
A SPACE-EFFICIENT ALGORITHM FOR PAGING 
UNBALANCED BINARY TREES 

Rui A. E. Tavares and Elias P. Duarte Jr 
Federal University of Paraná, Dept. Informatics, P.O. Box 19018, Curitiba, PR, Brazil 

Keywords: Binary Trees, Paging, Bin Packing, Computational Biology. 

Abstract: This work presents a new approach for paging large unbalanced binary trees which frequently appear in 
computational biology. The proposed algorithm aims at reducing the number of pages accessed for 
searching, and at decreasing the amount of unused space in each page as well as reducing the total number 
of pages required to store a tree. The algorithm builds the best possible paging when it is possible and 
employs an efficient strategy based on bin packing for allocating trees that are not complete. The 
complexity of the algorithm is presented. Experimental results are reported and compared with other 
approaches, including balanced trees. The comparison shows that the proposed approach is the only one that 
presents an average number of page accesses for searching close to the optimal and, at the same time, the 
page filling percentage is also close to the optimal. 

1 INTRODUCTION 

Binary trees are data structures popular for allowing 
efficient data searching (Gonnet and Baeza-Yates, 
1991). A binary tree can get very large, and in this 
case it may be impossible to keep the whole tree in 
primary memory. A similar situation occurs when 
the tree is stored remotely and is accessed through a 
network. Many practical applications involve large 
unbalanced trees, particularly computational 
biology, in which trees are employed for string 
processing (Cohen, 2004). Such trees are 
constructed from biological sequences, which cannot 
be messed with, i.e. these trees cannot be balanced, 
so B-trees, for instance, cannot be employed 
(Pedersen, 2000). In such cases, it is necessary to 
define an efficient strategy to transfer the tree either 
from secondary memory or from the remote 
computer to primary memory where the search is 
executed. Instead of transferring one data item at a 
time, data collections called pages are usually 
employed to improve the transfer latency. 

As the time required to obtain a page is much 
larger than the time required to process that page 
once it is allocated in primary memory, the criteria 
for allocating data in pages are essential for the 
efficiency of executing search procedures. The 
smallest the number of pages transferred, the fastest 
the search procedure is executed. 

This work presents a new algorithm for paging 
binary trees. The algorithm aims at reducing the 
number of pages accessed for searching, and at the 
same time decreasing the amount of unused space in 
each page as well as reducing the total number of 
pages required to store a tree. In this way, the 
algorithm avoids wasting space to store a paged tree. 
The algorithm obtains the best possible tree paging, 
when it is possible, i.e. when the tree is complete 
and information is not only stored at the leaves. 
Figure 1 shows an example of the ideal paging for a 
tree with 63 nodes grouped in pages of 7 nodes. 
Besides that, an efficient strategy for allocating non-
complete trees based on bin packing (Garey and 
Johnson, 1979) is presented. 

 
Figure 1: The ideal tree paging. 

The algorithm starts at the root of the tree to be 
paged, allocating to the first page a subtree large 
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enough to completely fill the page. Next, every 
subtree that completely fills a page is allocated to a 
new page. The other subtrees that do not fill one 
page completely are collectively called the fringe of 
the tree. The algorithm allocates these subtrees in 
pages using bin packing. 

Packing, in this case, consists of the allocation of 
a set of subtrees into a set of pages each with a 
previously known amount of available space. The 
number of pages required is minimized with this 
strategy. Furthermore, each subtree is guaranteed to 
be allocated in only one page, in order not to 
increase the number of pages accessed for searching. 

An alternative data structure used to organized 
data in secondary memory is the B-tree (Gonnet and 
Baeza-Yates, 1991). We show through experimental 
results that our strategy is equivalent to B-trees in 
terms of the average number of pages accesses for 
searching. On the other hand our approach produces 
a page filling percentage by more than 30% in 
comparison with B-trees. Thus the total amount of 
space required to transfer a tree from a remote site is 
30% better when our approach is used, in 
comparison with B-trees. 

