
REFORMULATING COMPONENT IDENTIFICATION AS
DOCUMENT ANALYSIS PROBLEM

Towards Automated Component Procurement

Hans-Gerhard Gross and Marco Lormans
Software Engineering Research Group, Delft University of Technology

Mekelweg 4, 2628 CD Delft, The Netherlands

Jun Zhou
The First Research Institute of the Ministry for Public Security

No. 1 South Road of the Capital Gymnasium, 100044 Beijing, China

Keywords: Latent Semantic Analysis, Component Identification, Component Selection, Procurement Automation.

Abstract: One of the first steps of component procurement is the identification of required component features in large
repositories of existing components. On the highest level of abstraction, component requirements as well as
component descriptions are usually written in natural language. Therefore, we can reformulate component
identification as a text analysis problem and apply latent semantic analysis for automatically identifying suit-
able existing components in large repositories, based on the descriptions of required component features. In
this article, we motivate our choice of this technique for feature identification, describe how it can be applied
to feature tracing problems, and discuss the results that we achieved with the application of this technique in a
number of case studies.

1 INTRODUCTION

The main recent technological advances in
component-based development mainly focus on
the integration step. This encompasses the syntactic
and semantic mapping between components, the de-
velopment of component wrappers and adapters, and
the validation of all pair-wise component interactions
(Atkinson et al., 2002; Atkinson et al., 2006; Gross,
2004). Prior to integration, components have to be
located in a repository, and evaluated and selected
according to non-functional requirements. These
activities are typically referred to as component
procurement (Gross et al., 2005). Component iden-
tification is the first step of procurement, selecting a
few candidates out of the huge number of possible
components.

In this paper, we assess how well Latent Semantic
Analysis (LSA) can be applied for identifying suit-
able candidate components out of a huge number of
possible components in a component repository. LSA
is used to automatically induce a specific semantic
meaning of given components (Maletic and Valluri,
1999), and, thus, identify candidate components that

are matching the semantics of a requirements docu-
ment.

2 RELATED WORK

Component identification is a feature mapping prob-
lem that is supported through a number of methodolo-
gies and processes.

The Off-The-Shelf-Option (OTSO) (Kontio et al.,
1995; Kontio, 1996) contains a definition of the ac-
tivities involved in component selection, which are
described in form of a generic process model. It is
based on the definition of evaluation criteria accord-
ing to reuse goals, and it gives concrete guidelines on
how to apply them in a reuse scenario.

The COTS-based Integrated System Development
(CISD) model (Tran et al., 1997) can be used to gen-
eralize component selection, evaluation, and integra-
tion. The model is based on these three phases and
provides concrete steps to be taken in each of the
phases.

The Procurement-Oriented Requirements Engi-

111
Gross H., Lormans M. and Zhou J. (2007).
REFORMULATING COMPONENT IDENTIFICATION AS DOCUMENT ANALYSIS PROBLEM - Towards Automated Component Procurement.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 111-116
DOI: 10.5220/0001326701110116
Copyright c© SciTePress



neering (PORE) method (Maiden and Cube, 2000)
provides guidelines on acquiring customer require-
ments and selecting components that satisfy these. It
offers techniques to discover, acquire, and structure
requirements and formulate test cases to be used for
assessment.

COTS-Based Requirements Engineering (CRE)
(Alves and Castro, 2001) adds non-functional require-
ments to the component identification process. Its
selection criteria proposed comprise functional and
non-functional requirements, timing restrictions, cost
ratings, and vendor reputation. It can be seen as a
method for facilitating requirements engineering in
component-based development projects.

These methods provide complete methodological
support for component identification, and they facil-
itate all activities related to finding the right compo-
nents. They do not, however, provide tools that can
support their activities. The approach we propose in
this paper is orthogonal to these methodologies. It
should be integrated as a tool to support and automate
the identification process of the other frameworks,
thus reducing the manual effort of feature mapping.

