
MULTI-CRITERION GENETIC PROGRAMMING WITH 
NEGATIVE SELECTION FOR FINDING PARETO SOLUTIONS 

Jerzy Marian Balicki 
Naval University of Gdynia, Smidowicza Street, Gdynia, Poland 

Keywords: Genetic programming, multi-criterion optimization, distributed systems.  

Abstract: Multi-criterion genetic programming (MGP) is a relatively new approach for a decision making aid and it 
can be applied to determine the Pareto solutions. This purpose can be obtained by formulation of a multi-
criterion optimization problem that can be solved by genetic programming. An improved negative selection 
procedure to handle constraints in the MGP has been proposed. In the test instance, both a workload of 
a bottleneck computer and the cost of system are minimized; in contrast, a reliability of the distributed 
system is maximized. 

1 INTRODUCTION 

Genetic programming is a software technique for 
getting computers to automatically solve a problem 
(Koza, 1992). This approach starts from a high-level 
statement of what needs to be done and 
automatically creates a computer program. One of 
the essential challenges of computer science is to get 
a computer to solve a difficulty without explicitly 
programming it to do so. Paraphrasing Arthur 
Samuel – founder of the field of machine learning – 
this challenge is “How can computers be made to do 
what needs to be done, without being told exactly 
how to do it?” (Samuel, 1960).  

Genetic programming uses the Darwinian 
principle of natural selection along with models of 
crossover, mutation, and mechanisms of biology to 
obtain a population of programs. Genetic 
programming has been successfully applied to 
a wide variety of problems from numerous different 
fields (Koza et al., 2004). 

Multi-criterion genetic programming (MGP) is 
a relatively new approach for a decision making aid 
and it can be applied to determine the Pareto 
solutions (Balicki, 2006). This purpose can be 
obtained by formulation a multi objective 
optimization problem that can be solved by adjusted 
genetic programming. 

In this paper, genetic programming paradigm is 
implemented as a genetic algorithm written in the 
Matlab language. Chromosomes are generated as the 
functions, and then genetic operators are applied for 

finding functions that produce Pareto-suboptimal 
solutions.  

2 GENETIC PROGRAMMING 

Genetic programming is an appealing paradigm of 
an artificial intelligence (Koza et al., 2004). 
Solutions to several problems have been found for 
instances from different areas like optimal control, 
planning and sequence induction. Genetic 
programming permits finding solutions to symbolic 
regression, automatic programming or discovering 
a game playing strategy.  

Furthermore, problems related to empirical 
discovering and forecasting, symbolic integration or 
differentiation, discovering mathematical identities 
or classification and decision tree induction can be 
solved by this approach. Evolution of emergent 
behaviour and also automatic programming of 
cellular automata are on the list of problems that 
have been solved successfully.  

Figure 1 shows an example of a tree of the 
computer program performance. This tree 
corresponds to the program written in the LISP 
language, as follows: 

 

(GT (* -1.5 x) (LOG y (SQRT  y))) 
 

Above program calculates both the value –1.5x 
and log( yy ), and then compares –1.5x to 
log( yy ). If  –1.5x is greater than log( yy ), then 
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an outcome of the GT function is equal to 1. 
However, in the other case, the result is –1.  
 

 
Figure 1: Tree as a model of the computer program. 

This tree is equivalent to the parse tree that most 
compilers construct internally to represent the given 
computer program. If a computer program was 
represented by any algorithm form, genetic operators 
like reproduction, crossover or mutation would be 
complicated to implement.   

A parse tree (a concrete syntax tree) is a tree that 
represents the syntactic structure of a string 
according to some formal grammar. A program that 
produces such trees is called a parser. Parse trees 
may be generated for sentences in natural languages, 
as well as during processing of computer languages, 
such as programming languages. 

A parse tree is made up of nodes and branches. 
In a parse tree, each node is either a root node, 
a branch node, or a leaf node.  

Nodes can also be referred to as parent nodes 
and child nodes. A parent node is one which has at 
least one other node linked by a branch under it. 
A child node is one which has at least one node 
directly above it to which it is linked by a branch of 
the tree. 

