
CLOSING THE BUSINESS-APPLICATION GAP IN SOA 
Challenges and Solution Directions 

Boris Shishkov 
Department of Computer Science, University of Twente, Enschede, The Netherlands 

Jan L.G. Dietz 
Department of Software Technology, Delft university of Technology, Delft, The Netherlands 

Marten van Sinderen 
Department of Computer Science, University of Twente, Enschede, The Netherlands 

Keywords: Business-software alignment; Software services; Service-Oriented Architecture - SOA. 

Abstract: Adequately resolving the business-software gap in the context of SOA (Service-Oriented Architecture) 
appears to be a non-trivial task, mainly because of the dual essence of the service concept: (i) services are 
inevitably business-restricted because they operate in real-life environments; (ii) services are also 
technology-restricted because the software components realizing them have to obey the restrictions of their 
complex technology-driven environments. Hence, the existence of these two restriction directions makes the 
(SOA-driven) business-software alignment challenging – here current business-software mapping 
mechanisms can only play a limited role. With regard to this, the contribution of the current paper is two-
fold: 1. it analyzes SOA and its actual challenges, from a business-software-alignment perspective, deriving 
essential SOA application desirable properties; 2. it proposes software services specification directions, 
particularly concerning the (SOA-driven) business-software mapping. This contribution is expected to be 
useful in current software development. 

1 INTRODUCTION 

Closing the semantic gap between business logic and 
application logic, is claimed to be of crucial 
importance for an adequate software development 
(Shishkov et al., 2006a). We argue that this 
endeavor fundamentally concerns the underlying 
technology used and especially the restrictions it 
imposes on the application. Hence, we focus on a 
particular technology in this paper, namely the Web 
Service Technology that can be seen as an 
implementation of the Service-Oriented Architecture 
– SOA (Pasley, 2005). SOA provides a structure for 
composing software applications based on the use of 
‘services’ as building blocks that can perform 
distinct functions through well defined interfaces 
(Alonso et al., 2004). These services are self-
describing and platform-independent, and as such 
they are actually considered as fundamental 

computational elements in the composition of 
business processes; this makes them advantageously 
usable in developing software solutions (that 
concern the business system to be supported), as 
concluded in previous work (Shishkov et al., 2006b). 

We can consider SOA as a conceptual business 
architecture where business/application functionality 
is made available to users, as shared, re-usable 
services (modules of business/application 
functionality) on a network (Marks & Bell 2006), 
invokeable by messages through exposed interfaces. 

Hence, the ability of finding, selecting and 
composing services without prior agreement results 
in a ‘loose coupling’, which, together with the 
availability of service standards, bring potential 
benefits of increased software re-use, easier 
application integration and higher business agility 
(Caceres et al., 2004). 

333
Shishkov B., L.G. Dietz J. and van Sinderen M. (2007).
CLOSING THE BUSINESS-APPLICATION GAP IN SOA - Challenges and Solution Directions.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 333-336
DOI: 10.5220/0001326803330336
Copyright c© SciTePress



 

To fully benefit from this potential, it is 
necessary that the specification of software services 
(in the SOA context) is properly integrated in a 
software design approach where the business-
software mapping is systematically elaborated. This 
points to the above mentioned semantic gap which 
(obviously) needs to find resolution in the SOA 
context. Nevertheless, this appears to be a non-trivial 
task, mainly because of the dual essence of the 
service concept: (i) services are inevitably business- 
-restricted because they operate in real-life 
environments; (ii) services are also technology-
restricted because the software components realizing 
them have to obey the restrictions of their complex 
technology-driven environments. Hence, the 
existence of these two restriction directions makes 
the (SOA-driven) business-software alignment 
challenging; as a comparison, introducing some 
software systems can enforce changes in 
corresponding business-level processes. 

Therefore, current business-software mapping 
mechanisms can only play a limited role in the 
specification of software services, which appears to 
be an actual and widely recognized problem. 

With respect to this, the contribution of the 
current paper is two-fold: 

- it analyzes SOA and its actual challenges, from 
a business-software-alignment perspective, deriving 
essential SOA application desirable properties; 

- it proposes software services specification 
directions, particularly concerning the (SOA-driven) 
business-software mapping. 