3 COMPONENT
IDENTIFICATION WITH LSA

The fundamental approach of document analysis or
information retrieval techniques is to “match words of
queries with words of documents” (Deerwester et al.,
1990). We can use the same terminology to describe
component identification as “matching words of com-
ponent requirements” to “words of component de-
scriptions,” and reformulate the component identifica-
tion problem as a document analysis problem that can
be solved by retrieval techniques such as LSA (Deer-
wester et al., 1990).

LSA is an automatic technique for extracting and
inferring relations of expected contextual usage of
words in documents (Landauer et al., 1998). It takes
advantage of implicit higher-order structure in the as-
sociations of terms with documents in order to steer
the detection of relevant documents (in our case, pro-
vided component descriptions in a repository) on the
basis of terms in queries (in our case, required com-
ponent descriptions) (Deerwester et al., 1990).

LSA is based on a terms-by-documents matrix
that represents the occurrences of terms in existing
documents. The columns of the matrixA correspond
to the documents, and the rows correspond to the
stemmed and normalized terms. The cells of the ma-
trix contain the number of occurrences of a term in
a document. This matrixA is analyzed by singu-

lar value decomposition (SVD) to derive the latent
semantic structure model (Deerwester et al., 1990),
leading to three other matricesA = T0S0DT

0. T0 and
DT

0 have orthonormal columns, representing the left
and right singular vectors, andS0 is diagonal, con-
taining the singular values. If the singular values (S0)
are ordered according to size, the first k-largest may
be kept and the remaining smaller ones set to zero,
leading to a reduced approximate fit with smaller ma-
trices (Lormans and van Deursen, 2006). The product
of these new matriceŝA is only approximately equal
to A and of rankk: A ≈ Â = T SDT . It represents the
amended terms-by-documents matrix. The dimen-
sion reduction is important for filtering out unimpor-
tant details while keeping the essential latent semantic
structure intact, and it can be regarded as compress-
ing the same information in a smaller space. Taking
the correlation coefficients from this matrix, finally
yields the similarity between the documents. High
values[−1..1] represent high correlation, low values
represent low correlation between documents.

These techniques are initially coming from the
software maintenance and reengineering community
(DeLucia et al., 2004; DeLucia et al., 2005; Lor-
mans and van Deursen, 2006), where the goal is to
establish traceability links between the various de-
velopment documents. In component-based develop-
ment, we are facing the same challenges. The seman-
tic concepts described in system-level or component-
level requirements must be traced to the correspond-
ing concepts of a component repository. For example,
Fig. 1 shows an excerpt of a requirements document
and components from a vehicle alarm terminal that
can be built into vehicles operated by safety/security
services. The system requirements are written in plain
text, as well as the component descriptions in the
repository. The goal is to use LSA in order to map
part of the requirements to existing components in the
repository, such that only few candidate components
are identified which are likely to implement the re-
quired features. This can be done in the following
steps (illustrated in Fig. 1 and Table 1) (Landauer
et al., 1998; Lormans and van Deursen, 2005; Lor-
mans and van Deursen, 2006): (1) Definition of the
traceability model (Fig. 1. Which artifacts take part
in the tracing?). (2) Documents are analyzed by LSA,
generating a term-by-document matrix (Fig. 1). The
columns represent all documents, and the rows repre-
sent all relevant terms identified in these documents.
The cells represent the occurrence of terms per doc-
ument (Fig. 1). (3) SVD generates three new ma-
trices (Table 1,T0,S0,DT

0). (4) Reconstruction of
the terms-by-documents matrix̂A out of the reduced
SVD-matrices (Fig. 1,̂A). This represents the same

ICSOFT 2007 - International Conference on Software and Data Technologies

112



Table 1: SVD (T0,S0,DT
0), dimension reduction (S0,k =

3), matrix reconstruction (̂A) and correlation coefficients
(CorrCoe f (Â)).