The rest of the paper is organized as follows. In 
section 2 we give preliminary definitions. In section 
3 the algorithm is described, its specification is 
given as well as the complexity analysis. Section 4, 
contains experimental results. Section 5 points to 
related work, and section 6 concludes the paper. 

2 PRELIMINARY DEFINITIONS 

Binary trees are defined recursively as follows 
(Gonnet and Baeza-Yates, 1991): 

i) A binary tree T0 of zero nodes is a binary tree. 
ii) A binary tree Tn of n > 1 nodes is a tuple (Tleft, 

R, Tright), where R is a single node called the root of 
Tn. Tleft and Tright are binary trees, respectively called 
left and right subtrees of the root. Considering that 
Tleft has left nodes and Tright has right nodes, then left 
>= 0, right >= 0 and left + right = n − 1. 

When it is not possible or desirable to keep the 
whole tree in main memory, the tree nodes are 
grouped in pages which are transferred to the main 
memory one at a time. Each page is formed by cells, 
each tree node is stored in a cell. As the time 
required to process a page is mainly the time 
required to transfer that page, the performance of 
tree manipulation algorithms is strictly related to the 
number of transferred pages. 

Consider a binary tree with n nodes. Consider 
that a page stores a maximum of p nodes. The 

allocation of nodes to pages must be done so that 
when a search algorithm or a tree traversal algorithm 
are executed, the number of accessed pages is as 
small as possible. 

This work introduces a new algorithm for paging 
binary trees. The algorithm initially allocates 
subtrees which completely fill a page. The 
remaining subtrees are collectively called the fringe 
of the tree. The algorithm employs bin packing to 
allocate the fringe to as small a number of pages as 
possible, also keeping each subtree in only one page. 

The bin packing problem is defined as follows. 
Given a constant C and a finite list of items L = p1, 
p2, ..., pn, where each item p, is associated to a w(pi) 
value satisfying 0 < w(pi) < C, find the smallest 
integer m such that L may be partitioned in m lists 
L1, L2, ...,Lm where each list Li, satisfies 

∑
∈

≤=
ij Lp

ji CpwLw )()( , i = 1,..,m. 

In other words, the bin packing problem is 
expected to partition of a list of items into sublists in 
order to minimize the number of partitions 
considering the capacity of each sublist. 

In this work bin packing is employed to allocate 
a set of subtrees to a set of pages. The algorithm 
determines both the sizes of the subtrees to be 
allocated, and the amount of space available in the 
pages. The subtrees, with sizes s1, s2, ..., sn must be 
allocated into C sized pages. By employing bin 
packing, the algorithm obtains an allocation that 
minimizes the number of pages required. 

As an example, consider figure 2; subtree s1 is 
formed by nodes 3, 5, 7 and 12; s2 is formed by 
nodes 36, 38 and 41; s3 is formed by nodes 46, 49, 
53 and 57; s4 is formed by node 73; s5 is formed by 
nodes 83, 85 and 87 and s6 is formed by nodes 93, 
95, 97 and 98. These subtrees must be allocated in 
the smallest possible number of pages. So the sizes 
of subtree’s are 4, 3, 4, 1, 3 and 4, respectively. 
Consider that the page size is 7. 

 
Figure 2: Bin packing: application example. 
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An optimal paging solution results in a high 
filling page percentage, allocating subtrees s1 and s2 
to page 1, subtrees s3 and s5 to page 2 and subtrees s4 
and s6 to page 3, as illustrated on figure 3. 
 

 
Figure 3: Paging by using bin packing. 

The bin packing problem is a NP-hard 
combinatorial optimization problem (Garey and 
Johnson, 1979). Among the feasible alternatives for 
bin packing implementation, several approximation 
algorithms based on heuristics have been proposed 
(Garey and Johnson, 1979). In those cases, there is 
no guarantee that the optimal solution will be 
obtained, but the execution time is polynomial. The 
implementation used to obtain the experimental 
results found in section 5 of this work is based on a 
greedy approximation algorithm, that searches the 
best allocation for each current page. 

