
TOWARDS A UNIFIED SECURITY/SAFETY FRAMEWORK
A Design Approach to Embedded System Applications

Miroslav Sveda
Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic

Radimir Vrba
Faculty of Electrical Engineering & Communication, Brno University of Technology, Brno, Czech Republic

Keywords: Embedded software, security, safety.

Abstract: This paper presents a safety and security-based approach to networked embedded system design that offers
reusable design patterns for various domain-dedicated applications. After introducing proper terminology, it
deals with industrial, sensor-based applications development support aiming at distributed components
interconnected by wired Internet and/or wireless sensor networks. The paper presents a dependability-driven
approach to embedded networks design for a class of Internet-based applications. It discusses an abstract
framework stemming from embedded system networking technologies using wired and wireless LANs, and
from the IEEE 1451.1 smart transducer interface standard supporting client-server and publish-subscribe
communication patterns with group messaging based on IP multicast that mediate safe and secure access to
smart sensors through Internet and Zigbee. The case study demonstrates how clients can access groups of
wireless smart pressure and temperature sensors and safety valves through Internet effectively using
developed system architecture, which respects prescribed requirements for application dependent safety and
security.

1 INTRODUCTION

This paper deals with a safety and security-based
approach to networked embedded system’s design
that is rooted in design patterns reusable for various
application domains. The approach aims at
embedded system design for a class of Internet-
based applications focusing on a conceptual
framework that stems from (1) embedded system
networking technologies using wired and wireless
LANs, and (2) the IEEE 1451.1 smart transducer
interface specification supporting client-server and
publish-subscribe communication styles. That
communication employs group messaging based on
IP multicast, mediating safe and secure access to
smart sensors through Internet and ZigBee.

After introducing basic concepts of functionality
and dependability, the paper discusses relations in
between safety and security properties that embrace
main functional and non-functional requirements in
the considered application domain. Next section
introduces embedded system networking, in this

case ZigBee and IEEE 1451 protocols, client-server
and publish-subscribe configurations, and
multicasting including secure multicast. The case
study demonstrates how clients can access groups of
wireless smart pressure and temperature sensors and
safety valves effectively through Internet using
developed system architecture while respecting
prescribed requirements for application dependent
safety and security.

2 FUNCTIONALITY AND
DEPENDABILITY

The design of current networked embedded system
applications should consider functionality and
dependability measures. Functionality means
services delivery in the form and time fitting
requirement specifications, where the service
specification is an agreed description of the expected
service. Functionality properties should be realized
efficiently and cost-effectively, so reachable

345
Sveda M. and Vrba R. (2007).
TOWARDS A UNIFIED SECURITY/SAFETY FRAMEWORK - A Design Approach to Embedded System Applications.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 345-350
DOI: 10.5220/0001324503450350
Copyright c© SciTePress

performance and maintainability of implementation
belong to the checked properties.

Dependability is that property of a system that
allows reliance to be justifiably placed on the service
it delivers. A failure occurs when the delivered
service deviates from the specified service.
Dependability measures consist of reliability,
availability, security, safety and survivability.
Availability is the ability to deliver shared service
under given conditions for a given time, which
means elimination of denial-of-service
vulnerabilities. Security, see e.g. (Kim et al., 2006),
is the ability to deliver service under given
conditions without unauthorized disclosure or
alteration of sensitive information. It includes
privacy as assurances about disclosure and
authenticity of senders and recipients. Security
attributes add requirements to detect and avoid
intentional faults. Safety, see (Leveson, 1984), is the
ability to deliver service under given conditions with
no catastrophic effects. Safety attributes add
requirements to detect and avoid catastrophic
failures.

A failure occurs when the delivered service
deviates from the specified service. The failure
occurred because the system was erroneous: an error
is that part of the system state which is liable to lead
to failure. The cause of an error is a fault. Failures
can be classified according to consequences upon
the environment of the system. While for benign
failures the consequences are of the same order of
magnitude (e.g. cost) as those of the service
delivered in the absence of failure, for malign or
catastrophic failures the consequences are not
comparable.

A fail-safe system attempts to limit the amount
of damage caused by a failure. No attempt is made
to satisfy the functional specifications except where
necessary to ensure safety. A mishap is an
unplanned event (e.g. failure or deliberate violation
of maintenance procedures) or series of events that
results in damage to or loss of property or
equipment. A hazard is a set of conditions within a
state from which there is a path to a mishap.