T0 =

0.1408 0.1106 -0.7725 0.1213 -0.5225 0.1365 ...
0.1089 0.0763 -0.5037 0.0593 0.4066 -0.5226 ...
0.0018 0.0005 -0.0221 0.0021 -0.0920 0.4767 ...
0.1441 -0.7783 0.0006 0.6109 0.0135 -0.0021 ...
0.1236 -0.0218 -0.2822 -0.0699 0.7286 0.4996 ...
0.4840 -0.4768 -0.0381 -0.7194 -0.1173 -0.0647 ...
... ... ... ... ... ... ...

k = 3;S0 =

56.6436 0 0 0 0 0 ...
0 28.0933 0 0 0 0 ...
0 0 23.7739 0 0 0 ...
0 0 0 0 0 0 ...
0 0 0 0 0 0 ...
0 0 0 0 0 0 ...
... ... ... ... ... ... ...

D′

0 =

0.1019 0.0128 -0.5250 0.0426 -0.6482 0.4540 ...
0.1327 0.1234 0.0983 0.1325 -0.0087 0.0662 ...
0.3909 0.2036 -0.6946 0.1027 0.2003 -0.4452 ...
0.1123 0.0207 -0.2033 -0.0434 0.7069 0.5160 ...
0.5859 0.0904 0.2642 -0.2296 -0.1207 0.0388 ...
0.2354 -0.1098 0.0216 -0.3555 0.0404 -0.3244 ...
0.3275 0.1271 0.1735 0.0089 -0.0304 0.1811 ...
0.1710 -0.5121 0.0596 0.5264 -0.0358 -0.2704 ...
0.1731 -0.3577 -0.0196 0.3084 0.1264 0.3188 ...
... ... ... ... ... ... ...

Â =
8.4033 4.2244 16.6394 -2.6378 1.5174 4.3494 ...
5.5935 2.7813 11.3469 -1.7767 1.6187 2.3882 ...
0.2173 0.1098 0.4169 -0.0600 -0.0391 0.1866 ...
-2.0765 -2.5957 6.4256 2.5521 5.1038 -2.2644 ...
3.2544 1.3799 8.3980 -0.9059 3.1904 -0.1523 ...
1.3678 -1.1172 16.3386 0.5160 17.4719 -11.1565 ...
... ... ... ... ... ... ...

corrcoe f (Â) =

Req C1 C2 C3 C4 ...
Req 1.0000 0.9429 0.6253 -0.8798 0.0379 ...
C1 0.9429 1.0000 0.3330 -0.8551 -0.2225 ...
C2 0.6253 0.3330 1.0000 -0.5492 0.6994 ...
C3 -0.8798 -0.8551 -0.5492 1.0000 -0.2695 ...
C4 0.0379 -0.2225 0.6994 -0.2695 1.0000 ...
C5 0.1089 0.3317 -0.5509 0.1881 -0.9816 ...
C6 -0.1619 -0.3977 0.5475 -0.1094 0.9789 ...
C7 -0.6433 -0.7199 -0.2254 0.9139 -0.1930 ...
C8 0.6633 0.7412 0.2295 -0.9212 0.1737 ...
... ... ... ... ... ... ...

information as the matrixA, though in a smaller sub-
space, thereby filtering out irrelevant information. For
example, the concept “alarm” appeared 13 times in
document “Req.”, but LSI “estimates” that 8.4033
should be the adapted number of occurrences accord-
ing to the context usage of the term “alarm” in all
other documents (first entry in̂A). (5) Calculating
the correlation coefficients of the reconstructed ma-
trix yields a new matrix representing the similarity of
documents:CorrCoe f (Â) in Table 1. (6) Link se-
lection. Which components implement the require-
ments, or where do we draw the line between inter-
esting components and irrelevant components? (Lor-
mans and van Deursen, 2006) propose several strate-
gies for “ignoring” links.