3 PRELIMINARY DEFINITIONS 

This section presents the proposed algorithm for 
paging binary trees. The algorithm can be applied 
when the information set to be treated is static, the 
access frequencies are not known and the storage is 
remote or secondary. 

3.1 Overview of the Algorithm 

The proposed algorithm initially tries to group nodes 
in pages such that the nodes in one page are as close 
to each other as possible in the original tree. The 
algorithm reaches the ideal paging when the binary 
tree is complete and the number of nodes is a 
multiple of the page size. Furthermore, it establishes 
an efficient policy to page non-complete trees. 

Before describing the algorithm, it is necessary 
to give the definition of a patriarch. A patriarch is 
the root of a subtree that is the first node of that 
subtree to be allocated in a new page. As many 
descendants of the patriarch as possible will be 
allocated in that page. Consider that a page stores up 
to x levels or generations of a tree, where x is a 

positive integer, and the patriarch is at the first level. 
The algorithm stores in one page 2x − 1 nodes. 

The algorithm starts allocating the root of the 
tree as the patriarch of the first page. The 
descendants of the patriarch in the next x − 1 levels 
are then allocated to the same page. At this point, if 
unused space was left in this page, it is filled with 
subtrees of the subsequent levels. If the page is 
completely filled, a new patriarch is chosen for a 
new page, and the process is repeated. If the subtrees 
of the subsequent levels do not completely fill the 
unused space, they belong to the fringe of the tree. 
The algorithm later uses bin packing to allocate all 
fringe subtrees. 

3.2 Algorithm Specification 

The proposed algorithm uses two data structures 
called SQ (Stack-Queue) and FL (Fringe List). FL is 
a linear list (Gonnet and Baeza-Yates, 1991) that 
keeps the roots of the subtrees that belong to fringe. 

SQ is a linear list SQ = (a1, a2, ..., an) in which 
insertions and removals are possible at one end, 
called either rear or top, while at the other end, 
called front, only removals can be executed. The 
operations defined for SQ are the following: 
create(SQ), initializes SQ as an empty data structure; 
enqueue(x, SQ), inserts an element x at the rear of 
SQ, returning the resulting structure; dequeue(SQ), 
removes the element at the front end of SQ, 
returning the element and the resulting structure; 
pop(SQ), removes an element from the top of SQ, 
returning the element and the resulting structure; 
empty(SQ), returns true when SQ is empty and false 
otherwise. 

The algorithm is now described in terms of these 
data structures. Initially, the root of the tree is 
enqueued in SQ. The patriarch of a new page is 
dequeued from SQ. The patriarch descendants in the 
next x − 1 levels are then allocated to this page. 

If the page is completely filled, every element of 
the subsequent level is enqueued in SQ if it is the 
root of a subtree that has size greater than of equal to 
the page size; otherwise it is inserted in FL. 

When a page is not completely filled, i.e. there is 
available space, every element of the subsequent 
level that is the root of a subtree that has size greater 
than or equal to the available space in the current 
page is enqueued in SQ; otherwise it is inserted in 
FL. 

The algorithm proceeds as follows. The last 
element enqueued in SQ is popped and stored in the 
page. Its sons are enqueued in SQ. If there is still 
available space in the current page, and SQ is not 
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empty, again the last element enqueued in SQ is 
popped and stored in the page, and its sons are 
enqueued in SQ. This process is repeated until the 
current page is completely filled or SQ is empty. 

When the current page is completely filled, that 
is, with no available space, the algorithm starts 
filling a new page. The patriarch of this new page is 
dequeued from SQ. The process above is repeated in 
order to fill the page. 

When SQ is empty, the algorithm starts to 
allocate the fringe subtrees. The algorithm considers 
both the sizes of these subtrees, the available space 
in the last page, as well as the page size. The 
algorithm employs bin packing to determine the 
smallest number of pages that allocates those 
subtrees. 

The proposed algorithm is specified in high level 
pseudocode in figure 4. 
 