A fail-stop system never performs an erroneous
state transformation due to a fault (Schneider, 1983).
Instead, the system halts and its state is irretrievably
lost. The fail stop model, originally developed for
theoretical purposes, appears as a simple and useful
conception supporting the implementation of some
kinds of fail-safe systems. Since any real solution
can only approximate the fail-stop behavior and,
moreover, the halted system offers no services for its

environment, some fault-avoidance techniques must
support all such implementations.

2.1 Safety-Security Relationships

Evidently, design of any safe system requires
deploying security to avoid intentional catastrophic
failures. And vice versa, system’s security can be
attacked using a safety flaw. The greater the
assurance, the greater the confidence that a security
system will protect against threads, with an
acceptable level of risk (Kim, 2006).

The above statement deals with trust, which is
assured reliance on the character, ability, strength, or
truth of someone or something (Li and Singhal,
2007). Trust can be defined as the belief that an
entity is capable of acting reliably, dependably, and
securely in a particular case. In frame of network
systems, trust is a complex subject that should be
managed. Trust management entails collecting the
information necessary to establish a trust
relationship and dynamically monitoring and
adjusting the existing trust relationship.

Principally, security represents the combination
of confidentiality, integrity and availability (Kim,
2006). Obtaining assurance that the system behavior
will not result in unauthorized access is called a
safety problem (McLean, 1994), which is
undecidable in general, see (Harrison et al., 1976),
but essential to solve in concrete situations.

3 EMBEDDED SYSTEM
NETWORKING

Embedded system networking stems from
hierarchically interconnected networks, mostly
Internet, local area wired and wireless networks, and
wireless sensor networks. Internet access to individual
components of distributed embedded systems can be
based on both wired and wireless LAN technologies,
predominantly on IEEE 802.3 and related Ethernet
standards, and on IEEE 802.11b WiFi and associated
wireless LAN protocols. Embedded systems and their
components can be attached directly to Ethernet with
TCP/IP protocol stack, but also indirectly or
exclusively through various wired Fieldbuses or
wireless technologies such as IEEE 802.11b WiFi and
IEEE 802.15.4 with related ZigBee. Sensor networks
bring an important pattern with single base station
connected to a wired network on one side and
wirelessly to smart sensors on the other side. When
sensors are clustered, the base station communicates

ICSOFT 2007 - International Conference on Software and Data Technologies

346

to cluster heads and through them to individual
sensors.

Application dedicated architectures can profit
from IEEE 1451.0, .1, .2, .3, .4 and .5 standards. In
this case, application layer can stem from object-
oriented abstractions introduced by IEEE 1451.1
Network Capable Application Processor (NCAP)
model.

3.1 ZigBee

The ZigBee/IEEE 802.15.4 protocol profile, see
(ZigBee, 2004) and (IEEE 802.15.3, 2003), is
intended as a specification for low-powered wireless
networks. ZigBee is a published specification set of
high level communication protocols designed to use
small low power digital radios based on the IEEE
802.15.4 standard for wireless personal area networks.
The document 802.15.4 specifies two lower layers:
physical layer and medium access control sub-layer.
The ZigBee Alliance builds on this foundation by
providing the network layer and the framework for
application layer, which includes application support
sub-layer covering ZigBee device objects and
manufacturer-defined application objects.

Responsibilities of the ZigBee network layer
include mechanisms used to join and leave a network,
to apply security to frames and to route frames to their
intended destinations. In addition to discovery and
maintenance of routes between devices including
discovery of one-hop neighbors, it stores pertinent
neighbor information. The ZigBee network layer
supports star, tree and mesh topologies. Star topology
network is controlled by one single device called
ZigBee coordinator, which is responsible for initiating
and maintaining devices on the network. Those
devices, known as end devices, directly communicate
with the ZigBee coordinator. In mesh and tree
topologies, the ZigBee coordinator is responsible for
starting the network and for choosing key network
parameters.

Each network may be extended through the use of
ZigBee routers. In tree networks, routers move data
and control messages through the network using a
hierarchical routing strategy. Tree networks may
employ beacon-oriented communication as described
in the IEEE 802.15.4 specification. Mesh networks
allow full peer-to-peer communication. ZigBee
routers in mesh networks shall not emit regular IEEE
802.15.4 beacons.

The ZigBee application layer includes application
support sub-layer, ZigBee device objects and
manufacturer-defined application objects. The
application support sub-layer maintains tables for
binding, which is the ability to match two devices
together based on their services and their needs, and

forwards messages between bound devices. The
responsibilities of the ZigBee device objects include
defining the role of the device within the network
(e.g., ZigBee coordinator or end device), initiating
and/or responding to binding requests and
establishing a secure relationship between network
devices. The ZigBee device object is also responsible
for discovering devices on the network and
determining which application services they provide.