According to the results in our example displayed
in Table 1, our analysis method suggests that com-
ponent C1 appears to be the most suitable candidate
(with high probability of 0.9429), but C8 may also be
considered (with much lower probability of 0.6633,
though).

4 LSA EXPERIMENTS

It is important to note that, for assessment of LSA, we
require existing systems for which the links between
the components are already known. Otherwise, an as-
sessment of the results is difficult. As preprocessing
tool, before we apply LSA, we use the TMG Mat-
lab toolbox by (Zeimpekis and Gallopoulos, 2005). It
provides a number of functions for stop-word elim-
ination and stemming, and it generates the term-by-
document matrices. The other matrix operations are
built into Matlab.

PacMan Case Study. One of the first case studies
in which we applied LSA is a PacMan game used in
the Computer Science Bachelor curriculum at Delft
University of Technology (Lormans and van Deursen,
2005). The available documentation comprises 10
requirements documents, coming in the form of use
case descriptions, 19 documents describing the com-
ponents of the game and 17 documents with test de-
scriptions, and the Java implementation. The key-
words of the programming language do not carry any
semantic significance and can be eliminated simply
by adding them to the list of stop words. They are
then filtered out by TMG. Alternatively, we can use
Doxygen to generate documentation out of the source
codes and use this as a replacement for the sources.

We included all documents in our analysis, lead-
ing to a corpus of some 1200 relevant terms across all
documents. We chose the best 20% of all similarity
measures as valid links. The value for k (matrix re-
duction) was varied between 10% and 20% in order
to assess the effect of the choices on the selection of
links. Best results were achieved with k set to 20%. In
that case, LSA was able to identify 16 out of 17 links
that had been initially defined by the developer of the
program, although LSA found many more links (false
positives). This was due to the fact that the use cases
described in different documents, leading to differ-
ent implementations are dealing with similar program
events, e.g., one with restarting the game after sus-
pension of the game and one with restarting the game
after game over. Both requirements describe similar
concepts, and they are, therefore, linked by LSA. The
same we found for requirements describing the move
of the player and the move of the monsters, or the de-
scriptions about a player bumping into a monster and
a monster bumping into the player. All these require-
ments are describing similar concepts and are, thus,
linked by the tool. The link which was not identi-
fied by LSA was the description of the GUI of the
PacMan and its corresponding test suite. An analy-
sis of the requirements document of the GUI and the

REFORMULATING COMPONENT IDENTIFICATION AS DOCUMENT ANALYSIS PROBLEM - Towards
Automated Component Procurement

113



Component 
Repository Alarm 

Data 
Processing

C2

Remote 
ControlData 
Processing

C1

Parameter 
Processing

C5

Call 
Processing

C8

Display 
Data 

Processing

C4

Track 
Data 

Processing

C7

SelfCheck 
Data 

Processing

C10

WatchDog

C3

HandSet 
Controller

C16

Display 
Controller

C6

Memory 
Controller

C15

Power 
Controller

C9

Input/Output 
Controller

C11 GPS 
Controller

C12

GSM 
Controller

C13

Encryption

C14

R-SYS-3: Alarm reaction shorter ... 
R-SYS-4: Alarm signal encrypted 
R-SYS-6: Continuous alarm ... 
R-CMP-8: Check alarm flag ... 
R-CMP-9: Composite alarm data 
...

Requirements

Documents

Terms

Req. C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 ...

alarm

emerg

gsm

network

react

time

input

encrypt

...

13

5

1

1

1

3

2

1

...

0 16 2 0 0 0 0 1 0 0 0

0 12 5 0 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 19 13 9 9 0

0 8 6 2 2

Terms-By-Documents Matrix

1 0 2 0

0

0

000000000 0 0

3 0

27

20

9

7 3 18 13 7 4 5 22

17 4 29 8 18 6 6 3

... ... ... ... ... ... ... ... ... ... ... ...

...

...

...

...

...

...

...

...