Despite the data structure representing 
chromosomes in an evolution strategy or an 
evolutionary algorithm, a chromosome for genetic 
programming is the tree of a computer program. 
Even the simplest procedure differs from a complex 
data structure, significantly. The procedure can 
calculate what gives ability to represent not only 
knowledge about a problem, but also it gives 
possibility to draw conclusions. Moreover, it may 
process data in the way difficult to discover. That is, 
a computer program may model a solution to the 
problem as an intelligent procedure.  

Generation of the tree is an important step for 
finding solutions. The size of the generated tree is 
limited by the number of nodes or by the number of 
the tree levels. Nodes in the tree are divided on 
functional nodes and terminal ones. A functional 
node represents the procedure randomly chosen 
from the primary defined set of functions: 

  GT 

 { }Nn fff ,...,,...,1=F  (1) 

Each function should be able to accept, as its 
arguments, any value and data type that may 
possible be returned by the other procedure (Koza, 
1992). Because a procedure is randomly chosen 
from the set, and then it is returned, each function 
should be able to accept, as its arguments, any value 
and data type that may possible be returned by itself. 
Moreover, each procedure should be able to accept 
any value and data type that may possible be 
assumed by any terminal in the terminal set:  

{ }Mm aaa ,...,,...,1=T  (2) 

An above quality of procedure is called a closure 
condition because each function should be well 
defined and closed for any arrangement of 
arguments that it may come across.  

Another quality, called the sufficiency condition, 
requires that the solution to the problem should be 
expressed by the combination of the procedures 
from the set of functions and the arguments from the 
set of terminals. For example, the set of functions 

{ }NOTORAND ,,=F  is sufficient to express any 
Boolean function. If the logical operator AND is 
removed from this set, the remaining procedure set 
is still satisfactory for realizing any Boolean 
function. A sufficient set is { } as well.  NOTAND ,

Let the following set of procedures be 
considered for the problem of finding trajectory for 
the underwater vehicle (Balicki, 2006): 

{ }/,-,*,,+= ENDE,MOVE,IF_IF_OBSTACLF  (3) 

The procedure IF_OBSTACLE takes two 
arguments. If the obstacle is recognized ahead the 
underwater vehicle, the first argument is performed. 
In the other case, the second argument is executed. 
The function MOVE requires three arguments. It 
causes the movement along the given direction with 
the velocity equals the first argument during 
assumed time Δt. The time Δt is the value that is 
equal to the division a limited time by Mmax.  

The direction of the movement is changed 
according to the second and third arguments. The 
second argument is the angle of changing this 
direction up if it is positive or down if it is negative. 
Similarly, the third argument represents an angle of 

  SQRT 

   *   LOG 

  y

  x   -1.3   y 
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changing the direction to the left if it is positive or  
to the right if it is negative.  

The last procedure IF_END ends the trajectory 
of the underwater vehicle if it is in the destination 
region or the expedition is continued if it is not 
there. The set of arguments consists of the real 
numbers generated from the interval (-1; 1).  

A multi-criterion genetic algorithm has been 
applied for operating on the population of the 
computer procedures written in the Matlab language. 
Numerical experiments confirm that feasible, sub-
optimal in Pareto sense, trajectories can be found by 
genetic programming. Although, the quality of 
obtained trajectories was a little lower than the 
trajectories determined by an evolutionary algorithm 
(Balicki, 2005), a paradigm of genetic programming 
gives opportunity to solve that control problems for 
changing environment. 

3 NEGATIVE SELECTION 
ALGORITHM 

Multicriterion genetic programming is based on 
using a genetic algorithm and to some extend it 
inherits some disadvantiges of that approach. One of 
them is the weak efficiency for finding the 
admissinle solutions in optimization problems. To 
improve this calculation situation, we propse the 
development of the negative selection algorithm 
from an immune systems. 

The immune system can be seen as a distributed 
adaptive system that is capable for learning, using 
memory, and associative retrieval of information in 
recognition (Jerne, 1984). Many local interactions 
provide, in consequence, fault tolerance, dynamism 
and adaptability.  

The negative selection algorithm (NSA) for 
detection of changes has been developed (Forest and 
Perelson, 1991). This algorithm is based on the 
discrimination principle that is used to know what is 
a part of the immune system is.  

Detectors are randomly generated to reduce 
those detectors that are not capable of recognising 
themselves. Subsequently, detectors proficient to 
distinguish trespassers are kept. An adjusted 
detection is performed probabilistically by the NSA 
(Benaschi et al., 1999).  

