
AUTOMATIC TEST MANAGEMENT OF SAFETY-CRITICAL
SYSTEMS: THE COMMON CORE

Behavioural Emulation of Hard-soft Components

Antonio Grillo, Giovanni Cantone
Dipartimento di Informatica Sistemi e Produzione, Università degli Studi di Roma “Tor Vergata”

Via del Politecnico, 1, 00133 Roma, Italy

Christian Di Biagio, Guido Pennella
MBDA-Italy SpA, Via Tiburtina, Roma, Italy

Keywords: Distributed systems, Model-based testing, Automatic test management technology.

Abstract: In order to solve problems that the usage a human-managed test process caused, the reference company for
this paper - Italian branch of a multinational organization which works in the domain of large safety-critical
systems - evaluated the opportunity, as offered by major technology that the market provides, of using
automatic test management. That technology resulted not sufficiently featured for the company’s quality
and productivity improvement goals, and we were charged for investigating in deep and eventually
satisfying the company’s test-management needs of automation. Once we had transformed those goals in
technical requirements and evaluated that it was possible to realize them conveniently in a software system,
we passed to analyze, construct, and eventually evaluate in field the “Automatic Test Management” system,
ATM. This paper is concerned with the ATM subsystem’s Common Core, CC. This allows the behavioral
emulation of hard-soft components - as part of a distributed real components scenario placed under one or
more Unix standard operative systems - once we describe those behaviors by using the Unified Modeling
Language. This paper reports on the ATM-CC’s distinctive characteristics and architecture overview.
Results from a case study show that, in order to enact a given suite of tests by the ATM-CC, the amount of
time required is more or less the same for the first test run, but it becomes around ten times less for the
following test runs, than the time required for managing the execution of those tests by hand.

1 INTRODUCTION

The development of safety critical software in an
industrial environment cannot be apart from the
execution of a careful testing activity. Before
designing a safety-critical real-time distributed
system, a specification of the required behavior of
the whole system should be produced and reviewed
by domain experts.

Additionally, when a test-driven software
process model is assumed, the well-timed planning
and early execution of validation and verification
activities assure a key guidance for the overall
software development process, the initial phases
included (Horgan, 1994).

The goal of the present paper is concerned with:
(i) Expressing the reference company needs of

testing safety-critical distributed systems in terms of
expected behavior (sequence of actions) in response
to a specific stimulus (sequence of inputs); (ii)
Developing an engine subsystem that meets those
needs; (iii) Characterizing that engine, and accepting
it in field by a case study.

In the remaining of the paper, Section 2 sketches
on the Model-Based Testing (MBT). Section 3
transforms the reference organization’s needs and
goals in required features for a testing-support
system. Section 4 presents the philosophy,
architecture, and functionalities of the Automatic
Test Management – Common Core (ATM-CC), our
prototype system, which is based on those features,
and is the focus of this paper. Section 5 shows the
results from a case study, which compares the use of
ATM-CC with the usual manner of enacting
software test at our reference company. Section 6

150
Grillo A., Cantone G., Di Biagio C. and Pennella G. (2007).
AUTOMATIC TEST MANAGEMENT OF SAFETY-CRITICAL SYSTEMS: THE COMMON CORE - Behavioural Emulation of Hard-soft Components.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 150-155
DOI: 10.5220/0001338701500155
Copyright c© SciTePress

presents some conclusions, and points to the future
work.

2 MODEL-BASED TESTING

The goal of testing is detection of failures, i.e.
observable differences between the behaviors of an
implementation and what is expected on the basis of
the related requirements specification.

Model-Based Testing (Apfelbaum, 1997), MBT,
is a testing approach that relies on explicit behavior
models, which encode the intended behavior of a
system and possibly the behavior of its environment
(Utting, 2007). In the MBT approach, based on
software requirements, it is possible to derive a test
data model, which is made by test tuples, i.e. pairs of
“input” and “output”. The input elements are
interpreted as test cases for the implementation; the
output elements are the expected output of the
system under test (SUT) (Vienneau, 2003).