Figure 1: Analysis and mapping process.

corresponding test document revealed a mismatch of
concepts between the two artifacts. Whereas the re-
quirements describe the layout and behavior of the
graphical elements of the GUI, the test description is
about what a person testing the GUI should look at
and which elements should be clicked on. The test
description of the GUI was, therefore, linked to most
of the other documents, because their concepts ap-
pear in the test descriptions. They were not linked
to the GUI requirements document, because the con-
cepts described there are different from the ones in the
test description, so that LSA does not link them.

Callisto Case Study. Callisto is a software engi-
neering tool that can be used to specify component
interfaces. We looked at three classes of documents,
user requirements specification, component design
documents and acceptance test plan, and tried to link
those with each other and the implementation. In
the experiments including the source code, we ended
up with 5500 relevant terms. The parameters of the
tool were set to the same values as for the PacMan
case. LSA was able to trace 63% of the requirements
into the code correctly and 94% of the requirements
into the test specification accurately. Linking the re-
quirements to the code produced many false positives.
Hence, the low rate of correctly recovered links. It
is important to note that the requirements and test
descriptions had explicit links through unique identi-
fiers. It was possible to trace the requirements to their
respective test documents easily, so that an evaluation
of the results for the requirements-to-test tracing was

straightforward.
Further, we found that LSA had more difficulties

to establish the links between the requirements and
the component design documents, than it had for link-
ing the test suites with the requirements. This can be
attributed to the fact that many of the design docu-
ments contain UML models in the form of pictures
capturing many of the essential concepts. The models
were not included in our text-based analysis, so that
the concepts described there would not make it into
the term-by-document matrix. LSA could only con-
sider part of the information contained in the design
documents, leading to much weaker links, and, thus,
the low value of 68%.

Philips Case Study. With Philips Applied Tech-
nologies, we carried out a case study in which we tried
to link requirements to component descriptions and
test descriptions for part of a DVD recorder software.
The question was to which extent all requirements
agreed in the contract were actually implemented in
the end product. Unfortunately, we had no explicit
traceability matrix produced by the developers of the
system available, so that a final assessment and draw-
ing exact conclusions from the case study was diffi-
cult. However, it provided many new insights into the
performance of LSA for component feature mapping.

There were requirements on different levels of ab-
straction available and it was not obvious which of
the hierarchy would be the most suitable. For the
analysis, we decided to include the first and second
highest level of abstraction. Lower-level requirements

ICSOFT 2007 - International Conference on Software and Data Technologies

114



seemed to include too many details that could not be
traced into the component descriptions. Before we
carried out LSA, we tried to find explicit links be-
tween the documents, aiming to come up with a man-
ually produced traceability matrix. 20 artifacts were
analyzed, all coming in the form of text documents.
Preprocessing of the artifacts resulted in 2300 terms
in the terms-by-documents matrix.

A noticeable outcome from the experiments was
the much higher predicted similarity of concepts be-
tween the requirements and the component descrip-
tions, than the similarity between the requirements
and the test descriptions produced by LSA. In the
other two case studies, it was the other way round.
Apparently, the component descriptions were linked
well to the corresponding requirements because ev-
ery component comes equipped with a general high-
level description of its functionality that is expressed
in an abstract way similar to the high-level require-
ments. Obviously, the test descriptions were linked
poorly to the requirements, because the tests were de-
fined according to the low-level design descriptions
of the components which did not correspond to the
high-level requirements.

