation prototypes that can be used in clinical environ-
ments. Recently, ITK algorithms have been integrated
into MeVisLab as an ”add-on” module. However,
in ITKBoard, ITK provides the core image process-
ing functionality; with its extensive user base, ITK
library code reliable and well validated. Moreover,
ITKBoard provides a full DFVPL with extra expres-
siveness in comparison to MeVisLab.

ICSOFT 2007 - International Conference on Software and Data Technologies

20



7 CONCLUSION

We have presented ITKBoard, a rich and expressive
visual dataflow language tailored towards biomedi-
cal image processing experimentation. By building
on top of ITK, we have been able to leverage the
strengths of ITK’s architecture and libraries. At the
same time, we provide an interactive development en-
vironment in which experimenters can develop new
image processing applications with little or no con-
cern for programming issues. Furthermore, in one and
the same environment, they can interactively execute
all or part of their model, and investigate the effect
of changing model structure and parameterisation in
a visually intuitive manner.

The hybrid dataflow model appears to be unique
amongst dataflow languages, and matches well with
the division of data into two kinds in the underly-
ing ITK framework, and with the experimental image
processing that ITKBoard has been designed to sup-
port. Currently we have a complete working imple-
mentation of the features of ITKBoard as discussed
in this paper. Further work is needed to develop ITK-
Board to support streaming of image data and multi-
threaded computation that ITK already goes some
way to supporting.

REFERENCES

Bernini, M. and Mosconi, M. (1994). Vipers: a data flow
visual programming environment based on the tcl lan-
guage. InAVI ’94: Proceedings of the workshop
on Advanced visual interfaces, pages 243–245, New
York, NY, USA. ACM Press.

Cox, P. T., Giles, F. R., and Pietrzykowski, T. (1989). Pro-
graph: A step towards liberating programming from
textual conditioning. InProceedings of the IEEE
Workshop on Visual LanguagesVL’89, pages 150–
156, Rome, Italy.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Profes-
sional Computing Series, MA,USA.

Ibáñez, L., Schroeder, W., Ng, L., Cates, J., and the In-
sight Software Consortium (2005).The ITK Software
Guide, 2nd edition. http://www.itk.org.

Johnston, W. M., Hanna, J. R. P., and Millar, R. (2004).
Advances in dataflow programming languages.ACM
Computing Surveys, 36(1):1–34.

Konstantinides, K. and Rasure, J. R. (1994). The Khoros
software development environment for image and sig-
nal processing.IEEE Transactions on Image Process-
ing, 3(3):243–252.

LabVIEW. National Instruments Corporation. LabVIEW.
User Manual, 2003.

Le, H. D. K., Li, R., and Ourselin, S. (2005). Towards
a visual programming environment based on itk for
medical image analysis. InDigital Image Computing:
Techniques and Applications (DICTA’05), page 80.
IEEE Computer Society.

M. Mosconi, M. P. (2000). Iteration constructs in data-flow
visual programming languages.Computer Langages,
22:67–104.

Rexilius, J., Spindler, W., Jomier, J., Link, F., and Peitgen,
H. (2005). Efficient algorithm evaluation and rapid
prototyping of clinical applications using itk. InPro-
ceedings of RSNA2005, Chicago.

VisiQuest. Accomplish complex image and data analysis
tasks with an advanced, VisiQuest Visual Proramming
Guide,2006.

Young, M., Argiro, D., and Kubica, S. (1995). Cantata: vi-
sual programming environment for the khoros system.
SIGGRAPH Computer Graphics, 29(2):22–24.

ITKBOARD: A VISUAL DATAFLOW LANGUAGE FOR BIOMEDICAL IMAGE PROCESSING

21