Our reference organization works in the safety-
critical domain; hence, some kinds of structural
testing have to be applied to products. Because these
are conformant to standard component-based
message-passing only domain architecture, it is
possible to map MBT test cases, as derived from the
system requirements, into test cases concerning the
behaviors of the architectural components, i.e.
related interactions. The application of model based
testing ensures great benefits when the target system
is a complex system (sometimes called with Flow
Testing) (Dalal, 1999).

Let us consider now two types of state-of-the-art
methods and technologies that may be useful in
improving the effectiveness of MBT.
• Formal requirements specification–based

methods and technologies: in this case, testing
experts are requested to provide a formal
specification of some sort of the requirements,
e.g. as simple as a text file, to an MBT
technology. This automatically generates suites
of test cases, i.e. behavioral models of the
application system, and eventually executes
those tests. Hence, test-engineering are involved,
who are able to translate the complexity of the
application system into a text.

• CASE-based methods and technologies: in this
case, testing people are requested to provide a
formal representation of test cases. Formalisms
for such a representation include: Software Cost
Reduction (Hager, 1989), Unified Modeling
Language, UML (Booch, 2000), Specification
and Description Language (SDL, 2007), Entity-
Relationship Diagrams (Bagui, 2003), Extended
Modeling Language, XML (Harold, 2004). The

successful usages of these formalisms are
reported by the staffs of significant projects
(SPEC, 2007), (ConformiQ, 2007), (SAMSTAG,
2007), (Telelogic, 2007), (ASML, 2007). Let us
also note that it is different from those named
above, the formalism that some other projects
utilized, respectively (DTT, 2007), (GOTCHA,
2007), (MulSaw, 2007), (Boyapaty, 2002).

Many of the available CASE tools require a

supplementary activity for writing the test model.
Additionally, few of those tools base themselves on
UML (Offut, 1999), and, in case, often they rely on
a type of diagram for describing a test models,
which belongs to the UML static view: the
Statechart Diagram.

In the remaining of this paper we present a new
model that relate to the CASE-based method.

3 TEST-FEATURES

Based on the expected use cases and the resulting
requirements, a list of test-features follows, which
tries to characterize a MBT subsystem, and is able to
satisfy the needs that our reference organization
expressed: (1)Emulation of the behavior for one or
more hard-software components, as part of a
dynamic scenario. (2)Definition of a basic pattern
for the description of a component to emulate.
(3)Simple definition, for each emulated component,
of its “behavioral chains” (see Section 4.3 for
details). (4)Parallel processing of the emulated
components’ behavioral chains. (5)Sequential
processing of each behavioral chain. (6)Support of
the conversion to a common exchange language of
the languages that the real components utilize for
communicating with their own external world.
(7)Support of the reuse of previous configuration
files in the definition of a new test scenario.
(8)Support for not intrusive recording of meaningful
activities, as carried out during a test. (9)Support for
not intrusive recording of the traffic through
input/output communication links. (10)Creation of
an interface and related protocol for the remote test
execution. (11)Support for communication between
participants to a test scenario upon UDP-IP or TCP-
IP logic links. (12)Support for repetition of single
test cases or set of them (test suites) in order to
confirm previous test results, e.g. following
hard/software changes, or product acceptance tests
to run at any deployment site.

AUTOMATIC TEST MANAGEMENT OF SAFETY-CRITICAL SYSTEMS: THE COMMON CORE - Behavioural
Emulation of Hard-soft Components

151

4 ATM-COMMON CORE

ATM-CC is a complex testing subsystem that deals
with emulating the behavior of a component, as part
of a dynamic scenario.