Discussion of the Results. Working with the cases
presented, provided a lot of insight in how LSA can
be applied to linking various types of available doc-
uments in a typical software development process.
Our primary aim here is to link system level re-
quirements or component level requirements, coming
from the decomposition hierarchy of a system, to re-
spective candidate components in a repository by us-
ing latent semantic analysis. In the experiments we
used all available kinds of documents including high-
and low-level requirements, intermediate design doc-
uments as well as test descriptions and source code.
For LSA it does not matter which documents are be-
longing to which types of artifacts. It simply tries
to guess links between all documents included in an
analysis based on an underlying semantic structure in-
herent in these documents. It is our responsibility to
attribute the various types of documents to one dis-
tinct entity, i.e., one component. This can be done
through copying all relevant information into a single
file that represents one component description. LSA
will link whatever concepts it finds in other docu-
ments that are similar to the concepts of our compo-
nent description to that particular component. It is,
therefore, quite robust with respect to the kind of in-
formation provided for each component, as long as it
comes in textual form.

In the Callisto case study we had many UML dia-
grams available, apparently containing essential con-

cepts that were not considered in the analysis. This
lead to poor linking of concepts in these documents.
A textual description would probably lead to much
better results. Graphical notations are more and more
being used in industry because people can grasp the
essentials of such documents more easily. In the fu-
ture we will have to look at how we can extract this in-
formation automatically and make it available in tex-
tual form.

It was interesting to see how well test cases could
be traced from requirements. Test cases, especially
system level tests and acceptance tests, are usually
devised according to the information found in the re-
quirements documents. As a consequence, they are
very likely to incorporate similar concepts. After all,
they represent implicit links between the implementa-
tion (execution of tests) and the outcome of the tests
(oracle) coming from high-level requirements or de-
sign documents. LSA can make this implicit semantic
similarity explicit. Component specifications should,
therefore, always come together with their respec-
tive test suites according to the tester components de-
scribed in (Gross, 2004; Gross et al., 2005).

We also observed that low-level implementation-
specific test cases could not be traced well to high-
level requirements. This was somewhat surprising,
since abstraction is the single most important tech-
nique for us humans to deal with complex entities,
and we expected that we would use the same seman-
tic concepts on higher levels of abstraction that we
use on lower levels, though, just getting rid of the de-
tails. Apparently, that is not the case, and we have to
understand the mechanics of abstraction better.

5 SUMMARY AND
CONCLUSIONS

In this article, we have introduced and assessed a
novel technique for automatically linking require-
ments to component specification documents through
applying latent semantic analysis. Being able to trace
concepts that are essential in an application develop-
ment project to a collection of component descrip-
tions in a repository is the prerequisite for automated
component feature detection and analysis. So far,
we can only identify the required essential concepts
of an application in a component repository, and we
can create links in the form of a terms-by-documents
matrix to the documents describing the components.
However, the links are weighted (coming with a prob-
ability), so that we can constrain the number of suit-
able components to only a few, compared with the po-
tentially huge number of components in a repository.

REFORMULATING COMPONENT IDENTIFICATION AS DOCUMENT ANALYSIS PROBLEM - Towards
Automated Component Procurement

115



LSA helps us to identify few relevant components
out of a large repository. The experiments that we
performed are quite promising with that respect. LSA
does not provide support for the next step in compo-
nent procurement, the assessment of the likely adap-
tations to be carried out. At this moment we have no
answer to this next problem.

For the future, we are planning to perform many
more case studies using varying types of documents.
It would be interesting to see how more structured
documents such as use case descriptions and other
templates (Kamsties et al., 2001; Overhage, 2004),
that are more and more used in industry, affect LSA.
Will such structures improve its performance or will
they have a negative effect? The same applies to more
formalized documents, such as requirements contain-
ing logic and formulae. We have seen already how
UML diagrams can inhibit the text-based LSA tech-
nique. Is that going to be the same with formal ex-
pressions? Another issue that we will look at in the
future is how we can extract textual concepts from di-
agrams that are used in industry (Born et al., 2004).

REFERENCES

Alves, C. and Castro, J. (2001). Cre: A systematic method
for cots selection. In15th Brazilian Symposium on
Software Engineering.

Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laiten-
berger, O., Laqua, R., Muthig, D., Paech, B., Wüst, J.,
and Zettel, J. (2002).Component-Based Product Line
Engineering with UML. Addison-Wesley.