An antigen is a molecule that stimulates 
a response against trespassers. The term originated 
from the notion that they can stimulate antibody 
generation. Moreover, the immune system consists 
of some viruses as well as bacteria (Kim and 
Bentley, 2002). 

An antibody (an immunoglobulin) is a large 
Y- shaped protein used to identify and neutralize 

foreign objects like bacteria and viruses. The 
antibody recognizes a specific target - an antigen. 

The negative selection can be used to manage 
constraints in an evolutionary algorithm by isolating 
the contemporary population in two groups 
(Wierzchon, 2005). Feasible solutions called 
“antigens” create the first cluster, and the second 
cluster of individuals consists of “antibodies” – 
infeasible solutions. For that reason, the NSA is 
applied to generate a set of detectors that verify the 
state of constraints.  

We assume the initial fitness for antibodies is 
equal to zero. Then, a randomly chosen antigen G ¯ 
is compared to the selected antibodies. After that, 
the distance S between G ¯ and the antibody B ¯ is 
calculated due to the amount of similarity at the 
genotype level. The measure of genotype similarity 
between the antigen and the antibody depends on 
their representation. This assessment of similarity 
for the integer version is, as follows (Balicki, 2005): 
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The negative selection can be implemented by 
a modified genetic algorithm. In that approach, 
infeasible solutions that are similar to feasible ones 
are preferred in the current population. Although, 
almost all the random choices are based on the 
uniform distribution, the pressure is directed to 
improve the fitness of appropriate infeasible 
solutions. 

4 RANKING PROCEDURE FOR 
NSA 

The situation that the fitness of the winner is 
increased by adding the magnitude of the similarity 
measure may pass over a non-feasible solution with 
the relatively small value of this assessment (1). 
Nevertheless, some constraints may be satisfied by 
this alternative.  

What is more, if a constraint is exceeded and the 
others are not, the value of a similarity measure may 
be lower for some cases. The first of two similar 
solutions, in genotype sense, may not satisfy this 
constraint and the second one may satisfy it.  

To avoid this limitation of the NSA, some 
distance measures can be applied from the state of 
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an antibody to the state of the selected antigen, 
according to the constraints.  

Equalities and inequalities that are of interest to 
us are, as follows: 

,,1,0)( Kkxgk =≤  (5)

.,1,0)( Llxhl ==  (6)

The distance measures from the state of an 
antibody B ¯ to the state of the selected antigen G ¯ 
are defined, as below: 
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The distance fn(B ¯,G ¯) is supposed to be 
minimized for all the constraint numbers n. If the 
antibody B ¯ is marked by the smaller assessment 
fn(B ¯,G ¯) to the antigen than the antibody C ¯, then 
B ¯ ought to be preferred to C ¯ due to the 
improvement of the nth constraint. Moreover, if the 
antibody B ¯ is characterized by all shorter distances 
to the antigen than the antibody C ¯, then B ¯ should 
be preferred for all constraints.  

However, some situations may occur when B ¯ is 
characterized by the shorter distances for some 
constraints and the antibody C ¯ is marked by the 
shorter distances for the others. In this case, it is 
difficult to select an antibody. We suggest 
introducing a ranking procedure to calculate fitness 
of antibodies and then to select the winner.  

In the improved negative selection algorithm 
with ranking procedure denoted as NSA*, distances 
between the chosen antigen and some antibodies are 
calculated. Afterwards, the nondominated antibodies 
are determined according to their distances (7) to the 
antigen, and then, they get the rank equal to 1. Next, 
they are temporary eliminated from the subset of 
antibodies. Subsequently, the new nondominated 
antibodies are determined from the reduced subset 
and they get the rank equal to 2. In this procedure, 
that level is increased and it is repeated until the 
subset of antibodies is exhausted. All the non-
dominated antibodies have the same fitness because 
of the equivalent rank. The last market antibody gets 
the rank equal to rmax . 

If B ¯ is characterized by the rank r(B ¯), then 
1 ≤ r(B ¯) ≤ rmax  and the increment of the fitness 
function value is estimated, as below: 

.1)()( max +−=Δ −− BrrBf  (8)

Afterwards, the fitness values of all selected 
antibodies are increased by adding their assigned 
increments. The antibodies are returned to the 
current population and this process is repeated 

typically three times the number of antibodies. Each 
time, a randomly chosen antigen is compared to the 
same subset of antibodies.  