The paper is thus organized as follows: Section 2 
– analysis; Section 3 – proposal; Section 4 - 
conclusions. 

2 SOFTWARE COMPONENTS 
AND SOA 

The emergence of Service Oriented Computing - SOC 
is considered as a move towards combining real-life 
business concerns and technological concerns, 
envisioning a service (of a component/entity) as 
defining the goal, capabilities and/or behavior (of 
the component/entity) as observed by and relevant to 
the users (of the component/entity) (Pasley, 2005). 

A web service (WS, for short) is considered as a 
self-contained, Internet-enabled service component 
capable not only of performing business activities on 
its own but also possessing the ability to engage 
other WS in order to form higher-order business 
transactions (World Wide Web Consortium, 2005). 

We distinguish between composite and 
constituent WS – a composite WS consists of (is 
provided by an orchestration of) multiple constituent 
WS, and a constituent WS is an ‘elementary’ WS, 
i.e. a WS which can be used on its own or in a 
composite WS (Newcomer, 2002; Papazoglou & 
Kratz, 2006). 

In order to be usable on a large scale, WS (which 
are based on specific sets of standards) should be 
somehow reflectable in certain abstractions, as an 
instrument for their application in any platform 
through which the Internet user accesses them. 
Moreover, WS usually should not require design 
‘from scratch’ because this would make them 
expensive. They should instead be re-usable, using 
one WS as a basis for developing another, by 
making use of its core functionality (Bosworth, 
2001; Papazoglou & Kratz, 2006). 

We thus consider it innovative that multiple 
users are able to access WS, personalize them and 
finally use them. Our first conclusion is that this 
usage of WS implies advanced infrastructures 
and application platforms that utilize and 
coordinate such (globally) re-usable services. 
Furthermore, employing such generic WS for work 
in domain-specific business environments means 
that the service use has to be driven by appropriate 
underlying business models. 

Prior to their use, WS should have been 
discovered (by matching requirements to advertised 
names) and subjected to negotiation (since the user 
must of course accept using a particular WS). 

All these considerations have contributed to the 
emergence of the Service-Oriented Architecture – 
SOA which goes beyond the sole consideration of 
WS (Alonso et al., 2004), being a useful paradigm 
that can support engineers in their designing, 
building and using distributed software systems. 
SOA facilitates the establishment of ICT support for 
business processes, which is readily available, 
flexible and easily maintainable across multiple 
organizations and platforms. The concept of 
service/WS adopted by SOA, has evolved from 
modular object/component middleware approaches, 
such as CORBA, DCOM and J2EE (Newcomer, 
2002). However, WS has become the technology of 
choice for implementing service-oriented software 
systems, primarily because they are based on 
ubiquitous Internet standards, such as HTTP and 
XML, and because they support ‘loose coupling’. 
Whereas the uptake of WS based SOA is impressive, 
there are still important fundamental challenges not 
addressed by this technology, as recognized by 
ACT4SOC (ACT4SOC, 2007). 

ICSOFT 2007 - International Conference on Software and Data Technologies

334



 

Firstly, the ‘plug and play’ interoperability of 
WS to enable ad hoc cooperation of new partners is 
limited (Wang & Zhang, 2006). For on-demand 
composition of services in an open service-oriented 
world, interoperability has to be ensured at different 
levels (syntactic and semantic) and in different 
dimensions (information and behavior). Current 
research in this direction is using, for example, 
Semantic Web and ontology technologies (World 
Wide Web Consortium, 2005). 

Secondly, the property of ‘loose coupling’ is not 
appropriate for many applications that involve 
stateful components. Hence, the benefits of Web 
services and SOA would be limited for developers 
of such applications if they themselves have to solve 
the issues of stateful interaction, notification of state 
changes, support for sharing and coordination 
(Shishkov et al., 2006b). It should thus be aimed that 
these concerns are placed at the service 
infrastructure level or that another solution is 
enforced. Thus, our second conclusion is that 
enhancement needs to be achieved in the way 
applications which are by nature not loosely 
coupled, are supported by SOA-related 
technology. 

