
TOWARDS A KNOWLEDGE BASE TO IMPROVE
REUSABILITY OF DESIGN PATTERN

Cédric Bouhours, Hervé Leblanc and Christian Percebois
IRIT – MACAO team (Models, Aspects, and Components for Object-oriented Architectures)

Université Paul Sabatier
118 Route de Narbonne

F-31062 Toulouse Cedex 9

Keywords: Software architectures, Design patterns, Design review.

Abstract: In this paper, we propose to take directly into account the knowledge of experts during a design review
activity. Such activity requires an ability to analyze and to transform models, in particular to inject design
patterns. Our approach consists in identifying model fragments which can be replaced by design patterns.
We name these fragments “alternative models” because they solve the same problem as the pattern, but with
a more complex or different structure than the pattern. In order to classify and to explain the design defects
of this alternative models base, we propose the concept of strong point. A strong point is a key design
feature which permits the pattern to resolve a problem most efficiently.

1 CONTEXT

The emergent MDE community, aiming to give a
productive character to models, has proposed model-
driven process development. However, these
processes should be able to reuse the knowledge of
experts generally expressed in terms of analysis
(Fowler, 1997), design (Gamma et al., 1995) or
architectural (Buschmann, 1996) patterns approved
by the community. Given the existence of “code
review” activities (Dunsmore, 1998) in some
development processes, we would like to introduce a
“design review” activity, directed by design patterns,
to improve object model quality. We limit our
approach to design patterns, because we consider
that analysis patterns are business domain specific,
and the use of architectural patterns must be planned
before the design stage.

This activity may be decomposed into four sub-
activities. First, model preparation puts the model to
review in a minimal quality, for example, to impose
that one class implements at least one interface or to
impose that all attributes are private or protected.
Then, a research based on structural and behavioral
similarities determines the model fragments which
may be substitutable with a pattern. Next, a design
expert validates the patterns proposed to substitute

the fragments found in the previous sub-activity,
considering the designers’ intentions. Lastly, the
designers integrate the validated patterns into their
models. This integration is dealt with by automatic
parameterized transformations.

Up to now, in spite of the efforts to improve
reusability of design patterns, thanks to assistance
tools to guide pattern integration in models by
precise modeling (Guennec, 2000) (France, 2004),
and thanks to pattern wizards dedicated to integrate
patterns by code refactorings (Eden, 1997)
(O'Cinnéide, 1999), we do not find a model
inspecting tool that urges the use of patterns in the
most automatic way possible. To do the detection of
the substitutable fragments, we use a match method.
Rather than using an approximate design-pattern
match detection based on a similarity research
(Arcelli Fontana, 2004), we do exact pattern
matching of models substitutable with a design
pattern. Then, we seek a set of substitutable models
for each structural pattern proposed by Gamma et al.
We name these models “alternative models”.
According to the taxonomy proposed by Chikofsky
and Cross (Chikofsky, 1990), the implemented
technique can be connected to a redocumentation
technique so as to permit model restructuring.

In a first part, we present the concept of
alternative model, and how to collect and to use

421
Bouhours C., Leblanc H. and Percebois C. (2007).
TOWARDS A KNOWLEDGE BASE TO IMPROVE REUSABILITY OF DESIGN PATTERN.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 421-424
DOI: 10.5220/0001325104210424
Copyright c© SciTePress

them. Next, we present a problem solvable with the
Composite design pattern, and its corresponding
alternative models. Moreover, to characterize the
design defects of these alternative models, we
deduce them with some modification to the pattern
structure.

2 ALTERNATIVE MODELS

An alternative model is a model which solves the
same problem as the pattern, but with a more
complex or different structure than the pattern.
Therefore, in agreement with the hypotheses on
design patterns and class design defects (Guéhéneuc,
2001), it is a candidate model for substitution with a
pattern.

Each alternative model is characterized like a
pattern. A set of structural features is associated
with each alternative model role. For the moment,
these features concern inter-class relations only: i.e.,
associations, generalizations and aggregation-
composition links, but neither interfaces nor class
semantics. We deduce these features both
associating corresponding pattern roles with each
class of alternative models, and studying their
structure (Bouhours, 2006).

2.1 Discovery

For this study, we choose to collect a set of models
which do not use any patterns. If these models solve
a problem solvable with a particular pattern, they
may be considered as an alternative model.

We have organized an experiment which consists
of the design of the seven standard problems
solvable with the seven GoF structural patterns, in
UML notation. We use the examples presented in
the “motivations” section of the GoF catalogue,
when they are relevant. Each problem admits a
solution using a pattern, but participants have solved
these problems without any pattern knowledge.
From three hundred models obtained, we have
selected fifteen of them which present significant
structural variants with patterns under consideration,
the others were either incorrect or duplicated design.
We consider these models valid because they permit
a solution to the problems under study, namely, they
implement functionalities required by this problem.
Each model obtained (between two and six for each
pattern) constitutes a plausible alternative to just one
pattern.