A Space-Efficient Algorithm for Paging 
Binary Trees 
 
Let the page size be 2**x-1 
 
BEGIN 
  create(SQ); 
  enqueue(the tree root, SQ); 
REPEAT 
  create a new page; 
  patriarch <- dequeue(SQ); 
  allocate to current page the patriarch and 
its descendants of the next x-1 levels; 
  IF (the page is completely filled) 
  THEN 
  FOR-ALL nodes at the subsequent level 
    IF (node is root of subtree with size >= 
page size) 
      THEN enqueue(node, SQ); 
      ELSE insert node in FL; 
  ELSE 
/* there is space available in current page 
*/ 
  FOR-ALL nodes at the subsequent level 
    IF (node is root of subtree with size >= 
available space) 
      THEN enqueue(node, SQ); 
      ELSE insert node in FL; 
  WHILE (there is available space in current 
page)and (not empty(SQ)) DO 
    node <- pop(SQ); 
    allocate node to current page; 
    FOR-ALL sons of the allocated node 
      enqueue(son, SQ); 
  END-WHILE; 
UNTIL empty(SQ); 
IF (FL is not empty) 
  THEN 
    apply bin packing for paging the fringe 
subtrees; 

Figure 4: The proposed algorithm. 

3.3 Algorithm Complexity 

The complexity analysis is performed considering 
the algorithm divided in two phases. The first phase 
allocates the whole tree in pages, except the fringe. 
The second phase allocates the fringe using bin 
packing. 

Let f be a worst-case complexity function, such 
that f(n) is the largest number of node accesses that 
the algorithm requires when the total number of 
nodes is n. 

The complexity of the algorithm’s first phase is 
linear, actually 4n. Such linearity can be confirmed 
as follows. To compute the number of descendants 
of each node n accesses are required. To store all 
nodes of the tree in pages, 2n accesses are required: 
n accesses to allocate the nodes themselves and n 
accesses to record the page address at the node’s 
parent. Finally, at most n accesses are required in 
order to insert and remove nodes from the data 
structures employed, SQ and FL; less than n nodes 
are ever inserted in one of these data structures. A 
node that is inserted in one of them, is not inserted in 
the other. Once a node is removed from the 
structure, it is not inserted again. 

The algorithm’s second phase depends mainly on 
the bin packing algorithm employed. Consider g the 
complexity of such algorithm, where g(n) describes 
the number of node accesses required to allocate the 
fringe subtrees. A number of practical 
approximation algorithms with quadratic complexity 
function are reported in the literature (Garey and 
Johnson, 1979). In this case, the algorithm 
complexity is quadratic. 

4 EXPERIMENTAL RESULTS 

This section presents experimental results. The 
implementation used to obtain the experimental 
results is based on a greedy approximation 
algorithm, that searches the best allocation for each 
current page. The metrics used to measure the 
algorithm performance are described. Results are 
compared to those of other approaches, including 
sequential allocation, breadth-first allocation, depth-
first allocation, theoretical optimal paging of 
balanced trees and B-trees. 

Experiments were performed with random 
sequences of keys. The trees had from 10 to 2000 
nodes, in intervals of 10 nodes. The experiments 
were divided according to the page size, considering 
the values 3, 7 and 15. For each page size 100 
experiments were performed. 
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4.1 Evaluation Metrics 

To evaluate the proposed algorithm’s performance, 
two metrics were defined: the amount of unused 
space left in the pages, and the number of pages 
accessed when searching is executed. 

4.2 Evaluating the Number of Pages 
Accessed for Searching 

The first experiment reported refers to the total 
number of pages accessed for searching all nodes. 
Table 1 shows the comparison. 

Table 1: Average number of accessed pages in different 
strategies. 

Strategies Page Size 
= 3 

Page Size 
= 7 

Page Size 
= 15 

Sequential 1495,99 3313,30 7410,69 
Breadth-First 1681,04 3981,23 9309,85 
Depth-First 1198,61 2500,61 5471,75 
Proposed 
Algorithm 969,69 1726,17 3365,44 

B-trees 841,04 1644,62 2914,78 
Theoretical 
Optimum 771,45 1383,10 2760,65 

 
Figure 5 presents the average number of 

accessed pages considering page size equal to 15. As 
shown in the figure, results were compared to those 
produced by the usage of other approaches. 
 