Atkinson, C., Bunse, C., Gross, H.-G., and Peper, C., edi-
tors (2006).Component-Based Software Development
for Embedded Systems, volume 3778 ofLecture Notes
in Computer Science. Springer.

Born, M., Schieferdecker, I., Gross, H.-G., and Santos, P.
(2004). Model-driven development and testing. In
1st European Workshop on MDA with Emphasis on
Industrial Applications, Enschede, The Netherlands.

Deerwester, S., Dumais, S., Furnas, G., Landauer, T., and
Harshman, R. (1990). Indexing by latent semantic
analysis. Journal of the American Society of Infor-
mation Science, 49(6):391–407.

DeLucia, A., Fasano, F., Oliveto, R., and Tortora, G. (2004).
Enhancing an artefact management system with trace-
ability recovery features. In20th IEEE Int. Conf. on
Software Maintenance, pages 306–350. IEEE Com-
puter Society.

DeLucia, A., Fasano, F., Oliveto, R., and Tortora, G. (2005).
A traceability recovery tool. In9th European Con-
ference on Software Maintenance and Reengineering,
pages 32–41. IEEE Computer Society.

Gross, H.-G. (2004).Component-Based Software Testing
with UML. Springer.

Gross, H.-G., Melideo, M., and Sillitti, A. (2005). Self-
certification and trust in component procurement.Sci-
ence of Computer Programming, 56(1–2):141–156.

Kamsties, E., von Knethen, A., and Paech, B. (2001). Struc-
ture of quasar requirements documents. Technical re-
port, Fraunhofer IESE, Kaiserslautern.

Kontio, J. (1996). A case study in applying a systematic
method for cots selection. In18th Intl Conference on
Software Engineering (ISCE-1996), pages 201–209,
Berlin.

Kontio, J., Chen, S., and Limperos, K. (1995). A cots se-
lection method and experiences of its use. In20th
Annual Software Engineering Workshop, Greenbelt
Maryland. NASA Goddard Space Flight Center.

Landauer, T., Folz, P., and Laham, D. (1998). An introduc-
tion to latent semantic analysis.Discourse Processes,
25:259–284.

Lormans, M. and van Deursen, A. (2005). Reconstructing
requirements coverage views from design and test us-
ing traceability recovery via lsi. In3rd Intl. Workshop
on Traceability in Emerging Forms of Software Engi-
neering, pages 37–45, Long Beach.

Lormans, M. and van Deursen, A. (2006). Can lsi help re-
constructing requirements traceability in design and
test? In10th IEEE Conference on Software Mainte-
nance and Reegineering, Bari, Italy.

Maiden, N. and Cube, C. (2000). Cots software selection:
The need to make tradeoffs between system require-
ments, architecture and cots components. InCOTS
workshop. Continuing Collaborations for Successful
COTS Development.

Maletic, J. and Valluri, N. (1999). Automatic software clus-
tering via latent semantic analysis. In14th Intl Confer-
ence on Automated Software Engineering, page 251.

Overhage, S. (2004).Object-Oriented and Internet-Based
Technologies, Weske and Liggesmeyer (Eds), volume
3263 ofLecture Notes in Computer Science, chapter
UnSCom: A Standardized Framework for the Speci-
fication of Software Components. Springer, Heidel-
berg.

Tran, V., Lui, D., and Hummel, B. (1997). Component-
based systems development, challenges and lessons
learned. In8th International Workshop on Software
Technology and Engineering Practice, pages 452–
462.

Zeimpekis, D. and Gallopoulos, E. (2005). Design
of a matlab toolbox term-document matrix gen-
eration. Technical report, High-Performance In-
formation Systems Laboratory, University of Pa-
tras. http://scgroup.hpclab.ceid.upatras.gr/scgroup/
Projects/TMG.

ICSOFT 2007 - International Conference on Software and Data Technologies

116