2.2 Use

This collection method allows us to constitute a
catalogue for each pattern and its associated
alternative models that we consider as potentially
bad design practices. One entry of the catalogue
corresponds to one pattern with its alternative
models classified by the strong points of the pattern.
A strong point is a key design feature which permits
the pattern to resolve a problem most efficiently. For
example, the Composite pattern resolves the
problem: “How to compose and use object
hierarchies as simply as possible for a client in
keeping the extensibility possibilities on
components?”. So the two strong points for this
pattern are “uniform processing” and “decoupling
and extensibility”.

The strong points are the “essence” of the
patterns. They are characterized by criteria of
object-oriented architecture and software
engineering quality, partially deduced from the
“consequences” section of the GoF catalogue and
from the study of the design defects of alternative
models. As pattern injection may alter some object
oriented metrics (Huston, 2001), they allow us to
compute dedicated pattern metrics to classify the
alternative models and to help the estimation of the
pertinence of pattern injection in a design model.

In order to characterize the design defects, we
deduce the alternative models in perturbing the
strong points of each pattern. A perturbation may
either delete a strong point or simply damage it. So
to specify the degree of damage, we add sub-features
for some strong points. Moreover, thanks to these
perturbations, we should build new alternative
models not taken from experiments. And, if we
reverse these perturbations and if we apply them on
alternative models, we would deduce a sequence of
structural refactoring operations (Sunyé, 2001) that
automatically perform the pattern integration in the
models to review.

3 COMPOSITE ALTERNATIVE
MODELS

The problem “Design a system enabling to draw a
graphic image: a graphic image is composed of
lines, rectangles, texts and images. An image may
be composed of other images, lines, rectangles and
texts.” may be solvable with the Composite design
pattern.

ICSOFT 2007 - International Conference on Software and Data Technologies

422

The below figures represent this problem
instantiation (Model 0) and the five alternative models
(Models 1 to 5) taken from our experiment.

Thanks to the analysis of these alternative
models, we find two strong points with their sub-
features for the Composite pattern:
1 Decoupling and extensibility.

Image
<<Composite>>

Graphic
<<Component>>

Line
<<Leaf>>

Rectangle
<<Leaf>>

Text
<<Leaf>>

*

0: Composite problem instantiation

1.1 Maximal factorization of the composition.
1.2 Addition or removal of a leaf does not

need code modification.
1.3 Addition or removal of a composite does

not need code modification.
2 Uniform processing.

2.1 Uniform processing on operations of
composed object.

Graphic
<<Component>>

Image
<<Composite>>

Line
<<Leaf>>

Rectangle
<<Leaf>>

Text
<<Leaf>>

* ** *

1: Development of the composition on «Component»

2.2 Uniform processing on composition
managing.

2.3 Unique access point for the client.

In order to validate these strong points, we

deduce now each alternative model in perturbing the
strong points:

First, if we use the instantiated pattern (Model 0)
and if we replace the inheritance links by inverted
composition links and composition links by
inheritance links, we obtain a first alternative model
(Model 1) where the first strong point is deleted and
the second is damaged on the first sub-feature.
Indeed, without the inheritance link, there is no
guarantee that the processing produces conformity
between «Composite» and «Leaf» classes.

In the first alternative model (Model 1), if we
replace the inheritance link by its composition
equivalence, we keep on damaging the second
strong point, in deleting the second sub-feature.
Indeed, this alternative model (Model 2) has only
composition relationships that impose to manage the
composition in «Component» and «Composite»
classes.

From the second alternative model (Model 2), if we
factor «Composite» composition links on
«Component», we obtain an alternative model (Model
3) without a single strong point. Indeed, this
factorization adds a cycle between «Composite» and
«Component» that produces two access points for
the client.

From the instantiated pattern (Model 0), by
developing composition from «Composite» to
«Component» over every sub-class of
«Component», we obtain a new alternative model
(Model 4). The first strong point is deleted, but the
second is only damaged on the first sub-feature.
Although the access point is not in a good place,
namely on «Composite», we consider that the third
sub-feature is present.