ATM-CC and ATM-Console compose the ATM
system. The latter subsystem is in the responsibility
of validating each executed test, and works on test
data that the ATM-CC collects from the
communication lines and records into repository.
The ATM-Console is object of another study (Accili
et al., 2007) and is not further considered in the
present paper.

It is a distinctive feature of the ATM-CC MBT
subsystem, the usage, as test model, of a kind of
diagram that should belong to the software
documentation of each component: the UML
Activity Diagram. The lifecycle of an ATM-CC is
composed by the sequence of three states:
• Configuration: the Common Core loads the

set of specific directives that concerns the real
components to test, their communication lines,
and characteristics of the messages exchanged.

• Test: the Common-Core carries out all the
activities needed to emulate the behavior, as
expected by each emulated component, in the
scenario that a set of loadable configuration
files describes.

• Store: the Common-Core manages the
recording of simulation data in a persistent
repository.

This is to allow the reuse of specific test cases or test
suites at a later time for testing one more versions of
the same system, deployments, or other target
system. These data are also utilized for test
validation (Accili et al., 2007).

4.1 Architecture

The ATM-Common Core is build-up by five macro-
units (see Figure 1):
• Core Unit: represents the core of the

subsystem; it is in the responsibility of
processing the behavioral chains, which
describe the behaviors that each emulated
component performs in the test scenario.

• Configuration Unit: for each component to
emulate this unit loads a specific configuration;
in case, it detects lacks of consistency.

• Recorder Unit: records test data; it also
records and manages test related data, allowing
the reuse of test scenarios.

• Communication Unit: is in the responsibility
of enabling and managing communication
between any emulated component and other
components that participate in the test scenario.

• Console Interface Unit: exports services for
the remote control and validation of a test
scenario. Services exported are divided into
two categories:
 Input Services: they allow to load a custom

configuration for the test scenario
execution;

 Output Services: they allow the exporting
of data useful for test scenario monitoring
and validation.

Figure 1: The ATM-Common Core subsystem, and its
architecture and position in ATM-System.

4.2 Description of Hard-Soft
Components for Emulation

It is a novel key feature of the ATM-CC, a new
pattern that we defined for describing hard-software
components for their emulation. This pattern is made
up by three points of view:
• Behavioral perspective: wraps all the

behavioral chains; this perspective concerns the
response of an emulated component to specific
sequences of inputs.

• Semantic perspective: wraps all the
communication languages that any emulated
component is able to use; this perspective
allows interaction between components that
takes place into a test scenario.

• Topological perspective: wraps all the
information assuring the correct localization of
an emulated component into a test scenario;
this perspective also includes the external
world’s knowledge, as owned by each
emulated component.

4.3 Behavioral Perspective

The set of behavioral chains compose the behavioral
perspective. In order to ensure that, in the response
time available, the emulator carries out all the
responsibilities that any emulated component owns,
the emulator has to execute concurrently those
chains, while emulating the component behavior.

ICSOFT 2007 - International Conference on Software and Data Technologies

152

An UML Activity Diagram (Booch, 2000)
represents the behavioral perspective in the
subsystem ATM-CC. Figure 2 shows two very
simple behavioral chains, which are composed of
one node each. Figure 2, left side shows the relevant
elements of a behavioral chain, as it would appear
by using the generic version of UML 1.5. Figure 2,
right side shows the semantic specialization of those
generic elements to the ATM-CC context.

Figure 2: Behavioral Abstraction, a simple example.

The UML1.5’s Swimlane is used to translate an
ATM-CC behavioral chain (or “tasklist”) into UML.
Each chain can be thought as a list of one or more
ATM-CC “nodes” to be processed in a sequential
flow. A node is represented by its “firing conditions”
and “actions”. The UML 1.5’s Action State is used
to express a node.

A firing condition of a node can be viewed as a
clause that enables the node to process its actions
(i.e. Wait for something). Signal Receipt of the UML
Activity Diagram’s formalism is utilized to express
the semantics of an ATM-CC firing condition.