3.2 IEEE 1451

The IEEE 1451 package consists of the family of
standards for a networked smart transducer interface
that include (i) a smart transducer software
architecture, 1451.1 (IEEE, 2000), targeting
software-based, network independent, transducer
applications, and (ii) a standard digital interface and
communication protocol, IEEE 1451.2, for accessing
the transducer or the group of transducers via a
microprocessor modeled by the 1451.1 standard.
The next three standard proposals extend the original
hard-wired parallel interface 1451.2 to serial multi-
drop 1451.3, mixed-mode (i.e. both digital and
analogue) 1451.4, and wireless 1451.5 interfaces
(Sveda, 2005).

The 1451.1 software architecture provides three
models of the transducer device environment: (i) the
object model of a network capable application
processor (NCAP), which is the object-oriented
embodiment of a smart networked device; (ii) the
data model, which specifies information encoding
rules for transmitting information across both local
and remote object interfaces; and (iii) the network
communication model, which supports client/server
and publish/subscribe paradigms for communicating
information between NCAPs. The standard defines a
network and transducer hardware neutral
environment in which a concrete sensor/actuator
application can be developed.

The object model definition encompasses the set
of object classes, attributes, methods, and behaviors
that specify a transducer and a network environment
to which it may connect. This model uses block and
base classes offering patterns for one Physical
Block, one or more Transducer Blocks, Function
Blocks, and Network Blocks. Each block class may
include specific base classes from the model. The
base classes include Parameters, Actions, Events,
and Files, and provide component classes.

All classes in the model have an abstract or root
class from which they are derived. This abstract
class includes several attributes and methods that are
common to all classes in the model and provide a
definition facility for the instantiation and deletion
of concrete classes including attributes.

TOWARDS A UNIFIED SECURITY/SAFETY FRAMEWORK - A Design Approach to Embedded System Applications

347

Block classes form the major blocks of
functionality that can be plugged into an abstract
card-cage to create various types of devices. One
Physical Block is mandatory as it defines the card-
cage and abstracts the hardware and software
resources that are used by the device. All other block
and base classes can be referenced from the Physical
Block.

The Transducer Block abstracts all the
capabilities of each transducer that is physically
connected to the NCAP I/O system. During the
device configuration phase, the description of what
kind of sensors and actuators are connected to the
system is read from the hardware device. The
Transducer Block includes an I/O device driver style
interface for communication with the hardware. The
I/O interface includes methods for reading and
writing to the transducer from the application-based
Function Block using a standardized interface.

The Function Block provides a skeletal area in
which to place application-specific code. The
interface does not specify any restrictions on how an
application is developed. In addition to a State
variable that all block classes maintain, the Function
Block contains several lists of parameters that are
typically used to access network-visible data or to
make internal data available remotely.

The Network Block abstracts all access to a
network employing network-neutral, object-based
programming interface supporting both client-server
and publisher-subscriber patterns for configuration
and data distribution.

3.3 Client-Server and
Publisher-Subscriber Patterns

In case of sensor communications, the client-server
pattern covers both configuration of transducers and
initialization actions. If the client wants to call some
function on server side, it uses a command execute.
On server side, this request is decoded and used by
the function perform. That function evaluates the
requested function with the given arguments and,
after that, it returns the resulting values to the client.

The client-server pattern corresponds to remote
procedure call (RPC), which is the remote
invocation of operations in a distributed context
(Eugster, et al., 2003). To be more precise, the RPC
interaction considered in this paper provides a
synchronous client-server communication, i.e. the
client is waiting for a server’s response before
completion the RPC actions related to the current
call.

The subscriber-publisher style of communication
(Eugster, et al., 2003) can provide the efficient
distribution of measured data. All clients, wishing to

receive messages from a transducer, register
themselves to the group of its subscribers using the
function subscribe. After that, when this transducer
generates a message using the function publish, this
message is effectively delivered to all members of
its subscribing group. Transducers in the role of
publishers have also the ability to advertise the
nature of their future events through an advertise
function.

The interaction publish-subscribe relates to point-
to-multipoint or multipoint-to-multipoint
asynchronous message passing. Of course, it can be
implemented using multiple unicast communication
transactions. On the other hand, to satisfy the
requirement of efficiency, it is necessary to utilize
elaborate multicast techniques encompassing
multicast addressing and, namely, multicast routing.
The basic principles of the network layer multicast
in the Internet environment are discussed in the
following section.