Afterwards, a new population is constructed by 
reproduction, crossover and mutation without 
calculations of fitness. That process is repeated until 
a convergence of population emerges or until 
a maximal number of iterations is exceeded. At the 
end, the final population as outcomes from the 
negative selection algorithm is returned to the 
external evolutionary algorithm.  

5 OPTIMIZATION OF 
DISTRIBUTED SYSTEM 

To test the ability of the MGP with NSA* for 
handling constraints, we consider a multi-criterion 
optimisation problem for task assignment in 
a distributed computer system (Balicki, 2005).   

Finding allocations of program modules may 
decrease the total time of a program execution by 
taking a benefit of the particular properties of some 
workstations or an advantage of the computer load. 
An adaptive evolutionary algorithm has been 
considered for solving multi-objective optimisation 
problems related to task assignment that minimize 
Zmax – a workload of a bottleneck computer and C – 
the cost of machines. The total numerical 
performance of workstations is another criterion for 
assessment the quality of a task assignment and it 
has been involved to multi-criterion problem. 
Moreover, a reliability R of the system is an 
additional criterion that is important to assess the 
quality of a task assignment.  

In the considered problem, both a workload of 
a bottleneck computer and the cost of machines are 
minimized; in contrast, a reliability of the system is 
maximized. In addition, constraints related to 
memory limits and computer locations are imposed 
on the feasible task assignment. A set of program 
modules {M1,...,Mm,...,MM

www

} communicated to each 
others is considered among the coherent computer 
network with computers located at the processing 
nodes from the set 1 IiW },...,,...,{= . A set of 
program modules is mapped into the set of parallel 
performing tasks {T1,...,Tv,...,TV}. Some task 
scheduling algorithms based on tabu search are 
proposed in (Weglarz et al., 2003). 

Let the task Tv be executed on some computers 
taken from the set of available computer sorts 

},...,,...,{ 1 Jj πππ=Π . The overhead performing 

time of the task Tv by the computer πj is represented 
by an item .  vjt
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Let jπ  be failed independently due to an 

exponential distribution with rate jλ . We do not 

take into account of repair and recovery times for 
failed computer in assessing the logical correctness 
of an allocation. Instead, we shall allocate tasks to 
computers on which failures are least likely to occur 
during the execution of tasks. Computers and tasks 
can be allocated to nodes in purpose to maximize the 
reliability function R defined, as below (Balicki, 
2005): 
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A computer with the heaviest task load is the 

bottleneck machine and its workload is a critical 
value that is supposed to be minimized. The 
workload Zmax(x) of the bottleneck computer for the 
allocation x is provided by the subsequent formula: 
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where vuikτ – the total communication time between 
the task Tv assigned to the  ith node and the Tu 
assigned to the kth node. 

Figure 2 shows the workload of the bottleneck 
computer in the distributed computer system for 
generated task assignments in a systematic way. The 
function Zmax takes value from the period [40; 110] 
for 256 solutions. What is more, even a small change 
in task assignment related to the movement of a task 
to another computer or a substitution of computer 
sort can cause a relatively big alteration of its 
workload. 

A computer is supposed to be equipped with 
necessary capacities of resources. Let the following 
memories z1,...,zr,...,zR be available in the distributed 
system and let djr be the capacity of memory zr in the 
workstation πj . We assume the task Tv reserves cvr 
units of memory zr and holds it during a program 
execution. The memory limit in a machine cannot be 
exceeded in the ith node, what is written, as bellows:  

.,1,,1,
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Measure of the task assignment is a cost of 
computers: 

π
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i
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where κj corresponds to the cost of the computer πj.  
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Figure 2: Workload of the bottleneck computer 
for generated solutions. 

6 ADAPTIVE EVOLUTIONARY 
ALGORITHM  

The total computer cost is in conflict with the 
numerical performance of a distributed system, 
because the cost of a computer usually depends on 
the quality of its components. The faster computer or 
the higher reliability of it is, the more expensive it is. 
Additionally, the workload of the bottleneck 
computer is in conflict with the cost of the system. 
Let (X, F, P) be the multi-criterion optimisation 
question for finding the representation of Pareto-
optimal solutions (Coello Coello et al., 2002). It is 
established, as follows:  

1) X - an admissible solution set 
|{ )( JVIx +∈= BX   

;,1,,1,
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where B = {0, 1} 

2) F - a quality vector criterion 

3   : RX →F  (13)

where 
R  – the set of real numbers, 
F(x) = [–R(x), Zmax(x), C(x)] T for x∈X, 

R(x), Zmax(x), F2(x) are calculated by (9), (10) 
and (12), respectively 

3) P - the Pareto relation (Deb, 2001). 