An action can be viewed as a capability to
determine observable effects, like sending messages
to components, tracing a message, starting/stopping
a tasklist, jumping to a node (i.e. Do something). In
the Activity Diagram’s formalism, the UML Signal
Sending is utilized to represent the semantics of an
ATM-CC action.

The ATM-CC semantics considers three kinds of
nodes (see Figure 3): And-node, Or-node, and Cond-
node, which differences are made up by the type of
relationship between the firing condition set and the
action set. The actions, as an “And-node” owns, are
executed when it is completely satisfied (join-bar)
the set of the node’s firing conditions; the actions, as
owned by an “Or-node”, are executed as soon as any
firing condition is satisfied for the node (fork bar).
The semantic hidden by a “Cond-node” is quite
different: there are subsets of firing conditions that
enable subsets of actions, respectively.

Figure 3: Kind of nodes in a behavioral abstraction.

4.4 Semantic Perspective

It composes the semantic perspective of any
emulated component, the set of the communication
languages that such a component is able to use.

A separate XML file provides the definition of
an allowed communication language. This is made
on a set of message patterns. Using an ad-hoc syntax
to fill in XML files allows specifying patterns of
messages. Such a message is structured as: f ie lds
(each typed), i tera t ions (a fixed sequence of fields,
which occurs one or more times in the message), and
var iants (a variable sequence fields, which occurs
one or more times in the message).

In order to execute a single test scenario, i.e. a
certain suite of test cases, it is possible to load
different communication languages from the XML
files, so allowing the emulated components to utilize
multiple communication languages.

4.5 Topological Perspective

The topological perspective is represented by a set
of XML files describing the context of the test’s
scenario, and the knowledge that each emulated
component owns. There are separate files for
instructing ATM-CC about (i) connections to set up,
(ii) messages to send on the logical lines, (iii) events
to recognize, (iv) traces to emit, (v) operator-
consents to explicitly ask for, and (vi) triggers to
activate.

The knowledge, as the end-users put into
configuration files, belongs to all the presented
perspectives. That knowledge is requested to be
correct, complete, and consistent. Correctness,
completeness, and consistency are tied by the
information’ syntax, the coverage of all the
necessary aspects and the check of information
reciprocally linked, respectively.

5 CASE-STUDY

Let us present now results from a case study that we
conducted in field to analyze the effectiveness and
the efficiency of the ATM-CC. Because they still
managed tests by hand, there is no technology
already in use at the reference organization that we
might compare with the ATM-CC subsystem.

And-Node Or-Node Cond-Node

AUTOMATIC TEST MANAGEMENT OF SAFETY-CRITICAL SYSTEMS: THE COMMON CORE - Behavioural
Emulation of Hard-soft Components

153

Consequently, in order to evaluate pros and cons
of ATM-CC, our choice was to adopt a very large
distributed safety critical application system,
previously developed and tested by hand at the
reference organization, as the case study object.

The aim of our case study was to compare
performances of hand-made and ATM-CC managed
-based tests for the second and successive test runs.
We did not consider the first test of the application
system because this workflow includes the
production of unique artifacts and the development
of specific activities that do not occur further and
which efforts are reused by all successive tests.

Let us show now what we made in our case
study: (1) interviewing the original testers to get
information about the process enacted to conduct
any test run except the first one for that system, and
collecting data concerning the cumulative time they
spent; (2) interviewing again the original testers to
get information about test cases they had been
running (Topological perspective); (3) choosing a
many use-case of the application system to utilize in
the case study; this use case models the system
bootstrap, and includes a sequence of interactions
between the end-user and the system through the
graphical user interface of the emulated component;
(4) obtaining the Sequence Diagrams-like
description for that use case, which is already
available at the company site (in fact, these diagrams
are artifacts that resulted from the first test run of the
application system, and its subsequent maintenance);
(5) transposing those Sequence Diagrams into the
XML Metadata Interchange (XMI) representation of
an Activity Diagram, and describing the related
instances of messages in XML notation (Behavioral
perspective); (6) using the original design
documentation of the case study system to obtain the
communication languages, as used by the system
components; (7) translating those languages to XML
notation by constructing and eventually using a
proper compiler (Semantic perspective); (8)
representing the emulate component in terms of
components’ 3-views; (9) configuring the ATM-CC,
based on the given XML and XMI files; (10)
running automatic managed test of the application,
and measuring time spent by the operator to execute
the test (Automatic-Test); (11)comparing the testing
times as collected in the first and last points above.