3.4 Multicasting

Traditional network computing paradigm involves
communication between two network nodes.
However, emerging Internet applications require
simultaneous group communication based on
multipoint configuration propped e.g. by multicast
IP, which saves bandwidth by forcing the network to
replicate packets only when necessary. Multicast
improves the efficiency of multipoint data
distribution by building distribution trees from
senders to sets of receivers (Miller, 1999).

The functions that provide the Standard Internet
Multicast Service can be separated into host and
network components. The interface between these
components is provided by IP multicast addressing
and Internet Group Management Protocol (IGMP)
group membership functions, as well as standard IP
packet transmission and reception. The network
functions are principally concerned with multicast
routing, while host functions can also include
higher-layer tasks such as the addition of reliability
facilities in a transport-layer protocol.

IP multicasting is the transmission of an IP
datagram to a host group, a set of hosts identified by
the single IP destination address of class D.
Multicast groups are maintained by IGMP (IETF
RFC 1112, RFC 2236). Multicast routing considers
multicasting routers equipped with multicast routing
protocols such as DVMRP (RFC 1075), MOSPF
(RFC 1584), CBT (RFC 2189), PIM-DM (RFC
2117), PIM-SM (RFC 2362), or MBGP (RFC 2283).
For Ethernet-based Intranets, the Address Resolution
Protocol provides the last-hop routing by mapping
class D addresses on multicast Ethernet addresses.

ICSOFT 2007 - International Conference on Software and Data Technologies

348

3.5 Secure Multicast

In frame of a trust management in distributed
systems (Li and Singhal, 2007), multicast security
should provide assurance about disclosure (privacy)
and authenticity of sender/recipient. The key
exchange protocols used between unicast hosts do
not scale well to groups. Re-keying is required to
maintain confidentiality as group membership
changes. The IETF Multicast Security and IRTF
Group Security working groups developed a
building block approach to solve the problem. The
blocks encompass data security transforms, group
key management and security association, and group
policy management. Any application may use
different blocks together to create a protocol that
meets its specific requirements.

4 CASE STUDY

The case study, based on a real-world application,
which was introduced in more detail but from
distinct perspectives by (Sveda and Vrba, 2003) and
(Sveda and Vrba, 2006), is used in this paper to
demonstrate basic features of safety and security
conception of the application architecture.

4.1 Application Architecture

The application architecture comprises several
groups of wireless pressure and temperature sensors
with safety valve controllers as base stations
connected to wired intranets that dedicated clients
can access effectively through Internet. The web
server supports each sensor group by an active web
page with Java applets that, after downloading,
provide clients with transparent and efficient access
to pressure and temperature measurement services
through controllers. Controllers provide clients not
only with secure access to measurement services
over systems of gas pipes, but also communicate to
each other and cooperate so that the system can
resolve safety and security-critical situations by
shutting off some of the valves.

 Each wireless sensor group is supported by its
controller providing Internet-based clients with
secure and efficient access to application-related
services over the associated part of gas pipes. In this
case, clients communicate to controllers using a
messaging protocol based on client-server and
subscriber-publisher patterns employing 1451.1
Network Block functions. A typical configuration
includes a set of sensors generating pressure and
temperature values for the related controller that
computes profiles and checks limits for users of

those or derived values. When a limit is reached, the
safety procedure closes valves in charge depending
on safety service specifications.

In the transducer’s 1451.1 object model, basic
Network Block functions initialize and cover
communication between a client and the transducer.
The client-server communication style, which in this
application covers configurations of transducers, is
provided by two basic Network Block functions:
execute and perform. The standard defines a unique
ID for every function and data item of each class. If
the client requests to call any of the functions on
server side, it uses command execute with the
following parameters: ID of requested function,
enumerated arguments, and requested variables. On
server side, this request is decoded and used by the
function perform. That function evaluates the
requested function with the given arguments and, in
addition, it returns the resulting values to the client.
Those data are delivered by requested variables in
execute arguments.

4.2 Application Safety and Security

The application architecture comprises several
groups of wireless pressure and temperature sensors
with safety valve controllers as base stations
connected to wired intranets that dedicated clients
can access effectively through Internet, see Figure 1.
The WWW server supports each sensor group by an
active web page with Java applets that, after
downloading, provide clients with transparent and
efficient access to pressure and temperature
measurement services through controllers.
Controllers provide clients not only with secure
access to measurement services over systems of gas
pipes, but also communicate to each other and
cooperate so that the system can resolve safety and
security-critical situations by shutting off some of
the valves.