Finally, WS alone are insufficiently capable of 
guaranteeing an appropriate ‘alignment’ between 
business requirements and software functionality, as 
mentioned already. What is needed is a structured 
approach for developing service-oriented software 
solutions, in which consistency with business 
requirements, (de-)composition of application 
services, and mapping onto (alternative) technology 
platforms can be systematically and separately 
addressed (Alonso et al., 2004, Shishkov et al., 
2006b). Hence, our third conclusion is that a 
business-software alignment is needed 
particularly in the SOA context. 

Taking into account the 3 business-software-
alignment-related conclusions made in the current 
section, we formulate the following 3 
(corresponding) desirable properties concerning the 
SOA-driven application development: 

 

1. Application architecture must allow usage 
of SOA infrastructure; 

2. ‘Loose coupling’ should be enforced; 
3. Application architecture must fit within the 

business context. 
 

 
We will consider in the following section, 

several solution directions that are driven by these 
properties and especially by the third one. 

3 SOLUTION DIRECTIONS 

In presenting solution directions in this section, we 
will consider fundamentally an Alignment 
perspective and a Loose-coupling perspective. 

The Alignment perspective basically concerns 
desirable properties 3 and 1, as defined in Section 2. 
The existence of their related restriction directions 
has already been mentioned in the Introduction. We 
claim that in order to adequately address them, it is 
necessary that they are distinguished clearly. 

As for business-level restrictions, they obviously 
concern the enterprise that is going to be supported 
by the services-to-be-developed. Thus, the enterprise 
under consideration needs to be sufficiently 
explored, which can be appropriately accomplished 
through a conceptual enterprise model, as studied by 
Dietz (2006). This model nevertheless would need to 
be coherent (the distinguished aspect models 
constitute a logical and truly integral whole), 
comprehensive (all relevant issues are covered), 
consistent (the aspect models are free from 
contradictions or irregularities), concise (no 
superfluous matters are considered) as well as 
essential – revealing only the essence of the 
enterprise, its deep structure. Considering this last 
property as crucially important, we argue that 
meeting the business-level restrictions, as above 
formulated, should include a (SOA) application 
specification that is realized as a REFINEMENT OF 
A CORRESPONDING ESSENTIAL ENTERPRISE 
MODEL. Such a model could be properly developed 
using LAP-driven generic business process patterns, 
as studied in (Shishkov et al., 2006a). 

As for technology-level restrictions, they could 
in no way concern essential issues as formulated 
above. Instead, they concern realization and/or 
implementation issues which are to stay consistent 
with corresponding essential issues (Dietz, 2006). 
Nonetheless, after mapping technology-level 
restrictions on the essential enterprise model, it 
might appear that a model re-design seems sensible 
– this is an example of an indirect impact of 
technology-level restrictions on the enterprise 
model. Apart from this, technology-level restrictions 
concern the application’s integration with respect to 
the service infrastructure – the APPLICATION IS 
TO ALWAYS FUNCTION CONSISTENTLY 
WITH THE (SERVICE) INFRASTRUCTURE 
THAT PROVIDES TO IT GENERIC (RE-
USABLE) SERVICES. Such a consistency can be 
enforced through a network-infrastructure-
application-layered software development, as 
studied in AWARENESS (2007). 

CLOSING THE BUSINESS-APPLICATION GAP IN SOA - Challenges and Solution Directions

335



 

The Loose-coupling perspective concerns 
desirable property 2, as defined in Section 2. If 
straightforwardly reflecting an enterprise model in a 
SOA-driven application model, the services (which 
would be identified) would inevitably be tightly 
coupled because (normally) there is a dependency of 
the services provided by one entity on services 
provided by other entities. As concluded in 
(Shishkov et al., 2006b), this could be resolved, by 
introducing ‘in between’ an ADDITIONAL 
APPLICATION COMPONENT (labelled 
‘Orchestrator’) THAT HAS THE TASK OF 
COORDINATION. The Orchestrator is application-
specific (as the coordination is application-specific). 
The (subordinate) services, however, which are 
coordinated by the Orchestrator, may be useful for 
many different types of applications. Their 
description may hence be published through a public 
(or corporate) registry, such that they can be 
discovered, and selected for invocation by an 
orchestration component. Related to its coordination 
tasks, the Orchestrator could sometimes supply to 
one service the result of another service, if this is 
necessary for the service to perform its task(s). 