Concerning the hand-made, the testing duration
time (tdt) of the case study’s use case (i.e. tdtHAND)
amounted to fifty minutes, while the time needed to
execute the automatically the test for same use case
(i.e. tdtATM-CC) amounts to five minutes.

Expression 1: Ratio between test times without and with
ATM-CC usage.

In order to understand the result that Expression

1 shows, in the remaining we reason on the factors
that affect test management. In particular, we focus
our reasoning on the impact that those factors have
on the duration time of a test session.

The set of factors – both objective, i.e. related to
the object to test, and subjective, i.e. related to the
experience of who performs the test – which mainly
affects the overall testing time it’s quite larger,
including: Inexperience of the tester (I), Number of
Requisites that a test case (i) does cover (NRi),
Number of Test cases (NT), and the kind (j) of each
requisite, which the current test case impacts on
(Kij).

Let the Complexity index (C) of a test be a
weighted average on those factors:

Expression 2: Complexity index of test.

Let us denote with td t(C) a function to convert
the Complexity index, as shown by Expression 2,
into the duration time needed to enact the
corresponding test session. We are still conducting
empirical investigations about values to assign to
C’s weights for hand-made and automatic tests,
respectively. Additionally, we are still not ready to
make proposals about the forms that the function
td t(C) could assume in those cases. However, it is
our conjecture that both the following items depend
on the level of automation that we are able to
provide in support of testing conduction: (i) the C’s
weights, and (ii) the forms of td t(C) .

Concerning the former, some of the C’s weights
tend to zero when ATM-CC is used to support test,
including wKij; indeed, once that the ATM-CC has
been configured for a test suite and launched, it is a
machine rather than a human in control of the test
run; consequently, the test execution tends to
become independent from the human reaction time.

Concerning the td t(C) forms , the test duration
time depends more than linearly, possibly
exponentially, on the complexity index, in our
expectation: when the test complexity grows, e.g. by
factor of two, the automaton just will have to work
two times as before, because of the growth of
objective factors, while the human effort would
grow more than two times, because of the additional
effect caused by the greater influence both of
human-related factors, like the number, and the
relatively less experience, of the involved people.

In conclusion, concerning td t(C) , our
expectation is that both tdtA T M - C C(C) and
td tH A N D(C) grow with C, but the former grows

ICSOFT 2007 - International Conference on Software and Data Technologies

154

light linearly, while the latter tends to grow
exponentially. Our case study considered an
application that represents the reference company’s
typical products, which means that ATM-CC is
expected to satisfy systematically the reference
organization’s testing needs. However, based on the
considerations above, moving our testing support
system to other organizations should be carefully
evaluated: in fact, there are software products of
many kinds, for which hand-made test management
should still be more convenient than introducing
ATM-CC-like automatisms.

6 CONCLUSIONS AND FUTURE
WORK

This paper first presented the philosophy,
architecture, and features of a subsystem, ATM-CC,
for providing automatic support to test management
of safety-critical systems, and then briefed on the
productivity of ATM-CC in comparison with the
productivity shown by the hand-made approach, as
still adopted at the reference organization for this
study. Thanks to ATM-CC, test management at the
reference organization promises to be no further a
time and resource consuming heavy activity.
Moreover, the adoption of ATM-CC allows reducing
the rate of those many errors, which the involvement
of human testers usually provokes. Furthermore,
ATM-CC showed to be specially indicated for
testing real-time interactive scenarios, where the
target system strongly interacts with one or more
human operators by complex graphical interfaces.