An analysis of the task assignments has been 
carried out for two genetic approaches (Zitzler et al., 
2000). The first one was an adaptive multi-criterion 
evolutionary algorithm with tabu mutation AMEA* 
(Balicki, 2005). Tabu search procedure was applied 
as an additional mutation operator to decrease the 
workload of the bottleneck computer. Moreover, we 
suggest introducing a negative selection algorithm 
with ranking procedure to improve the quality of 
obtained solutions.  

Better outcomes from the NSA* are transformed 
into improving of solution quality obtained by the 
adaptive multi-criterion evolutionary algorithm with 
tabu mutation AMEA*. This approach gave better 
results than the previous version of that algorithm 
named AMEA+. After 200 generations, an average 
level of Pareto set obtaining was 1.5% for the 
AMEA*, 1.9% for the AMEA+ (Figure 3). 

Fifty test preliminary populations were prepared, 
and each algorithm started from these solutions. For 
integer constrained coding of chromosomes there 
were 12 decision variables in the test optimisation 
problem. The binary search space consisted of 
1.0737x109 chromosomes and included 25 600 
admissible solutions. 

7 MULTI-CRITERION GENETIC 
PROGRAMMING  

Genetic programming paradigm can be implemented 
as a genetic algorithm written in the Matlab 
language. Chromosomes are generated as the Matlab 
functions and then genetic operators are applied for 
finding Pareto-suboptimal solutions. Results may be 
compared with outcomes obtained by AMEA*. 
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Figure 3: Outcome convergence for AMEAs. 

Figure 4 shows a scheme of the MGP that 
operates on the population of program functions. 
The preliminary population of programs is created in 
a specific manner (Fig. 4, line 3). Each generated 
program consists of set of procedures and set of 
attributes. Set of procedures is defined, as follows: 

{ }/,-,*,,+= listF  
(14)

where 

list – the procedure that convert I(V+J) input real 
numbers called activation levels on I(V+J) output 
binary numbers 

.  ππππ
IJijJ

m
VI

m
vi

m
I

m xxxxxxxx ,...,,...,,...,,,...,,...,,..., 111111

The procedure list is obligatory the root of the 
program tree and appears only one in a generated 
program. In that way, the formal constraint 

Mmxm ,1, =∈B  is satisfied. An activation level 
is supplied to a root from the sub-tree that is 
randomly generated with using arithmetic operators 
{+, -, *, /} and the set of terminals.  

Let  be the set of numbers that consists of 
the given data for the instance. A terminal set is 
determined for the problem, as below:   

D

,LDT ∪=  (15)

where  – set of n random numbers,L .D=n  
If x calculated by the program is admissible, then 

the fitness function value (Fig. 4, line 4) is 
estimated, as below: 

,1)()( maxmax ++−= Pxrrxf  (16)
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Figure 4: Multi-criterion genetic programming MGP*. 

Another ranking procedure assigns each 
individual a rank based on the number of other 
individuals by which it is dominated (Fonseca and 
Fleming, 1995). A niching procedure modifies it. 
The surface region of the Pareto front is divided by 
the size of the population. The number of other 
member’s falling within the sub-area of any 
individual is taken to establish the penalty for it. 

In the two-weight tournament selection (Fig. 4, 
line 12), the roulette rule is carried out twice. If two 
potential parents (a, b) are admissible, then 
a dominated one is eliminated. If two solutions non-
dominate each other, then they are accepted. If 
potential parents (a, b) are non-admissible, then an 
alternative with the smaller penalty is selected. 

The fitness sharing technique can be substituted 
by the adaptive changing of main parameters. The 
quality of attained solutions increases in 
optimisation problems with one criterion, if the 
crossover probability and the mutation rate are 
changed in an adaptive way (Sheble and Britting, 
1995). The crossover point is randomly chosen for 
the chromosome X in the S-crossover operator (Fig. 
4, line 13). The crossover probability is 1 at the 

initial population and each pair of potential parents 
is obligatory taken for the crossover procedure. 