Each wireless sensor group is supported by its
controller providing Internet-based clients with
secure and efficient access to application-related
services over the associated part of gas pipes. In this
case, clients communicate to controllers using a
messaging protocol based on client-server and
subscriber-publisher patterns employing 1451.1
Network Block functions. A typical configuration
includes a set of sensors generating pressure and
temperature values for the related controller that
computes profiles and checks limits for users of
those or derived values. When a limit is reached, the
safety procedure, which is derived from the fail-stop
model discussed in section 2, closes valves in charge
depending on safety service specifications.

TOWARDS A UNIFIED SECURITY/SAFETY FRAMEWORK - A Design Approach to Embedded System Applications

349

Figure 1: Network configuration example.

Security in frame of Intranet subnets can be
based on current virtual private network concepts.
The discussed application utilizes ciphered channels
based on tunneling between a client and a group of
safety valve controllers. The tunnels are created with
the support of associated authentications of each
client.

5 CONCLUSIONS

The paper presents an approach to embedded system
networking that offers a reusable design pattern for
the considered class of Internet-based applications. It
brings an integrated networking framework
stemming from the IEEE 1451.1 smart transducer
interface standard, which represents an object-based
networking model supporting client-server and
publish-subscribe communication patterns in group
messaging, and from the IP multicast
communication, which mediates safe and secure
access to sensors and actuators in sensor networks
through Internet.

ACKNOWLEDGEMENTS

The research has been supported by the Czech
Ministry of Education in the frame of Research
Intentions MSM 0021630528: Security-Oriented
Research in Information Technology and MSM
0021630503 MIKROSYN: New Trends in

Microelectronic Systems and Nanotechnologies; and
in part by the Grant Agency of the Czech Republic
through the grants GACR 102/05/0723: A
Framework for Formal Specifications and
Prototyping of Information System’s Network
Applications and GACR 102/05/0467: Architectures
of Embedded Systems Networks.

REFERENCES

Eugster, P.T., et al., 2003. The Many Faces of
Publish/Subscribe. ACM Computing Surveys, Vol. 35,
pp.114-131.

IEEE 1451.1, 2000. Standard for a Smart Transducer
Interface for Sensors and Actuators -- Network
Capable Application Processor (NCAP) Information
Model, IEEE, New York, USA.

IEEE 802.15.4, 2003. Wireless Medium Access Control
and Physical Layer Specification for Low-Rate
Wireless Personal Area Networks, IEEE, New York,
USA.

Kim, I.-G., et al., 2006. Formal Verification of Security
Model using SPR Tool. Computeing and Informatics,
Vol.25, No.5, pp.353-368.

Leveson, N.G., 1984. Software Safety in Computer-
Controlled Systems. IEEE Computer, Vol.17, No.2,
pp. 48-55.

Li, H. and M. Singhal, 2007. Trust Management in
Distributed Systems. IEEE Computer, Vol.40, No.2,
pp. 45-53.

Miller, C.K., 1999. Multicast Networking and
Applications, Addison-Wesley, Reading,
Massachusetts, USA.

Schneider, F.B., 1983. Fail-Stop Processors. Digest of
Papers 26th IEEE CS Int. Conf. COMPCON'83
SPRING, pp. 66-70.

Sveda, M. and R. Vrba, 2003. An Integrated Framework
for Internet-Based Applications of Smart Sensors.
IEEE Sensors Journal, Vol.3, No. 5, pp.579-586.

Sveda, M., et al., 2005. Introduction to Industrial Sensor
Networking, A book chapter in: Ilyas, M., and I.
Mahgoub, (Eds.), 2005. Handbook of Sensor
Networks: Compact Wireless and Wired Sensing
Systems, CRC Press LLC, Boca Raton, FL, USA.

Sveda M. and R. Vrba, 2006. Internet-Based Embedded
System Architectures -- End-User Development
Support for Embedded System Applications.
Proceedings of the International Joint Conference on
e-Business and Telecommunications (ICETE 2006,
ICE-B), INSTICC and IEEE, Setúbal, Portugal, 2006,
pp.63-68.

ZigBee Alliance, 2004. ZigBee Specification v 1.0.
ZigBee Alliance Board of Directors, Website
http://www.zigbee.org/

ICSOFT 2007 - International Conference on Software and Data Technologies

350