4 CONCLUSIONS 

This paper proposes improvements to the business-
application alignment, particularly in the context of 
SOA. Reporting work-in-progress, the paper has 
only identified (relevant) application desirable 
properties and corresponding solution directions. 
According to the first solution direction, the SOA 
application model must be developed as a 
refinement of a corresponding essential enterprise 
model. According to the second solution direction, 
the application functionality must be specified 
consistent with the (service) infrastructure. These 
two solution directions are relevant (in combination) 
to the objective of overcoming (especially in the 
context of SOA) the semantic gap between business 
logic and application logic. As for the third solution 
direction, it mainly concerns the usage of generic 
services, which characterizes SOA. In particular, it 
is suggested that an additional application 
component is introduced to handle the (application-
specific) coordination activities with respect to 
(subordinate) services, in delivering application’s 
functionality. 

We expect that this paper and the discussion it 
opens would be useful to the on-going SOA 
developments aiming at putting SOC on a more 
solid (theoretical) background. 

ACKNOWLEDGEMENTS 

This work is part of the Freeband A-MUSE project 
(http://a-muse.freeband.nl). Freeband is sponsored 
by the Dutch government under contract BSIK 
03025. 

REFERENCES 

ACT4SOC 2007: Proc. of the First Int. Workshop on 
Architectures, Concepts and Technologies for Service 
Oriented Computing – ACT4SOC, INSTICC Press. 

AWARENESS 2007: Dutch project context AWARE 
mobile NEtworks and ServiceS, Gvrnm. supported. 

Alonso, G., F. Casati, H. Kuno, V. Machiraju, 2004. Web 
services, concepts, architectures and applications, 
Springer-Verlag. Berlin Heidelberg. 

Bosworth, A., 2001. Developing Web Services. In Proc: 
17th International Conference on Data Engineering. 

Caceres, P., Marcos, E., De Castro, V., 2004. Integrating 
agile and model-driven practices in a methodological 
framework for the Web information systems 
development. In ICEIS’04, 6th Int. Conference on 
Enterprise Information Systems. INSTICC Press. 

Dietz, J.L.G., 2006. Enterprise ontology, Springer-Verlag 
Berlin Heidelberg. 

Marks, E.A., Bell, M., 2006. Service-Oriented 
Architecture, A Planning and Implementation Guide 
for Businesses and Technology, John Wiley & Sons 
Inc., Hoboken, New Jersey. 

Newcomer, E., 2002. Understanding Web services, XML, 
WSDL, SOAP and UDDI, Addison-Wesley. Boston. 

Papazoglou, M.P., Kratz, B., 2006. A Business-Aware 
Web Services Transaction Model. In ICSOC’06, 
International Conference on Service-Oriented 
Computing. Springer Berlin/Heidelberg. 

Pasley, J., 2005. How BPEL and SOA are changing Web 
Services development. IEEE Internet Computing, 
Vol.9, Iss.3 (2005). IEEE Press. 

Shishkov, B., Dietz, J.L.G., Liu, K., 2006. Bridging the 
Language-Action Perspective and Organizational 
Semiotics in SDBC. In ICEIS’06, 8th Int. Conference 
on Enterprise Information Systems. INSTICC Press. 

Shishkov, B., Van Sinderen, M.J., Quartel, D., 2006. 
SOA-driven business-software alignment. In 
ICEBE’06, IEEE International Conference on e-
Business Engineering. IEEE Press. 

Wang, H., Zhang, H., 2006. Enabling enterprise resources 
reusability and interoperability through Web services. 
In ICEBE’06, IEEE International Conference on e-
Business Engineering. IEEE Press. 

World Wide Web Consortium, 2005. Web Services 
Description Language 1.1, W3C Note, 
http://www.w3.org/TR/wsdl. 

ICSOFT 2007 - International Conference on Software and Data Technologies

336