Lastly, if we add an intermediary class between
«Composite» and «Component» in the problem

Graphic
<<Component>>

Image
<<Composite>>

Line
<<Leaf>>

Rectangle
<<Leaf>>

Text
<<Leaf>>

** * *

*
* * *

2: Development of the composition on
«Component» and «Composite»

Image
<<Composite>>

Graphic
<<Component>>

Line
<<Leaf>>

Rectangle
<<Leaf>>

Text
<<Leaf>>

* * * *

*

3: Recursive composition

Graphic
<<Component>>

Image
<<Composite>>

Line
<<Leaf>>

Rectangle
<<Leaf>>

Text
<<Leaf>>

*

** *

4: Development of the composition on «Composite»

Graphic

Image
<<Composite>>

GraphicComponent
<<Component>>

Line
<<Leaf>>

Text
<<Leaf>>

Rectangle
<<Leaf>>

*

*

5: Indirect composition on «Composite»

TOWARDS A KNOWLEDGE BASE TO IMPROVE REUSABILITY OF DESIGN PATTERN

423

instantiation (Model 0), we damage the two strong
points. In the first, the damage is due to the first
sub-feature: the factorization is not maximal. For
the second strong point, the composition
management is done in «Composite» and “Graphic”
classes, and there are two redundant access points
(Model 5).

Table 1 resumes the state of every strong point
for each Composite alternative model. For each
strong point, we represent sub-features in this table
with a “+” if it is present and with a “-” if it is
deleted. In a first approach, we define a “quality
score” simply based on strong points. We consider
the strong points qualitatively equivalent, and
compute the metrics with their degree of
perturbation.

4 CONCLUSION

In order to validate our approach, we have applied
OCL rules on UML models. So, it has been
necessary to implement detection of each alternative
model by several rules. When a rule is not validated
in the model, the NEPTUNE (Neptune, 2003)
platform returns the context of the error, which is the
model fragment substitutable by a pattern. In a first
attempt, we have applied these rules on industrial
models and then on OMG meta-models.

To increase the range of our catalog, which is,
for now, only constituted of alternative models taken
by our experiments, we are currently developing a
collaborative web site allowing to share knowledge
about object misconception.

REFERENCES

Arcelli Fontana F., Raibulet C., Tisato F., “Design Pattern
Recognition”, in Proceedings of the ISCA 13th IASSE,
Nice, France, July 1-3, 2004, pages 290-295.

Bouhours C., Leblanc H., Percebois C., “Structural
variants detection for design pattern instantiation”, in
1st International Workshop on DPD4RE, Benevento,
Italy, October 2006.

Buschmann F., Meunier R., Rohnert H., Sommerlad P.,
Stal M., “Pattern-Oriented Software Architecture”,
John Wiley \& Sons, August 1996.

Chikofsky E. J., Cross J. H., “Reverse engineering and
design recovery: A taxonomy”, in IEEE Software,
7(1), page 13-17, January 1990.

O'Cinnéide M., Nixon P., “A Methodology for the
Automated Introduction of Design Patterns”, in ICSM
'99: Proceedings of the IEEE International
Conference on Software Maintenance, IEEE
Computer Society, 1999, pages 463.

Dunsmore A.P., Comprehension and Visualisation of
Object-Oriented code for Inspections, Technical
Report, EFoCS-33-98, Computer Science Department,
University of Strathclyde, 1998.

Eden A. H., Yehudai A., Gil J., “Precise specification and
automatic application of design patterns”, in ASE '97:
Proceedings of the 12th international conference on
Automated software engineering (formerly: KBSE),
IEEE Computer Society, 1997, pages 143.

Fowler M., “Analysis patterns: reusable objects models”,
Addison Wesley Longman Publishing Co, Inc., 1997

France R. B., Kim D., Ghosh S., Song E., “A UML-Based
Pattern Specification Technique”, in IEEE Trans.
Softw. Eng., IEEE Press, 2004, 30, pages 193-206.

Gamma E., Helm R., Johnson R., Vlissides J., “Design
Patterns: Elements of Reusable Object-Oriented
Software”, Addison Wesley Professional, 1995.

Guennec A. L., Sunyé G., Jézéquel, J., “Precise Modeling
of Design Patterns”, in UML, 2000, pages 482-496.

Guéhéneuc Y. G., Albin-Amiot. H., “Using Design
Patterns and Constraints to Automate the Detection
and Correction of Inter-Class Design Defects”, in
Proceedings conference TOOLS, July 2001, pages
296-305.

Huston B., “The effects of design pattern application on
metric scores”, in Journal of Systems and Software,
58(3), Elsevier Science, September 15, 2001, pages
261-269.

Neptune, [w] http://neptune.irit.fr, 2003.
Sunyé G., Pollet D., Le Traon Y., Jézéquel J.M.,

“Refactoring UML Models”, in Proceedings of UML
2001, pages 134-148.

Table 1: State of the Strong Points of the Composite Alternative Models.

 Alternative model number
Strong point Sub-features 5 1 4 2 3

1 - - - - -
2 + - - - - 1
3 + 3

2

-
0

-
0

-
0

-
0

1 + - - - -
2 - + + - - 2
3 - 3

1

+ 3
2

+ 3
2

+ 3
1

-
0

Quality score: 50% 33.3% 33.3% 16.7% 0%

ICSOFT 2007 - International Conference on Software and Data Technologies

424