 
Figure 5: Average number of accessed pages; page size = 
15. 

Considering the presented results, the proposed 
algorithm is always better than sequential, breadth-
first and depth-first allocation and worse than the 
theoretical optimal value, being however much 
closer to the optimal results than to others 
approaches. 

In comparison with B-trees, the number of pages 
accessed for searching is similar. However, as 
presented in the next subsection, the proposed 

approach is much more efficient than B-trees in 
terms of space efficiency. 

4.3 Space-Efficiency Analysis 

Another experimental result refers to the unused 
space left in the pages. Table 2 shows the average 
page filling percentage obtained in different 
strategies. 

In the performed experiments it was observed 
that B-trees present a page filling percentage of 
67.52% for randomized trees. On the other hand, the 
proposed algorithm presents an average page filling 
percentage of 98.62%, near to the optimal obtained 
with sequential paging. 

Table 2: Page filling percentage in different strategies. 

Strategies Page Size 
= 3 

Page Size 
= 7 

Page Size 
= 15 

Sequential, 
Breadth-First, 
Depth-First 

98.82% 98.42% 98.69% 

Proposed 
Algorithm 98.77% 98.42% 98.68% 

B-trees 67.15% 67.30% 67.75% 
 

Figure 6 shows the total amount of unused space 
produced by the different approaches. Considering 
B-trees the total bandwidth required to transfer a 
complete tree is proportionally larger than that 
required to transfer a tree paged with the proposed 
algorithm. 

 
Figure 6: Amount of unused space measured 
experimentally. 

5 RELATED WORK 

Many algorithms and data structures have been 
proposed for treating massive data stored in external 
memory (Frakes and Baeza-Yates, 1992; Baeza-
Yates and Ribeiro-Neto, 1999; Vitter, 2001), 
including the allocation of trees. A technique for 
allocating a binary tree partially paged using 
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external balancing is presented in (Henrich, SIX and 
Widmayer, 1990). Algorithms for maintaining a 
suffix tree structure in secondary storage are 
presented in (Clark and Munro, 1996). A clustering 
algorithm generating optimal worst-case external 
path length mapping of tree structures is described in 
(Diwan, Rane, Seshadri and Sudarshan, 1996). An 
efficient dynamic programming algorithm to pack 
trees is presented in (Gil and Itai, 1999). Another 
approach to pack trees in hierarchical memory using 
approximate algorithms is proposed in (Bender, 
Demaine and Farach-Colton, 2002). 

6 CONCLUSION 

This work described an efficient algorithm for 
paging unbalanced binary trees. The algorithm can 
be particularly applied for computational biology, in 
which large trees constructed from biological 
sequence, that cannot be balanced, are frequently 
found. The algorithm obtains the best possible 
allocation of nodes to pages when it is possible and 
proposes an efficient policy for filling pages of non-
complete trees, based on the application of bin 
packing to the fringe of the tree. The complexity of 
the algorithm is given, which depends on the 
packing algorithm’s complexity. The algorithm was 
implemented and experimental results were 
presented. 

Considering the average number of accessed 
pages per search, the algorithm produces a page 
allocation up to 55% better than sequential 
allocation, up to 64% better than breadth-first and 
depth-first allocation, and results that are very close 
to those obtained with B-trees. On the other hand, 
considering the amount of unused space per page, 
and the total number of pages required, the 
algorithm presents an average page filling 
percentage of 98.62%. The comparison shows that 
the proposed approach is the only one that presents 
an average number of page accesses for searching 
close to the optimal and, at the same time, the page 
filling percentage is also close to the optimal. 

Future work includes investigating 
experimentally the behavior of the algorithm 
considering other approximation algorithms for 
packing the fringe, and comparing those results to 
those obtained with variations of B-trees. Another 
topic left as future work is the evaluation of the 
behavior of the algorithm considering dynamic data, 
with frequent insertions and removals of nodes, as 
well as the impact of concurrent data access. The 

evaluation of the algorithm considering real data 
instead of random data is also left as future work. 
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