A crossover operation supports the finding of 
a high-quality solution area in the search space. It is 
important in the early search stage. If the number of 
generation t increases, the crossover probability 
decreases according to the formula   .max/Tt

c ep −=

1. BEGIN 
2. t:=0, set the even size of population L, pm:=1/(ML) 
3. generate initial population of programs P(t) 
4. run programs, calculate ranks r(x) and fitness 

 )(),( txxf P∈ The search region or some search areas are 
identified after several crossover operations on 
parent pairs. That is why, value pc is smaller and it is 
equal to 0.6065, if t =100 for maximum number of 
population Tmax=200. The final smallest value pc is 
0.3679. A crossover probability decreases from 1 to 
exp(-1), exponentially. During S-crossover, a subtree 
with the randomly selected root from program a is 
exchanged with another subtree from tree b. 

5. finish:=FALSE 
6. WHILE NOT finish DO 
7.     BEGIN /* new population */ 
8.     t:= t+1,  ∅=:)(tP
9.     calculate selection probabilities ),(xps  )1( −∈ tPx  

10.   FOR L/2 DO 
11.   BEGIN /* reproduction cycle */ 
12.       2WT-selection of a potential parent pair (a,b) 

from the population P(t-1)  In S-mutation (Fig. 4, line 14), the random node 
is chosen, the related subtree is removed, and then 
a new subtree is generated. A mutation rate is 
constant in the MGP and it is equal to 1/M, where M 
represents the number of decision variables. 

13.        S-crossover of a parent pair (a,b) with the 

adaptive crossover rate pc,  max/: Tt
c ep −=

14.       S-mutation of an offspring pair (a',b') with the 
mutation rate pm 

15.       P(t):=P(t)∪(a',b'} 
16.    END 

8 NUMERICAL EXPERIMENTS 17.    calculate ranks r(x) and fitness  )(),( txxf P∈
18.    IF (P(t) converges OR t ≥ Tmax) THEN 

finish:=TRUE Better outcomes from the NSA* are transformed 
into improving of solution quality obtained by the 
MGP*. This approach gives similar results than the 
AMEA*. After 200 generations, an average level of 
Pareto set obtaining is 1.3% for the MGP*, 1.5% for 
the AMEA*. All points have been found by MGP* 
for that instance.  

19.    END 
20. END 

For the other instance with 15 tasks, 4 nodes, and 
5 computer sorts, there are 80 binary decision 
variables. An average level of convergence to the 
Pareto set is 17.7% for the MGP* and 17.4% for the 
AMEA*. A maximal level is 28.5% for the MGP* 
and 29.6% for the AMEA*. For this instance the 
average number of optimal solutions is 19.5% for 
the MGP* and 21.1% for the AMEA*. 

Figure 5 shows the process of finding efficient 
task assignment by MGP* for the cut obtained from 
the evaluation space according to the cost criterion C 
and the workload of the bottleneck computer Zmax. 
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Figure 5: Pareto front and results from GMP*. 

An average level of convergence to the Pareto 
set, an maximal level, and the average number of 
optimal solutions become worse, when the number 
of task, number of nodes, and number of computer 
types increase. An average level is 37.7% for the 
MGP* versus 35,7% for the AMEA*, if the instance 
includes 50 tasks, 4 nodes, 5 computer types and 
also 220 binary decision variables. 

9 CONCLUDING REMARKS 

Genetic programming is relatively new paradigm of 
artificial intelligence that can be used for finding 
Pareto-optimal solutions. A computer program as 
a chromosome is a subject of genetic operators such 
as recombination, crossover and mutation. It gives 
possibility to represent knowledge that is specific to 
the problem in more intelligent way than for the data 
structure. A genetic algorithm has been applied for 
operating on the population of the computer 
procedures written in the Matlab language. 

Initial numerical experiments confirm that 
feasible, sub-optimal in Pareto sense, task 
assignments can be found by genetic programming. 
That approach permits for obtaining comparable 
quality outcomes to advanced evolutionary 
algorithm. 

Our future works will focus on testing the other 
sets of procedures and terminals to find the Pareto-
optimal task assignments for different criteria and 
constraints.  
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