Future works will address: (i) emulation of
multiple components by the execution of a single
ATM-CC instance; (ii) extension of the formalism
for describing component behavior; (iii) introduction
of capabilities for forking and joining the
components’ behavioral chains.

REFERENCES

Accili, V., Di-Biagio, C., Pennella, G., Cantone, G., 2007.
Automatic Test Manager: Console. Submitted for
acceptance to Int. Conference.

Apfelbaum, L., and Doyle, J., 1997. Model-Based Testing.
In Software Quality Week Conference.

Bagui, S., Earp, R., 2004. Database Design using Entity
Relationship Diagram. Auerbach.

Booch, G., Rumbaugh, J., Jacobson, I., 2000. Unified
Modeling Language User Guide. Addison-Wesley, 2nd
Edition.

Boyapati, C., Khurshid, S., Marinov, D., 2002.
Korat: Automated testing based on Java predicates.
In International Symposium on Software Testing and
Analysis (ISSTA 2002), pp-123-133.

ConformiQ Software Ltd, 2007. ConformiQ Test
Generator. http://www.conformiq.com/, March.

Dalal, S. R., Jain, A., Karunanithi, N., Leaton, J. M., Lott,
C. M., Patton, G. C., Horowitz, B. M., 1999. Model-
Based Testing in Practice. In Proceedings of ICSE’99,
ACM Press.

Hager, J. A., 1989. Software Cost Reduction Methods in
Practice. In IEEE Press Vol. 15, Issue 12, pp. 1638 -
1644

Harold, E. R., Scott Means, W., 2004. XML in a Nutshell.
O’Reilly, 3rd Edition.

Horgan, J. R., London, S., Lyu, M. R., 1994. Achieving
Software Quality with Testing Coverage Measures. In
IEEE Computer. Vol.27, No. 9, pp. 60-69.

IBM Research Lab in Haifa, 2007. GOTCHA – TCBeans.
http://www.haifa.il.ibm.com/projects/verification/gtcb/
index.html.

Microsoft, 2007. Abstract State Machine Language
(ASML),http://research.microsoft.com/foundations/As
mL/.

MIT, 2007. MulSaw Project on Software Reliability.
http://mulsaw.lcs.mit.edu/.

Offutt, A. J., 2007. Software Acquisition Gold Practice:
Model Based testing.
http://www.goldpractices.com/practices/mbt/index.php

Offutt, A. J., Abdurazik, A., 1999. Generating Tests from
UML Specifications. In Second International
Conference on the Unified Modeling Language.

SDL Forum Society, 2007. Introduction to SDL.
http://www.sdl-forum.org/.

Software Prototype Technologies 2007. Direct To Test
(DTT). http://www.softprot.com/ (now
http://www.critical-logic.com/).

Telelogic, 2007. Telelogic Tau TTCN Suite.
http://www.telelogic.com/.

University of Fribourg, 2007. SDL And MSC based Test
case Generation (SAMSTAG).
http://www.iam.unibe.ch/publikationen/techreports/19
94/iam-94-005.

Utting, M., Legeard, B., 2007. Practical Model-Based
Testing: A Tools Approach. Morgan-Kaufmann.

Utting, M., Pretschner, A., Legeard, B., 2006. A
Taxonomy of Model-Based Testing, DCS, University
of Waitako, Hailton, New Zeland, Working paper:
04/2006.

Vienneau, R. L., 2003. An Overview of Model-Based
Testing for Software. Data and Analysis Center for
Software, CR/TA 12.

AUTOMATIC TEST MANAGEMENT OF SAFETY-CRITICAL SYSTEMS: THE COMMON CORE - Behavioural
Emulation of Hard-soft Components

155

